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Abstract
We investigate the analysis of spontaneous abortion (SAB) data collected via observational studies
in pregnancy. Such data can be left truncated because women may enter a study any time during
their pregnancy. In addition, the data has a well-defined ‘cured’ portion, because the majority of the
pregnancies do not end in spontaneous abortion. The data arealso subject to right-censoring due to
loss to follow-up etc.

While left truncation has been well studied for the usual time-to-event data with or without
right-censoring, it causes unique bias in the presence of a cured portion. In light of the scientific
questions of interest, i.e. to identify risk factors for SABevent (yes or no), as well as to identify
predictors of SAB timing among those who experience it, we consider the mixture type cure rate
models for their desirable interpretations. Because the exact likelihood is difficult to maximize,
we propose a weighted and an approximate complete data likelihood, which are optimized using
an EM-type (ES) algorithm. Both approaches involve estimation of the left truncation distribution,
which can be achieved using the cured subjects in order to simplify inference. Inference is then
carried out using the semiparametric sandwich variance estimators which have closed form expres-
sions. The approaches are examined through simulation studies, and applied to the pregnancy data
from the Organization of Teratology Information Specialists (OTIS) autoimmune disease database
to illustrate its ability to simultaneously answer the two scientific questions of interest which cannot
otherwise be achieved with existing methodologies.

Key Words: approximate complete data likelihood; ES algorithm; inverse probability weighting;
mixture cure rate models; sandwich variance estimator; weighted complete data likelihood

1. Introduction

Our work was motivated by research work carried out at the Organization of Teratology In-
formation Specialists (OTIS), which is a North American network of university or hospital
based teratology services that counsel between 70,000 and 100,000 pregnant women every
year. Research subjects are enrolled from the Teratology Information Services and through
other methods of recruitment, where the mothers and their babies are followed over time.
Phone interviews are conducted through the length of the pregnancy along with pregnancy
diaries recorded by the mother. An outcome phone interview is conducted shortly after
the pregnancy ends, and if it results in a live birth a dysmorphology exam is done within
six months and with further follow-ups at one year and possibly later dates. Recently it
has been of interest to assess the effects of medication exposures on spontaneous abortion
(SAB) (Xu and Chambers, 2011; Chamberset al., 2011). Here we examine a collection
of studies on the risks and safety of autoimmune disease medications relative to adverse
pregnancy outcomes, and we focus on spontaneous abortion asthe outcome of interest.

By definition SAB occurs within the first 20 weeks of gestation; any pregnancy loss
after that is called still birth. Ultimately we would like toknow if an exposure modifies
the risk of SAB for a woman, which may be increased or decreased. It is known that in
the population for clinically recognized pregnancies the rate of SAB is about 12% (Wilcox
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et al., 1988). On the other hand, in our database the empirical SAB rate is consistently
lower than 10%. This is due to the fact that women may enter a study any time before 20
weeks’ gestation. This way women who have early SAB events are less likely to be capture
in our studies, and such selection bias is known as left truncation in survival analysis. Left
truncation has been studied by many authors since the 1980s,and have attracted much
recent attention in the context of length-biased data (Asgharian et al., 2002; Qinet al.,
2011, among others).

The fact that the majority of the pregnant women are free of SAB is considered ‘cured’
in the time-to-event context. Cure rate models are well studied in the literature for right-
censored data. They are used in various biomedical studies where data often include a
substantial portion of ‘long-term’ survivors who are no longer susceptible to the event of
interest (Farewell, 1982, 1986). The models effectively analyze the survival distribution
of those who are susceptible along with the probability of anindividual being ‘cured’. In
the approaches using mixture models, the logistic regression is often used to model the
cured probability. For the dependency of the survival function on the covariates among the
non-cured, various regression models have been considered: the Cox proportional hazards
model (Kuk and Chen, 1992; Sy and Taylor, 2000), transformation models (Lu and Ying,
2004), and richly parametrized models when the shape of the hazard function is of interest
(Hansonet al., 2003). Cure rate models have also been developed along the lines of non-
mixture models (Chenet al., 1999; Zenget al., 2006).

