
How to Analyze Single-Case Studies in Education: an 
Illustration with Two Alternative Methods 

 
Diep T. Nguyen, and John Ferron 

University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620 

 
 
 
 
 
Abstract 
 
In educational settings, single-case, or single-subject, research is the intensive study of 
individual learners through repeated measurement of an outcome while altering the 
conditions under which the learner is being observed. The most common single-case 
design is a multiple-baseline design, which is characterized by short interrupted time 
series data (typically 10 to 30 observations) on a small number of participants (commonly 
4 to 8 persons) where the introduction of the intervention is temporally staggered across 
the participants. These features present some challenges for traditional analyses because 
small sample size at level 1 (short time series) or level 2 (few participants) makes it 
difficult to identify and estimate an appropriate model for the data. This paper illustrates 
two alternative methods for analyzing multiple-baseline studies: a variation of multilevel 
modeling and a non-parametric approach. A reanalysis of a previously published 
multiple-baseline study is presented to demonstrate the use of these two methods in 
single-subject educational research. 
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1. Multiple-Baseline Studies 
 
1.1 Introduction 

Single-case designs are used in educational studies to examine the effects of interventions 
on individual students.  Of the various types of single-case designs, the multiple-baseline 
(MB) design is the most commonly used (Shadish & Sullivan, 2011).  It consists of 
collecting interrupted time-series data concurrently from multiple participants.  
Participants begin the study in a baseline phase (A) where repeated observations are 
made.  Participants then transition to an intervention phase (B), where the transition from 
baseline to intervention is temporally staggered across participants (Baer, Wolf, & Risley, 
1968; Christ, 2007).  This temporal staggering of the intervention distinguishes the 
multiple-baseline design from a replicated AB design, and aids in arguments of internal 
validity because had an event other than treatment impacted the time-series it is not likely 
that such an event would create shifts in the series that coincided with the temporal 
staggering of the intervention.   
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At least five baseline observations and a minimum of five treatment phase observations 
are needed for each of at least three participants for the design to meet standards of the 
What Works Clearinghouse (Kratochwill, Hitchcock, Horner, Levin, Odom, Rindskopf, 
& Shadish, 2010).  Researchers are encouraged to randomly assign participants to 
baseline lengths (Ferron, Moeyaert, Van den Noortgate, & Beretvas, in press; 
Kratochwill & Levin, 2010), to document high levels of reliability in the repeated 
measurements of the outcome variable (Kratochwill et al., 2010), and to graphically 
display and visually analyze the graphed data (Horner, Swaminathan, Sugai, & 
Smolkowski, 2012; Kratochwill et al., 2010).   
 
There are several challenges to statistically analyzing the data that result from multiple-
baseline studies.  First, the number of participants, typically four to eight (Ferron, Farmer, 
& Owens, 2010), is relatively small compared to what is observed in group longitudinal 
studies in education.  Second, the time series are relatively short for time series data (e.g., 
a median series length of 24 was reported by Ferron, Farmer, and Owens, 2010).  The 
limited amount of data presents challenges because it can be difficult to identify an 
appropriate model and to accurately estimate the underlying parameters.  We consider 
two approaches: 1) randomization tests, which do not require identification of a 
parametric model, and 2) multilevel models, which can capitalize on similarities across 
cases to improve parameter estimation.       

 
1.2 Randomization Tests for MB data 

Randomization tests (Edgington & Onghena, 2007) are nonparametric tests that 
determine statistical significance by comparing an obtained test statistic value to an 
empirically derived randomization distribution. The randomization distribution is 
constructed by repeatedly recalculating the test statistic value using the same values for 
the dependent variable but different values for the independent variable, where the 
different independent variable values reflect the possible random assignments.  The 
randomization distribution can be constructed exhaustively so that it contains one test 
statistic value for each of the N possible assignments, or it can be approximated by 
randomly resampling with replacement a large number of assignments from the set of 
possible assignments.   
 
