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Abstract

We investigate the analysis of spontaneous abortion (SAB) cbllected via observational studies
in pregnancy. Such data can be left truncated because woragremter a study any time during

their pregnancy. In addition, the data has a well-definetediportion, because the majority of the
pregnancies do not end in spontaneous abortion. The datdsarsubject to right-censoring due to
loss to follow-up etc.

While left truncation has been well studied for the usualetim-event data with or without
right-censoring, it causes unique bias in the presence afedgortion. In light of the scientific
questions of interest, i.e. to identify risk factors for S&Bent (yes or no), as well as to identify
predictors of SAB timing among those who experience it, wesaer the mixture type cure rate
models for their desirable interpretations. Because tlaeteikelihood is difficult to maximize,
we propose a weighted and an approximate complete datébiloel, which are optimized using
an EM-type (ES) algorithm. Both approaches involve estiomadf the left truncation distribution,
which can be achieved using the cured subjects in order tplifgninference. Inference is then
carried out using the semiparametric sandwich varianémasirs which have closed form expres-
sions. The approaches are examined through simulatiorestuahd applied to the pregnancy data
from the Organization of Teratology Information Speciali€OTIS) autoimmune disease database
to illustrate its ability to simultaneously answer the tvetesitific questions of interest which cannot
otherwise be achieved with existing methodologies.

Key Words. approximate complete data likelihood; ES algorithm; isegorobability weighting;
mixture cure rate models; sandwich variance estimatorgled complete data likelihood

1. Introduction

Our work was motivated by research work carried out at thefimation of Teratology In-
formation Specialists (OTIS), which is a North Americanwatk of university or hospital
based teratology services that counsel between 70,0000nd0D pregnant women every
year. Research subjects are enrolled from the Teratoldgynhation Services and through
other methods of recruitment, where the mothers and théiebare followed over time.
Phone interviews are conducted through the length of thgnairecy along with pregnancy
diaries recorded by the mother. An outcome phone intervieaonducted shortly after
the pregnancy ends, and if it results in a live birth a dysmolgpgy exam is done within
six months and with further follow-ups at one year and pdgddter dates. Recently it
has been of interest to assess the effects of medicatiorserg®on spontaneous abortion
(SAB) (Xu and Chambers, 2011; Chambetsal, 2011). Here we examine a collection
of studies on the risks and safety of autoimmune diseasecateniis relative to adverse
pregnancy outcomes, and we focus on spontaneous abortiba agtcome of interest.

By definition SAB occurs within the first 20 weeks of gestatiamy pregnancy loss
after that is called still birth. Ultimately we would like tow if an exposure modifies
the risk of SAB for a woman, which may be increased or decrkalieis known that in
the population for clinically recognized pregnancies #hie of SAB is about 12% (Wilcox
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et al, 1988). On the other hand, in our database the empirical SAdis consistently
lower than 10%. This is due to the fact that women may enten@dysiny time before 20
weeks’ gestation. This way women who have early SAB evemrt$ess likely to be capture
in our studies, and such selection bias is known as left &time in survival analysis. Left
truncation has been studied by many authors since the 1@8dshave attracted much
recent attention in the context of length-biased data (Asgh et al., 2002; Qinet al,
2011, among others).

The fact that the majority of the pregnant women are free d8 &considered ‘cured’
in the time-to-event context. Cure rate models are wellistuth the literature for right-
censored data. They are used in various biomedical studiesewdata often include a
substantial portion of ‘long-term’ survivors who are no d¢@n susceptible to the event of
interest (Farewell, 1982, 1986). The models effectivelglyre the survival distribution
of those who are susceptible along with the probability ofratividual being ‘cured’. In
the approaches using mixture models, the logistic regragsi often used to model the
cured probability. For the dependency of the survival fiomcbn the covariates among the
non-cured, various regression models have been considbee@ox proportional hazards
model (Kuk and Chen, 1992; Sy and Taylor, 2000), transfaomanodels (Lu and Ying,
2004), and richly parametrized models when the shape ofdhartl function is of interest
(Hansonet al,, 2003). Cure rate models have also been developed alongésedf non-
mixture models (Cheet al,, 1999; Zenget al,, 2006).