In addition to right-censored data, cure-rate models have also been developed for interval-
censored data (Kim and Jhun, 2008). To our best knowledge, however, they have not been
considered for truncated data which, unlike censoring, poses a unique set of challenges.
While left truncation has been well studied as mentioned above, the challenges are again
unique in the presence of a cured portion. Most importantly,left-truncation leads to selec-
tion bias that needs to be explicitly counted for, and in the process of doing so computa-
tional challenges also arise, as will be seen below.

2. Model and Estimation

Let Yi be the indicator of whether subjecti experiences the event of interest, in our case
SAB, i = 1, ..., n. It is possible thatYi is unobserved if there is right-censoring; otherwise
we observeYi = 1 if a woman has an SAB event, or 0 if a woman carries her pregnancy
past 20 weeks of gestation. Note that this is different from the classic cure data in the liter-
ature, whereYi = 0 is never observed. Letτ be a time (such as 20 weeks) after which an
individual is no longer considered susceptible to the event; recall from the previous section
that SAB is defined as loss of pregnancy prior to 20 weeks of gestation. LetTi denote the
event time if subjecti experiences an SAB event. LetQi be the left-truncation (i.e. study
entry) time andCi be the potential right-censoring time. We assume non-informative trun-
cation and censoring times; that is,(Qi, Ci) with Qi < Ci, and both are independent of
Ti conditional on the covariates. This assumption was also used in Tsaiet al. (1987) and
Wang (1991), for example, and is consider viable in the context of our pregnancy studies.
We also expand the above notation toCi ≥ Ti ≥ τ if Yi = 0 is observed. We define
Xi = min(Ti, Ci, τ), andδi = I(Ti ≤ Ci); note that ifYi = 0 is observed, we also have
δi = 1.

We consider the mixture cure rate model, which provides niceinterpretation as ex-
plained before for our purposes of analyzing women who have and who do not have SAB
events. The marginal survival function over the mixture of the two populations is given by

S̄i(t) = P (Ti > t) = (1− pi) + piSi(t), (1)
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wherepi = P (Yi = 1), andSi(t) = P (Ti > t|Yi = 1) for t < τ . To modelpi andSi(t) we
consider the logistic regression and the Cox proportional hazards regression, respectively.
These are common regression model choices, and were used in Sy and Taylor (2000) among
others. DenoteZi the vector of covariates for the logistic regression part, and Z̃i as the
vector of covariates for the Cox regression. So we have

pi =
exp(α′Zi)

1 + exp(α′Zi)
, (2)

whereα is a vector of regression parameters. For the hazard function of Ti we have

λi(t) = λ0(t) exp(β
′Z̃i), (3)

whereλ0(t) is the baseline hazard function, andβ is a vector of regression parameters.
ThenSi(t) = exp{−Λ0(t)e

β′Z̃i}, with Λ0(t) =
∫ t

0 λ0(u)du.
Denoteθ = (α, β,Λ0). Since we do not specify a parametric distribution forQ, the

likelihood approach is conditional upon the observedQi’s. Under Weibull regression mod-
els for T Struthers and Farewell (1989) considered the marginal likelihood under model
(1):

Lm(θ) =
n∏

i=1

{
f̄i(Xi)

S̄i(Qi)

}δi { S̄i(Xi)

S̄i(Qi)

}1−δi

, (4)

where f̄i(t) = −dS̄i(t)/dt = pifi(t), andfi(t) = −dSi(t)/dt. The above likelihood
does not involve the many observedYi = 0’s, which are the majority of the cases in our
pregnancy data. Not making use of theseYi = 0’s, as will be illustrated later, can result
in substantial loss of information. Computationally the marginal likelihood is also not
straightforward to maximize under the semiparametric regression models we consider here.

