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Abstract
In an image analysis context, data often have high correlations due to spatial and spectral relations

between pixels. The high correlations are inherited to features when feature extraction is applied to
the images. Here, we are concerned with the classification setting, and in particular extending dis-
criminant analysis to the high-dimensional case (p > n). We review a variety of sparse discriminant
analysis techniques, and their relation to the data of interest. Subsequently, grouping of variables
in the elastic net is reviewed as well as the adaptive group elastic net. The paper is a discussion of
the methods for high-dimensional multi collinear data sets derived from image analysis problems,
where shrinkage is at the core of minimizing the variance and obtaining generalization power as
well as interpretable solutions.
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1. Introduction

Image analysis is increasingly used in industrial as well as research applications, and the
problmes are often of a predictive or supervised nature. This paper looks at correlation
structures resulting from image analysis problems, and discusses the influence on teh choice
of regression and classification algorithms.

This paper examines the correlation structure of data derived from images, and empha-
sizes the use of shrinkage for such problems where features are highly correlated. A num-
ber of sparse dicriminant analysis techniques are reviewed along with an adaptive grouping
technique for the elastic net.

2. Image Analysis Examples

This section introduces two examples of predictive scopes using image analysis. The first
example derives a smaller set of features from the original images, whereas the second ex-
ample uses the color intensity in the images as features. The examples serve to demonstrate
the strong correlation structures often arising in image anlaysis problems, and thus lay the
basis for the further discussions in this paper.

2.1 Spectral images with feature extraction

The motivations for the first example is to predict moisture in sand for concrete production
by using imaging techniques such that the predicitons can be performed inline and waiste
concrete can be minimized as the proper mixing proportions are estimated correctly. For
the purpose, near infrared spectral imaging was used with 9 different wavelengths for fast
and cheap acquisition (Clemmensen et al., 2010).

As each image consists of 9 × 1035 × 1380 ≃ 9, 000, 000 pixels, the dimensionality
was further reduced by extracting 1st order statistics like percentiles from each wavelengths
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Figure 1: Correlation matrix for sand data.

as well as pairiwse combinations of wavelengths. Finally, texture features were also ex-
tracted. The feature extraction amounted to a total number of 2016 features (Clemmensen
et al., 2010). The data set has 59 observations Figure 1 illsutrates the correlation structure
amongst the extracted features.

Though this data comes from a regression problem, similar feature extraction has proven
useful in similar spectral image analysis problems where classification is the task at hand
(Clemmensen et al., 2007).

2.2 Standard color images

This example uses standard color images respresented by a red (R), green (G), and a blue
(B) color band for each image of three fish species: Cod, haddock, and whiting. The
objective is to classify the three species in a fast and objective manner which for example
could be implemented in the fish industry or to control fish quota.

A number of image analysis techniques were applied to get a one-to-one correspon-
dance between the fish in the various images, and subsequently the color intensities can
directly be used as features (Larsen et al., 2009). As a part of the pixel matching between
fish images, the shape of each fish is described using an annotation. To include features
of size and shape, these landmark features were used. In total this amounts to 160,072
features, and the data set has 108 observations. Figure 2 illustrates the correlation matrix
between the features.

It is clear that there is a strong correlation between R, G, and B features, as patterns are
repeated in three blocks, also on the off diagonal. The first few features are shape features
and the pattern is distinct for these. Finally, also strong correlations are seen within a color
due to the spatial structure of the data, i.e. pixels next to each other have a higher correlation
than pixels further apart.
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Figure 2: Correlation matrix for fish data.

3. Methods

This section reviews various discriminant analysis techniques for high-dimensional prob-
lems, and discusses pros and cons in relation to analysing data from image analysis.

3.1 Discriminant Analysis Techniques

This section reviews some of the recently proposed techniques for performing discriminant
analysis in high dimensioanl spaces. The scope is to evaluate their appropriateness in rela-
tion to the proposed image analyis problems, i.e. for problems with several classes, more
features than observations, and high multi-collinearity.

3.1.1 Independence

Nearest shrunken centroids (NSC, Tibshirani et al. (2003)) and Penalized linear discrimi-
nant analysis (PLDA, Witten and Tibshirani, 2011, Witten and Tibshirani (2011)) uses the
diagonal of the within-class covariance matrix, and thus assumes independence between
the features. NSC uses soft thresholding and PLDA uses an ℓ1-norm (lasso, Tibshirani
(1996)) to obtain sparsity in the feature space.

3.1.2 Soft thresholding

Regularized discriminant analysis (RDA, Guo et al. (2007)) estimates the within-class co-
variance matrix as a weighted average of the full estimate and the diagonal estimate, and
introduces sparsity through soft thresholding of the covariance projected means (Σ−1µ).
Soft thresholding is comparable to a lasso shrinkage. With a regularized estimate going
from the full covariance matrix to the diagonal, the method is able to solve a wide variety
of problems.
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3.1.3 Elastic net regularization

Sparse discriminant analysis (SDA, Clemmensen et al. (2011)) reframes the classification
problem into a regression problem using optimal scoring, and then uses the ealstic net (Zou
and Hastie, 2005) to include shrinkage and sparisty to the solution. Shrinkage is highly
recommended to include when the features are correlated, as is the case in many image
analysis problems.

3.1.4 Thresholding

Sparse linear discriminant analysis by thresholding (SLDAT, Shao et al. (2011)). This
method uses thresholding of both the wihtin-class covariance matrix and the class means.
They showed that under certain conditions, their method is asymptotically optimal. This
method also solves a wide variety of problems going from a full estimate of the covaraince
matrix to a diagonal estimate. However, the thresholding does not introduce additional
shrinkage, and often thresholding methods are known to perform better if re-estimated
after thresholding due to multi-collinearity.