In addition to right-censored data, cure-rate models hisesteeen developed for interval-
censored data (Kim and Jhun, 2008). To our best knowledgeg\er, they have not been
considered for truncated data which, unlike censoringep@sunique set of challenges.
While left truncation has been well studied as mentionedr@pthe challenges are again
unique in the presence of a cured portion. Most importatgfstruncation leads to selec-
tion bias that needs to be explicitly counted for, and in thecess of doing so computa-
tional challenges also arise, as will be seen below.

2. Moddl and Estimation

Let Y; be the indicator of whether subjecexperiences the event of interest, in our case
SAB,i =1,...,n. Itis possible that; is unobserved if there is right-censoring; otherwise
we observey; = 1 if a woman has an SAB event, or O if a woman carries her pregnanc
past 20 weeks of gestation. Note that this is different froendlassic cure data in the liter-
ature, wheré&’; = 0 is never observed. Letbe a time (such as 20 weeks) after which an
individual is no longer considered susceptible to the evetll from the previous section
that SAB is defined as loss of pregnancy prior to 20 weeks dhgies. LetT; denote the
event time if subject experiences an SAB event. L@t be the left-truncation (i.e. study
entry) time and’; be the potential right-censoring time. We assume non+{n&bive trun-
cation and censoring times; that (&);, C;) with @; < C;, and both are independent of
T; conditional on the covariates. This assumption was alsd us&saiet al. (1987) and
Wang (1991), for example, and is consider viable in the cargeour pregnancy studies.
We also expand the above notationdp > T; > 7 if Y; = 0 is observed. We define
X; = min(T;,C;, 1), andd; = I(T; < C;); note that ifY; = 0 is observed, we also have
0; = 1.

We consider the mixture cure rate model, which provides mterpretation as ex-
plained before for our purposes of analyzing women who hadeveho do not have SAB
events. The marginal survival function over the mixturehaf two populations is given by

Si(t) = P(T; > t) = (1 — p;) + piSi(t), 1)
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wherep; = P(Y; = 1), andS;(t) = P(T; > t|Y; = 1) fort < 7. To modelp; andsS;(t) w
consider the logistic regression and the Cox proportioazhlids regression, respectlvely.
These are common regression model choices, and were usgdid Jaylor (2000) among
others. DenoteZ; the vector of covariates for the logistic regression part 4; as the
vector of covariates for the Cox regression. So we have

exp (' Z;)

1+ exp(a’Z;)’ )

;=
wherea is a vector of regression parameters. For the hazard funofi@; we have

N(t) = Mo(t) exp(8'Zy), 3

where \y(t) is the baseline hazard function, agds a vector of regression parameters.
ThenSi(t) = exp{—Ao( )65 Z; } with AO fO /\0

Denoted = (o, B, Ag). Since we do not specify a parametric distribution ¢prthe
likelihood approach is conditional upon the obser¢gt. Under Weibull regression mod-
els for 7" Struthers and Farewell (1989) considered the marginalilideed under model

(2):
Lot~ TT{ 0} {5001 @

i=1

where fi(t) = —dS;(t)/dt = pif;(t), and fi(t) = —dS;(t)/dt. The above likelihood

does not involve the many observ&d = 0’s, which are the majority of the cases in our

pregnancy data. Not making use of thage= 0's, as will be illustrated later, can result

in substantial loss of information. Computationally thergiaal likelihood is also not

straightforward to maximize under the semiparametricaggiopn models we consider here.
Instead we consider the complete data likelihood:

L.(0;X,6,Y|Q)

Hm@mm>@wm@&@m=Ln>@W
=1

HPZ (1 —p)t {fz’(Xz‘) }(W {Si(Xi)}(l_éi))ZS)
1 - pz + pzSz(Qz) SZ(QZ) SZ(QZ) ’
Note that the only unobservéd’s are those right-censored before timeand the observed
Y; = 0's are explicitly counted for in the likelihood above. Urdikor cure rate data
without left truncation, however, (5) does not split intkglihoods from the logistic and the

Cox regressions separately, and this poses computatibali¢écges. In the following we
consider two approaches based on (5) to facilitate the asomproblem computationally.