Instead we consider the complete data likelihood:

Lc(θ;X, δ, Y |Q) =

n∏

i=1

L1(θ;Yi|Ti > Qi) · L2(θ;Xi, δi|Yi = 1, Ti > Qi)
Yi

=
n∏

i=1

pYi

i Si(Qi)
Yi(1− pi)

1−Yi

(1− pi) + piSi(Qi)
·
{
fi(Xi)

Si(Qi)

}δiYi
{
Si(Xi)

Si(Qi)

}(1−δi)Yi

.(5)

Note that the only unobservedYi’s are those right-censored before timeτ , and the observed
Yi = 0’s are explicitly counted for in the likelihood above. Unlike for cure rate data
without left truncation, however, (5) does not split into likelihoods from the logistic and the
Cox regressions separately, and this poses computational challenges. In the following we
consider two approaches based on (5) to facilitate the estimation problem computationally.

A weighted likelihood

In the first approach we consider the biased sample likelihood pYi

i (1 − pi)
1−Yi in place of

L1, and then weigh each observation by its estimated inverse probability 1/P (Ti > Qi):

Lw(θ) =

n∏

i=1

[
pYi

i (1− pi)
1−Yi

{
fi(Xi)

Si(Qi)

}δiYi
{
Si(Xi)

Si(Qi)

}(1−δi)Yi

]νi

, (6)

whereνi = 1/P̂ (Qi < Ti) is an estimated inverse probability of not being ‘truncated
out’. Inverse probability weighting (IPW) originated in Horvitz and Thompson (1952), and
is often used in causal inference and missing data problems (Robinset al., 1994; Hogan
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and Lancaster, 2004). It is easy to see that without the weights the likelihood would be
biased: assume that there is no censoring so all theYi’s are observed, and assume that
the logistic regression only has an unknown interceptα0, it is immediately seen that the
maximum likelihood estimate ofp = P (Y = 1) is the observed portion ofYi = 1. This,
as we explained earlier, is biased downward due to left-truncation. In other words, the
unweighted likelihood would not account for those individuals who have early events and
who are truncated out. The weighted likelihood in (6) has thecomputational advantage
of separating the logistic and the Cox regression parameters, hence existing software for
fitting the Cox model can be used in the computational algorithm. Weighted likelihood
for semiparametric models was considered in Breslow and Wellner (2007) for two-phase
stratified sampling.

For the weightsνi we have considered usingP (Qi < Ti|Qi) = Si(Qi), but our pre-
liminary attempt shows that it leads to numerical instability in an iterative model fitting
procedure. Instead letG(t) = P (Q < t) be the cumulative distribution function (CDF)
of Q. For the time being we assume thatG does not depend on the covariates (see more
discuss on this later), and̂G is its estimator to be specified in Section 2.1. Then we define

ν−1
i =: Ĝ(Ti) if δi = 1; p̂iĜ(T ∗

i ) + (1− p̂i) if δi = 0, (7)

whereT ∗
i ∈ (Xi, τ) is an imputed value ofTi, p̂i is obtained according to (2) during an

iteration procedure to be described in Section 2.2, and the case forδi = 0 is based on the
fact thatP (Qi < Ti) = P (Qi < Ti|Yi = 1)P (Yi = 1) + P (Yi = 0). TheoreticallyT ∗

i

should be imputed from the conditional distribution ofTi given censoring etc, but to keep
the computation simple we impute it from Uniform(Xi, τ). Note that when there was no
censoring, weighting bŷG(Ti)

−1 was also considered in Gross (1996).

An approximate likelihood

In the second approach we consider an approximate likelihood whereSi(Qi) = P (Ti >
Qi|Qi) in L1 of (5) is replaced by an estimate ofG(Ti) = P (Ti > Qi|Ti) if Ti is observed,
and byν−1

i defined in (7) in general. The approximate likelihood is then

La(θ) =
n∏

i=1

(pi/νi)
Yi(1− pi)

1−Yi

(1− pi) + pi/νi
·
{
fi(Xi)

Si(Qi)

}δiYi
{
Si(Xi)

Si(Qi)

}(1−δi)Yi

. (8)

This approach turns out to have many common computational elements as in the first ap-
proach above.