A variety of randomization schemes have been developed for multiple-baseline studies.  
In one approach, researchers randomly assign participants to baselines of predetermined 
lengths (Wampold & Worsham, 1986).  In a second approach, researchers establish a set 
of possible intervention start times for each time series, where the possible start times for 
one series do not overlap with the possible start times for another series, which ensures 
the baseline lengths vary across series.  Researchers then randomly assign participants to 
baseline lengths and randomly selects a start times from within the designated sets of 
possible start times (Koehler & Levin, 1998).  Finally, researchers may choose to gather 
baseline data until each series reaches stability and then randomly choose the order in 
which participants enter treatment (Ferron & Jones, 2006).   
 
Randomization tests are statistically valid (i.e., they maintain a Type I error rate at or 
below the nominal alpha) as long as the design incorporates randomization, the 
randomization distribution is consistent with the randomization method, and the test 
statistic is chosen without knowledge of the chosen assignment (Edgington, 1980).  The 
ability to control the Type I error rate with time series that are potentially autocorrelated 
and non-stationary (due to effects other than the treatment that impact the time series) is a 
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substantial motivation for using randomization tests with multiple-baseline data.  
Concerns with the application of randomization tests include: 1) the feasibility of 
randomization in some contexts, 2) statistical power, where the power depends on the 
size of the effect, the number of participants, the series length, the autocorrelation in the 
time series, and type of randomization that is chosen (Ferron & Sentovich, 2002), and 3) 
the lack of a parameter that indexes the size of the effect.    
 
1.3 Multilevel Models for MB data 

 
Statistical models have been proposed for multiple-baseline data where each series is 
modeled separately (e.g., Maggin et al., 2011; McKnight, McKean, & Huitema, 2000) 
and multilevel models have been proposed to simultaneously model all of the time series 
(Shadish, Kyse, & Rindskopf, 2013; Shadish & Rindskopf, 2007, Van den Noortgate & 
Onghena, 2003a; 2007).   
 
In the simplest multilevel model the variation in outcome for the jth participant is modeled 
as a function of a single dichotomous predictor that indicates the phase to which an 
observation belongs (0 = baseline, 1 = intervention).  More specifically,  
 
    ijijjjij ePhaseY ++= 10 ββ           ),0(~ 2

eij Ne σ    (1) 
 

ijY is the observed value at the ith point in time for the jth participant, j0β is the baseline 

level for the jth participant, j1β is the treatment effect for the jth participant (i.e., the shift 
in level between baseline and intervention phases), and ije  is the error term.  The 
regression coefficients are assumed to vary across participants, 
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where 00θ  indicates the average baseline level across participants, 10θ  refers to the 
average treatment effect across participants, and ju0  and ju1  are the second-level errors. 
 
A variety of extensions of this model are possible, including the modeling of 
autocorrelation in the level-1 errors (Ferron, Bell, Hess, Rendina-Gobioff, & Hibbard, 
2009), allowing the level-1 error variance-covariance parameters to vary across 
participants (Baek & Ferron, 2013), modeling linear trends within the baseline and 
treatment phases (Van den Noortgate & Onghena, 2003b), modeling non-linear trends 
within the treatment phases (Hembry, Bunuan, Beretvas, Ferron, & Van den Noortgate, 
in press), modeling outcome variables that are counts (Shadish et al., 2013; Shadish & 
Rindskopf, 2007), adding a third level to model variation between sites or studies 
(Moeyaert, Ugille, Ferron, Beretvas, & Van den Noortgate, 2014; Van den Noortgate & 
Onghena, 2008), and treating differences between cases as fixed effects as opposed to 
random effects (e.g., Rindskopf & Ferron, 2014). 
 
The use of multilevel models allows researchers to estimate parameters that can answer 
research questions about the size of the average treatment effect and the variation in the 
treatment effect across participants.  Concerns with the application of multilevel 
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modeling to multiple-baseline data stem from uncertainties about whether an estimated 
model is correctly specified, and the small sample sizes that are characteristic of multiple-
baseline studies.  When models are correctly specified accurate inferences about the 
average treatment effect can be made with as few as four participants if the Kenward-
Roger (1997) approach to estimating standard errors and degrees of freedom is used, but 
the between person variance estimates tend to be biased by the small sample size (Ferron 
et al., 2009). 
 