A weighted likelihood

In the first approach we consider the biased sample Ilkettim}/o(l p;)! 7Y in place of
L, and then weigh each observation by its estimated mveutmbmty 1/P(T; > Q;):

prewe @ Ge) ] e

i=1

wherey; = 1/P(Q; < T;) is an estimated inverse probability of not being ‘truncated
out'. Inverse probability weighting (IPW) originated in Hatz and Thompson (1952), and
is often used in causal inference and missing data probl&ubirfset al, 1994; Hogan
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and Lancaster, 2004). It is easy to see that without the weidie likelihood would be
biased: assume that there is no censoring so allvilseare observed, and assume that
the logistic regression only has an unknown intereegtit is immediately seen that the
maximum likelihood estimate qf = P(Y = 1) is the observed portion df; = 1. This,
as we explained earlier, is biased downward due to lefteatian. In other words, the
unweighted likelihood would not account for those indivatkiwho have early events and
who are truncated out. The weighted likelihood in (6) hasdbmputational advantage
of separating the logistic and the Cox regression parasietence existing software for
fitting the Cox model can be used in the computational algorit Weighted likelihood
for semiparametric models was considered in Breslow andnéfe(2007) for two-phase
stratified sampling.

For the weights/; we have considered usimg(Q; < T;|Q;) = S;(Q;), but our pre-
liminary attempt shows that it leads to numerical instapiln an iterative model fitting
procedure. Instead le€¥(t) = P(Q < t) be the cumulative distribution function (CDF)
of Q. For the time being we assume tl@tdoes not depend on the covariates (see more
discuss on this later), ar@ is its estimator to be specified in Section 2.1. Then we define

vl = G(T)if 6, = 1; p;G(TF) + (1 —py)if 6; =0, (7)

whereT} € (X;, ) is an imputed value df;, p; is obtained according to (2) during an
iteration procedure to be described in Section 2.2, anddke foré; = 0 is based on the
fact thatP(Q; < T;) = P(Q; < T;|Y; = 1)P(Y; = 1) + P(Y; = 0). TheoreticallyT;
should be imputed from the conditional distributionZgfgiven censoring etc, but to keep
the computation simple we impute it from Unifor@X;, 7). Note that when there was no
censoring, weighting b@(Ti)—l was also considered in Gross (1996).

An approximate likelihood

In the second approach we consider an approximate likedilvdeereS;(Q;) = P(T; >
Q;|Q;) in Ly of (5) is replaced by an estimate G{T;) = P(T; > Q;|T;) if T; is observed,
and byz/i‘1 defined in (7) in general. The approximate likelihood is then

i1 1 — DPi +p2/V2 SZ(QZ) SZ(QZ)
This approach turns out to have many common computatioradarits as in the first ap-
proach above.

2.1 Estimation of G

Both approaches described above requires estimatigi(of = P(Q < ¢). When the
distribution of 7" does not depend on the covariates, the NPMLE/¢f) was studied in
Wang (1991). Inthe absence of censoring it reduces to a ptdichit (PL) estimator foiG.
In addition, Turnbull (1976) studied the NPMLE for arbifitartruncated data using a self-
consistent algorithm. Notice thék is right truncated byi” for the non-cured individuals.

A more straightforward approach for our data, since theedusample is not subject to
left truncation, is to estimaté’ using the empirical distribution function from that sample

A > HQi <t,Y;=0,0,=1) YL Qi <t,T; >7,C; > 1)

SR Y [V e D SN (TP Ry ®

Note that the independent censoring assumption ensurestisistency of the above es-
timator. This estimator is more straightforward for the r@einference, and is what we

42



JSM 2014 - Biometrics Section

use for the remainder of this paper. In the Appendix we alssvstihat for the weighted
approach, as long as(t) is consistently estimated, the asymptotically variancé of
unaffected (to the first order).

2.2 ESAlgorithm

Both the weighted and the approximate likelihoods lead tetaos (complete data) esti-
mating equations involving the parametric and the nonpatdaencomponents, in the same
way the score equations from nonparametric likelihoods Bor parametric estimating
equations with missing data in general, Elashoff and Ry@042 developed an EM-type
algorithm in which the update to the parameters is found tstiuiting in the expected
values of sufficient statistics of missing data based orectiparameter estimates. They
call it the ES algorithm. Roseet al. (2000) also developed the same ES algorithm in the
context of mixtures of marginal models. In the following wetail the algorithm for the
weighted likelihood approach; it is similar for the appmosite likelihood, and the corre-
sponding details are provided in the Appendix.