2.1 Estimation of G

Both approaches described above requires estimation ofG(t) = P (Q < t). When the
distribution ofT does not depend on the covariates, the NPMLE ofG(t) was studied in
Wang (1991). In the absence of censoring it reduces to a product-limit (PL) estimator forG.
In addition, Turnbull (1976) studied the NPMLE for arbitrarily truncated data using a self-
consistent algorithm. Notice thatQ is right truncated byT for the non-cured individuals.

A more straightforward approach for our data, since the ‘cured’ sample is not subject to
left truncation, is to estimateG using the empirical distribution function from that sample:

Ĝ(t) =

∑n
i=1 I(Qi ≤ t, Yi = 0, δi = 1)∑n

i=1 I(Yi = 0, δi = 1)
=

∑n
i=1 I(Qi ≤ t, Ti > τ,Ci > τ)∑n

i=1 I(Ti > τ,Ci > τ)
. (9)

Note that the independent censoring assumption ensures theconsistency of the above es-
timator. This estimator is more straightforward for the overall inference, and is what we
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use for the remainder of this paper. In the Appendix we also show that for the weighted
approach, as long asG(t) is consistently estimated, the asymptotically variance ofθ̂ is
unaffected (to the first order).

2.2 ES Algorithm

Both the weighted and the approximate likelihoods lead to a set of (complete data) esti-
mating equations involving the parametric and the nonparametric components, in the same
way the score equations from nonparametric likelihoods do.For parametric estimating
equations with missing data in general, Elashoff and Ryan (2004) developed an EM-type
algorithm in which the update to the parameters is found by substituting in the expected
values of sufficient statistics of missing data based on current parameter estimates. They
call it the ES algorithm. Rosenet al. (2000) also developed the same ES algorithm in the
context of mixtures of marginal models. In the following we detail the algorithm for the
weighted likelihood approach; it is similar for the approximate likelihood, and the corre-
sponding details are provided in the Appendix.

From (6) the weighted complete data log-likehood is:

ℓw(θ) =
n∑

i=1

νi

[
Yiα

′Zi − log
{
1 + exp(α′Zi)

}
+ Yi{Λ0(Qi)− Λ0(Xi)} exp(β′Z̃i)

+δiYi{β′Z̃i + log λ0(Xi)}
]
. (10)

Let ℓi denote the contribution from theith individual to (10) without the weightsνi. Let
0 < t1 < ... < tK < τ be the distinct observed event times, andλk be the point mass of
λ0 at tk. Let 0 < q1 < ... < qJ < τ be the distinct truncation times of the observed cured
individuals, andGj = Ĝ(qj) as defined in (9). Taking derivatives of (10) with respect to
α, β andλk (k = 1, ...,K) gives the first three of the following complete data estimating
equations, and (9) gives the last estimating equation forGj (j = 1, ..., J − 1; note that
GJ = 1):

U (α) =

n∑

i=1

U
(α)
i =

n∑

i=1

νi
∂ℓi
∂α

=

n∑

i=1

νiZi

{
Yi −

exp(α′Zi)

1 + exp(α′Zi)

}
= 0, (11)

U (β) =

n∑

i=1

U
(β)
i =

n∑

i=1

νi
∂ℓi
∂β

=

n∑

i=1

νiYiZ̃i[δi + {Λ0(Qi)− Λ0(Xi)} exp(β′Z̃i)] = 0, (12)

U (λk) =
n∑

i=1

U
(λk)
i =

n∑

i=1

νi
∂ℓi
∂λk

=
n∑

i=1

νiYi

{
δiI(Xi = tk)

λk

− exp(β′Z̃i)I(Qi < tk ≤ Xi)

}
= 0,

k = 1, ...,K, (13)

U (Gj) =

n∑

i=1

U
(Gj)
i =

n∑

i=1

{
Gj

N
− I(Qi ≤ qj, Yi = 0, δi = 1)∑n

i=1 I(Yi = 0, δi = 1)

}
= 0,

j = 1, ..., J − 1. (14)

Note that (14) does not involve any unknown parameters otherthanGj or any unobserved
Yi’s. We list (14) together with (11) - (13) here for the purposes of deriving the variance
estimator later.