3.1.5 Additional ℓ1-penalties

ℓ1-Fishers discriminant analysis (FSFD, Wu et al. (2008)) introduces a lasso penalty to the
Fisher’s formulation of discriminant analysis for two-class problems. Similar to PLDA,
though without a diagonlization of the within-class covarince matrix.

The direct sparse discriminant analysis (DSDA, Mai et al. (2012)) is a method for bi-
nary classification with a penalization on the least squares formulation of two-class linear
discriminant analysis. In the paper, a lasso penalty was chosen, thus only mild shrinkage is
performed, but an elastic net penalty could also be used. DSDA achieves the Bayes error
rate as n goes to infinity. Recently, Mai and Zou (2014) proved that for two-class problems,
the three methods SDA, FSDA, and DSDA have equivalent normalized solutions.

The ℓ1-norm penalty works for p > n cases, but the grouping properties of the ℓ2-norm
are desirable when high correlations exist.

3.1.6 Further reading

A more thorough discusssion on some of the discriminant analysis techniques including
numerical simulation results can be found in Clemmensen (2013). For the more theoretical
comparison see Mai and Zou (2014).

3.2 Grouping in The Elastic Net

Several of the methods above, for example SDA and DSDA can or could use the elastic net
penalty to reduce the dimensionality. The elastic net consists of both an ℓ2-norm shrinkage
(Hoerl and Kennard, 1970) and an ℓ1-norm feature selection penalty (Tibshirani, 1996) of
the parameters. The ℓ2-norm shrinkage has a natural grouping of features that are highly
correlated, such that they will each contribute in a weighted form to the solution (Zou and
Hastie, 2005; Hastie et al., 2009).

Several explicit grouping methods have been proposed, see to Clemmensen (2014) for
more details. To my knowledge none of them are designed for adaptively grouping the
variables, i.e. when the groups are not known a priori, or for truely high-dimensional
problems. For this reason the adaptive group elastic net considers a simple definition of
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numerically equal correlations as

if cj − δ ≤ ci ≤ cj + δ ⇒ cj ≡ ci , (1)

i.e. we accept that cj equals ci, and adds groups of such features rather than a single feature
at a time.

For a given regression problem with data matrix X, response y, the adaptive grouping
algorithm as defined in Clemmensen (2014) is

Algorithm 1 Group elastic net algorithm
1. Require Xp×n, yn×1, and δ.

2. Ensure
∑

i yi = 0,
∑

i xij = 0,
∑

i x
2
ij = 1, ∀j.

3. Initialize the active set A = ∅, the inactive set I = {1, ..., p}, the correlation threshold
rt = 1− δ, the iteration number k = 0, and the current estimate µk = 0.

4. While early stopping criterion not met

(a) Compute the current correlations cj = xT
j (y−µk), j ∈ I, with maximum corerlation

C = max(abs(cj)) and corresponding index M = argmaxj(abs(cj)).

(b) Identify the set of variables with correlations of equivalent size to C, as P =
find(abs(cj − C) ≤ δ) , j ∈ I \M.

(c) Compute the correlations between the variable with maximum current correaltion
and all variables in the identified set P , r = XT

MXP . Find the the set of grouped
covariates as the variables which have suitable correlation sizes J = find(r > rt).

(d) Compute the step length γ and the equiangular direction uA using 2 and 3, and
update the current prediction µk+1 = µk + γuA, and the set of active variables
Ak+1 = Ak ∪M∪ J .

(e) End of iteration, k = k + 1.

5. Return the active set of variables and the predictions.

This algorithm builds on the least angle regression and selection (LARS, Efron et al.
(2004)) algorithm. LARS includes the variable(s) with an equal correlation and proceeds
in the direction of the equiangular vector uA of the active set A, given by:

uA = XAwA, (2)

where the covariates of the active set of variables is denoted as XA, and wA = AAX
T
AXA1A,

with AA = (1TAX
T
AXA1A)

−1/2, and 1A is a vector of ones with the size of the active set
A. The length of each step is given by:

γ = min
j∈I

{
C − cj

AA − (XT
IuA)j

,
C + cj

AA + (XT
IuA)j

}
, (3)

where I = Ac is the set of inactive variables and complementary to the set of active
variables, and thus XI denotes the covariates for the inactive set of variables.
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Figure 3: Selected blue features for the 1st discriminant direction for 100 bootstrap repeti-
tions without grouping (top), with mild grouping (middle), and strong grouping (bottom).
For both algorithms, early stopping was set to 60 features and the shrinkage parameter was
set to 106, and for the grouping δ = 0.05 and δ = 0.1.

4. Numerical Results

Various simulation comparisons as well as comparisons on the given examples have been
reported in Clemmensen et al. (2010), Clemmensen et al. (2011), Clemmensen (2013) and
Clemmensen (2014) which illustrated that shrinkage was a good idea, and that it was im-
portant to estimate a full though shrunken correlation structure in the discriminant analysis.
We will here revisit the fish image example to give some additional numerical results and
interpretations.

4.1 Fish data

The grouping algorithm is illustrated for the fish data in Figure 3. The test classification
errors were comparable: for the mild grouping it was around 4.4% with a standard deviation
of 3.3% whereas without grouping it was around 4.2% with a standard deviation of 3.3%.
The strong grouping had a misclassification rate of 5.8% with a standard deviation of 3.8%.

The dark line down the mid of two of the fish species is a clear interpretation of the
discriminant power of the 1st discriminating direction, and the picture gets clearer as the
grouping is increased.

5. Recommendation

The author recommends using shrinkage in algorithms for regression or classification in
high-dimensional image analysis prolems where strong multi collinearity exist. Its group-
ing and shrinkage abilities can aid in both generalization and interpretation.
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