From (6) the weighted complete data log-likehood is:

n

ly(0) = Z v; [Yio/Zi —log {1 + exp(o/ZZ-)} + Yi{Ao(Q;) — Ao(X3)} exp(ﬂ'Z—)
i=1

+5iY;'{B/Zi +log Ao(X3)}| - (10)

Let ¢; denote the contribution from thé&" individual to (10) without the weights;. Let

0 <t < ..<tg < 7 be the distinct observed event times, andbe the point mass of
Ao atty. Let0 < ¢1 < ... < gy < 7 be the distinct truncation times of the observed cured
individuals, andG; = C?(qj) as defined in (9). Taking derivatives of (10) with respect to
a, fand ), (k = 1, ..., K) gives the first three of the following complete data estintat
equations, and (9) gives the last estimating equatiorGio(j = 1,...,J — 1; note that
Gy=1):

@ — S Z§~, 06 Nny oy ee@Z)
U Z_: UZ Z_: v; 804 ZZ:; VzZz {}/; 1 n exp(o/ZZ-) O,

v = Yol = zwg—g = D uYiZi[6; + {Mo(Qi) — Ao(Xi)} exp(B'Z;)] = 0,
= i=1

(11)

(12)

UAs) = Z Uio‘k) = Z 1/@'% = Zl/iYi {75iI(Xi =) _ exp(B'Z)1(Q; < ty, < Xz)} =0,
1 =1

Ak
k=1,.. K,

v@n = Y u - Z{ﬁ e <0 Yi= 0.0 = 1)} —0,
i=1

' = LN Yo I(Yi =0,6; =1)
j=1,..,J—1.

Note that (14) does not involve any unknown parameters dkizerG'; or any unobserved
Y;'s. We list (14) together with (11) - (13) here for the purpo®d deriving the variance
estimator later.

The ES algorithm proceeds iteratively for (11) - (13). We take the initial value
for o to be either zero or from a logistic regression model fit igmpthe right-censored
observations, and the initial value f8randAg to be from a Cox regression model fit taking
into account left truncation and treating all the cured soty as right-censored at In the
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E-steps since the unobservEgs enter the above complete data equations linearly, we only
need to compute; = E(Y;|observed data where the expectation is computed using the
current value of the parameters. Note that whgis observedv; = Y;; otherwise

wi = EYi|T; > X;,T; > Qi)
= PY,=1T; > X;,T; > Q)
P(T; > Xi|T; > Qi,Y; = )P(Ti > Qi|Y; = )P(Y; = 1)
P(Ti > X, T; > QiY; = DP(Y; = 1) + P(T; > X;,T; > Qi[Y; = 0)P(Y; = 0)
exp(a'Zi) exp | {A0(Qi) — Ao(Xi)}e" %] G(T))
exp(a'Z) exp [ {80(Q:) — Ao(X)}e? 2| G(T) +1

exp(o/Z) exp [[Ao(@0) ~ Mo(X0)}e# %]
- ~ ’ (15)
exp(a/Z;) exp [ {80(Qi) — Ro(X)}e? %] vi +1

whereG(T;) in the second last line is replaced byl from (7) in the above. Note that
in the ES algorithm the E-step for the missing data mechan@mbe specified separately
from the estimating equations of the S-step.

After substituting the unobservéd’s in (11) - (13) byw; defined in (15) above, the S-
step then obtains the updated parameters by solving théi@ggialn particular the updates
for o can be obtained separately from those foand Ayg. FromU(®) we use Newton-
Raphson methods to compute the updatexfddpdates for3 and A turn out to follow the
standard Cox model estimation procedure for left truncated right-censored data with
weightsy;w;. That is,

dy,
Zi:Qi<tk§Xi VWi eXP(B'Zi) ’

A = k=1,.. K; (16)

and ;3 can be found by the corresponding weighted partial likeltho

3. Inference

Letp = (0,G) = (o, 8,0, G). The identifiability of the cure-rate model considered
here was shown in Let al. (2001). We emphasize that in our data many ofYhe= 0’s
are observed, which greatly improves the ‘practical’ idfeatility of the model (Farewell,
1986).

LetU = (U@, u®T g™ y@ )T whereU™ denotes the vector df *+)
(k = 1,...,K), andU(% denotes the vector df (©3) (j = 1,...,G — 1). We use similar

T T T T
notationsl; = (Ul.(a) Ul g» ,Ui(G) )T for contribution from subject. Letl; =

3 3

E{U;|observed datg and let/ = 3" , ;. At convergence of the ES algorithm described
above, it can be seen that the parameter estiﬁhamves

T

U(¢p) = E4x{U(¢)|observed data= 0. (17)

This is in fact the first Louis (1982) formula for observedalatore function when proper
likelihood is used.