The ES algorithm proceeds iteratively for (11) - (13). We cantake the initial value
for α to be either zero or from a logistic regression model fit ignoring the right-censored
observations, and the initial value forβ andΛ0 to be from a Cox regression model fit taking
into account left truncation and treating all the cured subjects as right-censored atτ . In the
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E-steps since the unobservedYi’s enter the above complete data equations linearly, we only
need to computeωi = E(Yi|observed data), where the expectation is computed using the
current value of the parameters. Note that whenYi is observedωi = Yi; otherwise

ωi = E(Yi|Ti > Xi, Ti > Qi)

= P (Yi = 1|Ti > Xi, Ti > Qi)

=
P (Ti > Xi|Ti > Qi, Yi = 1)P (Ti > Qi|Yi = 1)P (Yi = 1)

P (Ti > Xi, Ti > Qi|Yi = 1)P (Yi = 1) + P (Ti > Xi, Ti > Qi|Yi = 0)P (Yi = 0)

=
exp(α′Zi) exp

[
{Λ0(Qi)− Λ0(Xi)}eβ

′Z̃i

]
G(Ti)

exp(α′Zi) exp
[
{Λ0(Qi)− Λ0(Xi)}eβ′Z̃i

]
G(Ti) + 1

=
exp(α′Zi) exp

[
{Λ0(Qi)− Λ0(Xi)}eβ

′Z̃i

]
/νi

exp(α′Zi) exp
[
{Λ0(Qi)− Λ0(Xi)}eβ′Z̃i

]
/νi + 1

, (15)

whereG(Ti) in the second last line is replaced byν−1
i from (7) in the above. Note that

in the ES algorithm the E-step for the missing data mechanismcan be specified separately
from the estimating equations of the S-step.

After substituting the unobservedYi’s in (11) - (13) byωi defined in (15) above, the S-
step then obtains the updated parameters by solving the equations. In particular the updates
for α can be obtained separately from those forβ andΛ0. FromU (α) we use Newton-
Raphson methods to compute the update forα. Updates forβ andΛ0 turn out to follow the
standard Cox model estimation procedure for left truncatedand right-censored data with
weightsνiωi. That is,

λ̂k =
dk∑

i:Qi<tk≤Xi
νiωi exp(β̂′Z̃i)

, k = 1, ...,K; (16)

andβ̂ can be found by the corresponding weighted partial likelihood.

3. Inference

Let φ = (θ,G) = (α, β,Λ0, G). The identifiability of the cure-rate model considered
here was shown in Liet al. (2001). We emphasize that in our data many of theYi = 0’s
are observed, which greatly improves the ‘practical’ identifiability of the model (Farewell,
1986).

Let U = (U (α)⊤, U (β)⊤, U (λ)⊤, U (G)⊤)⊤, whereU (λ) denotes the vector ofU (λk)

(k = 1, ...,K), andU (G) denotes the vector ofU (Gj) (j = 1, ..., G − 1). We use similar

notationsUi = (U
(α)
i

⊤
, U

(β)
i

⊤
, U

(λ)
i

⊤
, U

(G)
i

⊤
)⊤ for contribution from subjecti. LetUi =

E{Ui|observed data}, and letU =
∑n

i=1 Ui. At convergence of the ES algorithm described
above, it can be seen that the parameter estimateφ̂ solves

U(φ) = Eφ{U(φ)|observed data} = 0. (17)

This is in fact the first Louis (1982) formula for observed data score function when proper
likelihood is used.

To estimate the variance of̂φ, we consider the sandwich estimator for semiparametric
Z-estimators (Van der Vaart and Wellner, 1996; Kosorok, 2008). Sinceν−1

i from (7) in-
volves imputation whenδi = 0, we derive the closed form expressions below when there
is no right-censoring. Right-censoring for variance estimation is dealt with separately in
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Section 3.1 using multiple imputation techniques. More precisely, leth = (h1, h2, h3, h4)
whereh1 andh2 are vectors of the same dimension asα andβ, respectively, andh3 andh4
are functions of bounded variation on[0, τ ]. Define the sandwich estimator:

Vn(φ̂) =

{
∂U
∂φ

(φ̂)