2. Application 
 
2.1 Study Description 
 
2.1.1 Description of Application.  
 
Data for this study were a subset obtained from the Ingersoll and Wainer (2013) 
investigation, which used a multiple-baseline design to examine the effect of a treatment 
on mothers’ fidelity of implementing a technique designed to increase speech in children 
with Autism Spectrum Disorder. Data included in our analyses were for the fidelity 
outcome measure and the subset of five mothers who received treatment two times a 
week. These mothers (and their children) were randomly assigned to pre-determined 
baseline periods. The series lengths ranged from three to 11 for the baseline phase and 20 
to 24 for the treatment phase. Our purpose was to reanalyze this data using: (1) a 
randomization test to determine if there is evidence of a treatment effect and (2) 
multilevel modeling to estimate the size of the treatment effect and the degree to which it 
varies across participants. 
 
2.1.2 Graph of Data.   
 
Figure 1 provides a graphical display of the fidelity ratings for each of the five mothers as 
a function of time.  Visual inspection of the graph suggests the average fidelity ratings 
increase after implementation of the intervention.  Further statistical analyses will allow 
us to rule out chance as a viable explanation for these observed increases and to quantify 
the size of the effect. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

JSM 2014 - Social Statistics Section

128



 

 

 

 

 
 
Figure 1: Graphs for average fidelity of all mothers  
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2.2 Randomization Test  
To test the null hypothesis of no treatment effect, we used the Wampold-Worsham 
randomization test for multiple-baseline designs using the ExPRT program (Levin, 
Evmenova, & Gafurov, 2014). 
 
The mean difference between treatment and baseline phases was 1.43, 1.57, 1.4, 1.57, 
and 2.51, respectively, and thus the observed test statistic was 1.70.  This value was 
compared to the randomization distribution of 120 test statistic values that were obtained 
by finding the average mean difference for each of the possible random assignments.  
The observed test statistic was the 3rd largest value in the randomization distribution, and 
thus the one-tailed test resulted in a p-value of .0250, and thus we reject the null 
hypothesis that the treatment had no effect.  As mentioned earlier, we do not have a 
parameter estimate that can be interpreted as an effect size with the randomization test.  
This motivates our next analysis.  
 
2.3 Multilevel Model 
 
2.3.1 Model 1: No Trend 
 
Model 1 is a hierarchical model of parent average fidelity as a function of treatment 
where it is assumed that there is no trend in either phase. The model also assumes a 
first-order autocorrelation and that the baseline levels and the effects are allowed to 
vary across mothers.  The model was estimated using restricted maximum likelihood 
estimation and the Kenward-Roger approach for fixed effect inferences as implemented 
in the MIXED Procedure of SAS.  
 
Equations for model 1: 
Level -1:  

Yij = π0j + π1j * Phaseij + eij 
 
where Yti is average fidelity of mother i at time point t, π0i is baseline level of fidelity, π1i 

is shift in average fidelity level, Phaseti equals to 0 if mother i is in baseline and equals to 

1 when mother i is in the treatment condition at time point t, eti is level-1 error term. 

 
Level - 2:    π0j = β00 + roj  

π1j = β10 + r1j  
 

where β00 is overall average baseline level across all five mothers, β10 is overall average 
treatment effect, roi and r1i are variations of  base level and treatment effect from the 
average values for person i. 
 
The level-2 equations can be substituted into the level-1 equation to create the combined 
model or mixed linear model below: 
 

 
Yij = β00 + β10 * Phaseij + roj + r1j * Phaseij  +  eij 
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Results of Model 1 are presented in Table 1. The results showed that the estimated 
average baseline and the average shift in levels (or average treatment effect) were 1.65 
and 1.64, respectively. This would place the average of the treatment phase at 3.29. The 
treatment effect was statistically significant with a p-value that equals .0015.  
 
The variance components are also shown in Table 1 for completeness, but the level-2 
variances should be viewed cautiously given the small sample size coupled with the use 
of restricted maximum likelihood estimation. The autocorrelation of .68 may be partially 
attributed to trends in the treatment phase that were not modeled.  Based on Figure 1, it 
appears that there is an upward trend during the treatment phase for each of the 
participants.  
 