To estimate the variance of we consider the sandwich estimator for semiparametric
Z-estimators (Van der Vaart and Wellner, 1996; Kosorok,80@5incer; ! from (7) in-
volves imputation whei; = 0, we derive the closed form expressions below when there
is no right-censoring. Right-censoring for variance eation is dealt with separately in
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Section 3.1 using multiple imputation techniques. Morecis@y, leth = (hq, ho, hs, hy)
whereh; andhy are vectors of the same dimensiorvaand, respectively, andls andhy
are functions of bounded variation ¢ 7]. Define the sandwich estimator:

V(&) = {‘3—2(@}_1 {gui@ui(w} {‘3—2(@}_1 T

where the formulas fobi//0¢ are given in the Appendix, and; is U; given in (11) -
(14) with Y; replaced byv;. We also show in the Appendix that even thoughthgp,)’s
are correlated due to the’s in them, 37", Ui (¢)Ui(4) " /n does provide a consistent
estimate of the asymptotic variance ¥t ; U;(¢0)/+/n. If we denoteh,, as the vector
with elementshy, ho, h3(X;) at thoseX; whereo; = 1, andhs(Q;) from those cured
individuals, themh/,V,,h,, estimates the asymptotic variance of

; (18)

Vil (G- o)+ hy(B—Po) + / " hs(u)d(Ao— Ao) () + /0 " ha(u)d(G—Go)(w)}. (19)

0

3.1 Multiple Imputation Variance

As mentioned previously, in order to calculateas defined in (7) whes; is right-censored
(6; = 0), we impute &* from U (X;, 7). To account for this additional uncertainty in the
variance estimation, we can use the usual approach undéipl@umputation. Multiple
imputation is also used when the event times are intervaared (Pan, 2000; Chen and
Sun, 2010), which also exists in SAB data in general, sinceraan may not remember the
exact date when it occurred; this, however, is not the foasiopaper here. The resulting
variance estimator is the sum of the average variance dssniging the imputed values
and an additional component due to the imputation.

Form =1,..., M let é(m> be the parameter estimate based oniie set of imputed
data, and lep be the average of theg¢ parameter estimates. Then our variance estimator
with imputation is:

N 1 X . 1 M ((13(’”) — q@)(é(’”) — )"
_ (m) -
5= E;Vn(‘f’ )+<1+ > > : . (20)

m= m=1

In our simulation studies and data analysis we use- 10.

4. Spontaneous Abortion Data

The data we investigate come from the OTIS autoimmune disgabase as mentioned
earlier. Our sample includes pregnant women who entereseareh study between 2005
and 2012. It consists of = 964 women who entered the study before week 20 of their
gestation. Among these 499 (52%) were pregnant women withineautoimmune dis-
eases who were treated with selected newer medications(28%2) were with the same
specific autoimmune diseases who were not treated with theted newer medications,
and the rest 193 (20%) were healthy pregnant women withdoframune diseases who
were not treated with the selected newer medications. Ceaessbal. (2001) discussed
the importance of having a diseased control group, sinceesuithe adverse outcomes in
pregnancy may be due to the disease instead of the medicdtimre were a total of 74
SAB events, and 21 women were lost to follow up.
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4.0.1 Length-biased data and Testing the uniformitg of

Before fitting our models to the data, we note the recent nasthieveloped for length-
biased data and, if the length-biased assumption holdsahéitonal (on the truncation
times) approach we use is not efficient (Asghamdral., 2002). This assumption means
that the truncation distributiods is uniform. For left truncated and right-censored sur-
vival data, Asghariaret al. (2006) suggested a visual test to check whether the trunca-
tion distribution is uniform. If the truncation times areifamm over the duration of the
study, the Kaplan-Meier curves for the truncation tinigand the right-censored residual
times (X — Q) should show no significant difference. Mandel and Beten200T) de-
rived the corresponding paired log-rank test to this vigest; they also observed that for
non-censored data this is equivalent to testing the digtob of theQ;/T; against Uni-
form (0, 1) and the Kolmogorov-Smirnov test can be used. For our data ayeapply the
Kolmogorov-Smirnov test to the observed cured portion efgample; we also apply the
visual test to the non-cured portion.