}−1
{

n∑

i=1

Ui(φ̂)Ui(φ̂)
⊤

}[{
∂U
∂φ

(φ̂)

}−1
]⊤

, (18)

where the formulas for∂U/∂φ are given in the Appendix, andUi is Ui given in (11) -
(14) withYi replaced byωi. We also show in the Appendix that even though theUi(φ0)’s
are correlated due to theνi’s in them,

∑n
i=1 Ui(φ̂)Ui(φ̂)

⊤/n does provide a consistent
estimate of the asymptotic variance of

∑n
i=1 Ui(φ0)/

√
n. If we denotehn as the vector

with elementsh1, h2, h3(Xi) at thoseXi whereδi = 1, andh4(Qi) from those cured
individuals, thennh′nVnhn estimates the asymptotic variance of

√
n{h′1(α̂−α0)+h′2(β̂−β0)+

∫ τ

0
h3(u)d(Λ̂0−Λ0)(u)+

∫ τ

0
h4(u)d(Ĝ−G0)(u)}. (19)

3.1 Multiple Imputation Variance

As mentioned previously, in order to calculateνi as defined in (7) whenXi is right-censored
(δi = 0), we impute aT ∗

i from U(Xi, τ). To account for this additional uncertainty in the
variance estimation, we can use the usual approach under multiple imputation. Multiple
imputation is also used when the event times are interval censored (Pan, 2000; Chen and
Sun, 2010), which also exists in SAB data in general, since a woman may not remember the
exact date when it occurred; this, however, is not the focus of our paper here. The resulting
variance estimator is the sum of the average variance estimates using the imputed values
and an additional component due to the imputation.

Form = 1, ...,M let φ̂(m) be the parameter estimate based on themth set of imputed
data, and let̄φ be the average of theseM parameter estimates. Then our variance estimator
with imputation is:

Σ̂ =
1

M

M∑

m=1

Vn(φ̂
(m)) +

(
1 +

1

M

) M∑

m=1

(φ̂(m) − φ̄)(φ̂(m) − φ̄)⊤

M − 1
. (20)

In our simulation studies and data analysis we useM = 10.

4. Spontaneous Abortion Data

The data we investigate come from the OTIS autoimmune disease database as mentioned
earlier. Our sample includes pregnant women who entered a research study between 2005
and 2012. It consists ofn = 964 women who entered the study before week 20 of their
gestation. Among these 499 (52%) were pregnant women with certain autoimmune dis-
eases who were treated with selected newer medications, 272(28%) were with the same
specific autoimmune diseases who were not treated with the selected newer medications,
and the rest 193 (20%) were healthy pregnant women without autoimmune diseases who
were not treated with the selected newer medications. Chamberset al. (2001) discussed
the importance of having a diseased control group, since some of the adverse outcomes in
pregnancy may be due to the disease instead of the medication. There were a total of 74
SAB events, and 21 women were lost to follow up.
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4.0.1 Length-biased data and Testing the uniformity ofG

Before fitting our models to the data, we note the recent methods developed for length-
biased data and, if the length-biased assumption holds the conditional (on the truncation
times) approach we use is not efficient (Asgharianet al., 2002). This assumption means
that the truncation distributionG is uniform. For left truncated and right-censored sur-
vival data, Asgharianet al. (2006) suggested a visual test to check whether the trunca-
tion distribution is uniform. If the truncation times are uniform over the duration of the
study, the Kaplan-Meier curves for the truncation timesQ and the right-censored residual
times(X − Q) should show no significant difference. Mandel and Betensky (2007) de-
rived the corresponding paired log-rank test to this visualtest; they also observed that for
non-censored data this is equivalent to testing the distribution of theQi/Ti against Uni-
form (0, 1) and the Kolmogorov-Smirnov test can be used. For our data we may apply the
Kolmogorov-Smirnov test to the observed cured portion of the sample; we also apply the
visual test to the non-cured portion.

We have noted before that the cured population is not subjectto left truncation, hence
the empirical distribution of the truncation times from theobserved cured provides a con-
sistent estimate ofG, under the independent censoring assumption. The Kolmogorov-
Smirnov test comparingQ/20 for these cured individuals withU(0, 1) yields ap-value
< 0.01.