Table 1: Hierarchical modeling regression results of average mother fidelity for Model 1 
Parameter Estimate se df t p 
Fixed Effects      
 Average Baseline Level 1.65 0.17 4.39 9.58 .0004 
 Average Treatment Effect 1.64 0.22 4.06 7.60 .0015 
Variances      
  Between Baseline Levels 0.13 0.10    
  Between Treatment Effects 0.07 0.19    
  Within Baseline Phase Variance 0.23 0.06    
  Baseline Phase Autocorrelation -.32 .19    
  Within Treatment Phase Variance 0.79 0.22    
  Treatment Phase Autocorrelation .68 .09    
 
2.3.2 Model 2: With Trend 
Model 2 is a hierarchical model of parent average fidelity as a function of treatment and 
time into treatment.  In this model, we will allow no trend in baseline, a linear trend in 
treatment, and variation between baseline levels across mothers as well as variation in 
treatment effects across mothers.  
 
Equations for Model 2: 
Level -1:  

Yij = π0j + π1j * Phaseij + π2j * Phaseij * Timeij + eij 
 
Where π0i is the baseline level, π1i represents the shift in level between the treatment 
phase and the baseline extrapolation approximately half way through the intervention (i.e., 
Time was centered so that 0 corresponded to the 11th treatment observation), and π2i is the 
slope in the treatment phase for person i. 
 
Level - 2:   π0j = β00 + roj      

π1j = β10 + r1j                
π2j = β20 + r2j 

where β00 can be interpreted as the average baseline level across mothers, β10 the 
average shift in level across mothers, and β20 the average slope during treatment 
across mothers, r0i, r1i, and r2i represent the deviations of the ith mother’s values 
from these averages.    
Combined model:  Yij = β00 + β10 * Phaseij + β20 * Phaseij * Timeij + roi + r1j * Phaseij  

+ r2j * Phaseij * Timeij + eij 
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Table 2 shows the hierarchical modeling regression results for Model 2. The estimated 
average baseline effect and the average shift in levels across participants in this model 
were statistically significant and identical with those estimates in Model 1. However, 
results from Model 2 showed that there was a slope in the treatment phase (0.08) and this 
trend was statistically significant (p = .0065). In addition, the autocorrelation of the 
treatment phase was smaller in this model than in Model 1 (i.e. .29 in this model in 
comparison with .68 in Model 1).    
 
Table 2: Hierarchical modeling regression results of average mother fidelity for Model 2 
Parameter Estimate se df t p 
Fixed Effects      
 Average Baseline Level 1.65 0.17 4.39 9.71 .0004 
 Average Treatment Effect 1.64 0.21 4.22 7.78 .0012 
 Average Treatment Slope 0.08 0.02 4.49 4.79 .0065 
Variances      
  Between Baseline Levels 0.12 0.10    
  Between Treatment Effects 0.17 0.15    
  Between Treatment Slopes <0.01 <0.01    
  Within Baseline Phase Variance 0.23 0.06    
  Baseline Phase Autocorrelation -.32 .20    
  Within Treatment Phase Variance 0.34 0.06    
  Treatment Phase Autocorrelation .29 .11    
 

3. Conclusions and Recommendations 
 
The two analyses we ran complement each other and the visual analysis of the authors.  
By conducting a randomization test we were able to formally rule out chance as an 
explanation for the changes observed in the graph, and by estimating a multilevel model 
we were able to gauge the size of the treatment effect.  We would recommend that those 
planning multiple-baseline studies incorporate randomization into their design so that a 
valid randomization test can be conducted.  We also recommend that those analyzing 
single-case data consider using multiple analyses, as we have illustrated here.  Multilevel 
models provide a reasonable way to estimate effects, but rely on many assumptions that 
are difficult to test with a small data set, and thus it is helpful to also conduct a 
randomization test. The randomization test does not require distributional assumptions, 
but by itself it is also limited because it does not provide an estimate of an effect size 
parameter.  Together these analyses provide a more complete understanding of the data 
and the effect of treatment on the outcome. 
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