We have noted before that the cured population is not sutipdett truncation, hence
the empirical distribution of the truncation times from thieserved cured provides a con-
sistent estimate ofr, under the independent censoring assumption. The Kolroggor
Smirnov test comparing) /20 for these cured individuals with/ (0, 1) yields ap-value
< 0.01.

4.0.2 Fitting the cure models

There are a number of risk factors for spontaneous aboti@rhiave been identified in the
literature; see for example Chambetsal. (2013). Strictly speaking these are known to
be risk factors in the logistic part of the cure model, butehee extend them to be also
considered in the Cox part of the model, i.e. for the timin@&B events. These include
maternal age, prior SAB (Y/N), prior elective abortion (TAB/N), and smoking (Y/N).
For these covariates we fit our regression models to the daththe results using the
weighted likelihood are given in Table 1 left columns. Thsules using the approximate
likelihood are qualitatively similar. As before we used teputed values for the censored
survival times to compute the variance of the estimates.

From Table 1 we see that older maternal age3@) significantly increase the proba-
bility of SAB in the logistic part of the model. Healthy coals have significantly lower
probability of SAB compared to the autoimmune disease drgmpsed women, but the
probability of SAB is not significantly different betweeretidiseased control and the ex-
posed women. The Cox regression part of the model identified PAB as a significant
factor for the hazard of SAB; this in the cure model contextdti be understood as signif-
icantly later timing of SAB during the first 20 weeks of gesiatfor those who had prior
TAB.

It is of interest to contrast the above results with any aialyhat might have been
done without the methodology developed in this paper. Niome may fit just a logistic
regression model taking yes or no SAB as outcome, and excheldost to follow-up
subjects. As shown in the right columns of Table 1, this will &lentify maternal age and
disease groups as significant risk factors, with the sanms sifjthe regression coefficients
as in the cure model. But the logistic intercept will be sabsally underestimated, which
can lead to erroneous predicted probabilities of SAB events

Counting for the left truncation, survival analysis methddéve been advocated in the
literature for the analysis of SAB data (Meister and Scha&f@08; Xu and Chambers,
2011). Table 1 right columns also show the results of the @grassion model fitted to the
data by treating all the cured individuals as right-cend@e20 weeks of gestation. The
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Table 1: Cure rate model versus naive model fits for SAB data

Cure model

Separate models

Estimate (SE) P-value Estimate (SE) P-value
Logistic
Intercept *-1.83(0.22) <0.01 *-2.58(0.22) <0.01
Maternal Age> 34 0.77 (0.29) <o0.01 0.60 (0.25) 0.02
Prior SAB -0.13(0.29) 0.65 0.06 (0.27) 0.81
Prior TAB -0.55(0.43) 0.20 -0.21 (0.40) 0.60
Smoking 0.30(0.35) 0.39 0.24(0.30) 0.43
Healthy Control -1.33 (0.46) <0.01 -1.11 (0.45) 0.01
Diseased Control -0.09 (0.30) 0.77 -0.14 (0.27) 0.61
Cox PH
Maternal Age> 34 0.18 (0.44) 0.70 0.11(0.26) 0.69
Prior SAB 0.03(0.31) 0.93 0.26 (0.29) 0.38
Prior TAB -0.66 (0.27) 0.02 -0.45(0.39) 0.25
Smoking -0.05 (0.45) 0.92 -0.17 (0.32) 0.60
Healthy Control -0.54 (0.51) 0.29 -0.50 (0.50) 0.32
Diseased Control 0.11 (0.34) 0.76 0.29 (0.27) 0.29

results are such that there are no significant predictorA&. his, as explained before,
is because we treat the majority of the women (who did not I%AB) as right-censored,
leading to substantial loss of information. In additiondanthe proportional hazards as-
sumption, non-significant effect of prior TAB would trarntgldo no significant difference in
the cumulative risks of SAB, which is in fact consistent wiitle non-significance of prior
TAB in the logistic part of the cure model. In contrast, theecmodel methodology we
have developed here is able to make use of the information lrath the women who had
SAB and those who were observed not to have SAB, as well aptoate the differential
regression effects like prior TAB on both the cumulativék ii§ SAB as well as the timing
of it among those who experience SAB.
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