4.0.2 Fitting the cure models

There are a number of risk factors for spontaneous abortion that have been identified in the
literature; see for example Chamberset al. (2013). Strictly speaking these are known to
be risk factors in the logistic part of the cure model, but here we extend them to be also
considered in the Cox part of the model, i.e. for the timing ofSAB events. These include
maternal age, prior SAB (Y/N), prior elective abortion (TAB, Y/N), and smoking (Y/N).
For these covariates we fit our regression models to the data,and the results using the
weighted likelihood are given in Table 1 left columns. The results using the approximate
likelihood are qualitatively similar. As before we used tenimputed values for the censored
survival times to compute the variance of the estimates.

From Table 1 we see that older maternal age (> 34) significantly increase the proba-
bility of SAB in the logistic part of the model. Healthy controls have significantly lower
probability of SAB compared to the autoimmune disease drug exposed women, but the
probability of SAB is not significantly different between the diseased control and the ex-
posed women. The Cox regression part of the model identified prior TAB as a significant
factor for the hazard of SAB; this in the cure model context should be understood as signif-
icantly later timing of SAB during the first 20 weeks of gestation for those who had prior
TAB.

It is of interest to contrast the above results with any analysis that might have been
done without the methodology developed in this paper. Naively, one may fit just a logistic
regression model taking yes or no SAB as outcome, and excludethe lost to follow-up
subjects. As shown in the right columns of Table 1, this will still identify maternal age and
disease groups as significant risk factors, with the same signs of the regression coefficients
as in the cure model. But the logistic intercept will be substantially underestimated, which
can lead to erroneous predicted probabilities of SAB events.

Counting for the left truncation, survival analysis methods have been advocated in the
literature for the analysis of SAB data (Meister and Schaefer, 2008; Xu and Chambers,
2011). Table 1 right columns also show the results of the Cox regression model fitted to the
data by treating all the cured individuals as right-censored at 20 weeks of gestation. The
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Table 1: Cure rate model versus naive model fits for SAB data

Cure model Separate models
Estimate (SE) P-value Estimate (SE) P-value

Logistic
Intercept ∗ -1.83 (0.22) <0.01 ∗-2.58 (0.22) <0.01
Maternal Age> 34 0.77 (0.29) <0.01 0.60 (0.25) 0.02
Prior SAB -0.13 (0.29) 0.65 0.06 (0.27) 0.81
Prior TAB -0.55 (0.43) 0.20 -0.21 (0.40) 0.60
Smoking 0.30 (0.35) 0.39 0.24 (0.30) 0.43
Healthy Control -1.33 (0.46) <0.01 -1.11 (0.45) 0.01
Diseased Control -0.09 (0.30) 0.77 -0.14 (0.27) 0.61
Cox PH
Maternal Age> 34 0.18 (0.44) 0.70 0.11 (0.26) 0.69
Prior SAB 0.03 (0.31) 0.93 0.26 (0.29) 0.38
Prior TAB -0.66 (0.27) 0.02∗∗ -0.45 (0.39) 0.25∗∗

Smoking -0.05 (0.45) 0.92 -0.17 (0.32) 0.60
Healthy Control -0.54 (0.51) 0.29 -0.50 (0.50) 0.32
Diseased Control 0.11 (0.34) 0.76 0.29 (0.27) 0.29

results are such that there are no significant predictors of SAB. This, as explained before,
is because we treat the majority of the women (who did not haveSAB) as right-censored,
leading to substantial loss of information. In addition, under the proportional hazards as-
sumption, non-significant effect of prior TAB would translate to no significant difference in
the cumulative risks of SAB, which is in fact consistent withthe non-significance of prior
TAB in the logistic part of the cure model. In contrast, the cure model methodology we
have developed here is able to make use of the information from both the women who had
SAB and those who were observed not to have SAB, as well as to separate the differential
regression effects like prior TAB on both the cumulative risk of SAB as well as the timing
of it among those who experience SAB.
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