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Abstract

Gegenbauer processes allow for flexible and convenient modeling of time series data with multiple spectral peaks,

where the qualitative description of these peaks is via the concept of cyclical long-range dependence. The Gegenbauer

class is extensive, including ARFIMA, seasonal ARFIMA, and GARMA processes as special cases. Model estimation

is challenging for Gegenbauer processes when multiple zeroes and poles occur in the spectral density, because the

autocovariance function is laborious to compute. The method of splitting – essentially computing autocovariances by

convolving long memory and short memory dynamics – is only tractable when a single long memory pole exists. The

main contribution of this paper is to propose an additive decomposition of the spectrum into a sum of spectra that

each have a single singularity, so that an efficient splitting method can be applied to each term and then aggregated.

This approach differs from McElroy and Holan (2012), which handles all poles in the spectral density at once through

a careful analysis of truncation error. This paper’s technique allows for fast estimation of time series with multiple

long-range dependencies, which we illustrate numerically and through several case-studies.

Key Words: Gegenbauer, Long memory, Long-range dependence, Quasi-biennial oscillations, Seasonality, Spectral

density

1. Introduction

This paper is concerned with the modeling of time series data with multiple persistent periodicities, where

the persistency indicates a slow rate of decay in sample autocorrelations. Many time series of interest in

macroeconomics, finance, and meteorology have persistency at nonzero frequencies, which are properly

described as infinite (but integrable) peaks in the spectral density; see Ferrara and Guégan (2000), Bis-

aglia, Bordignon, and Lisi (2003), Soares and Souza (2006), Talamantes, Behseta, and Zender (2007), and

Gil-Alana (2008). When two or more such peaks are present in the spectrum of the underlying process,

the commonly used sets of models – ARFIMA (Hosking, 1981), seasonal ARFIMA (Porter-Hudak, 1990),

Gegenbauer (Gray, Zhang, and Woodward, 1989), etc. – are challenging to compute. That is, the autoco-

variance function of such models is laborious to calculate, although in the case of a single long memory

spectral peak there exists certain methods that facilitate computation. Recently, McElroy and Holan (2012)

developed a general representation for processes with multiple spectral peaks, and showed how one can

accurately determine the Wold coefficients of such processes from the cepstral representation (Bloomfield,
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1973). Further, McElroy and Holan (2012) produced error terms (expressed as hypergeometric functions)

that accounted for truncation error in the calculation of autocovariances. The current paper presents a dif-

ferent algorithm that is both fast and accurate, and goes back to the older “splitting” method of Bertelli and

Caporin (2002).

Briefly, in a nonparametric or semiparametric conception of the spectral density f , in which possibly

several persistent phenomena exist, it is natural to write f as a product of functions that represent the poles

in the spectrum, together with a term that corresponds to short memory dynamics, being both bounded

and bounded away from zero. In our discussion, we may also be interested in anti-persistent behavior,

or negative memory (McElroy and Politis, 2014), which corresponds to spectral troughs; i.e., a zero in

f . The autocovariance sequence corresponding to f is equal to the convolution of the autocovariances

of each term in the product; if there is only one pole/zero in the spectral density, then we must convolve

the corresponding autocovariance function with that of the short memory portion, which can be safely

truncated. This truncation of the short memory autocovariance function – presuming that the long memory

autocovariance function is known analytically, or can be calculated to high accuracy – is called the splitting

method, and is developed in Bertelli and Caporin (2002) and Hurvich (2002). This ingenious algorithm

does not extend directly to having two or more poles/zeroes, because then there are at least three functions

being convolved, which means there are at least two infinite summations – and there seems to be no way

to truncate these without a potentially tremendous loss of accuracy. The main insight of this paper is that a

function f with k ≥ 1 poles/zeroes can be re-expressed as the sum of k distinct functions, each of which has

a single pole/zero, together with its own distinct short memory spectrum. This is akin to a partial fraction

decomposition, though instead of polynomials, we must work with somewhat more complicated frequency

domain functions. The splitting method can be applied to each of the k distinct terms, and the corresponding

autocovariances simply summed up.

This algorithm allows us to consider processes with a potentially large number of spectral poles/zeroes.

In fact, in one of our illustrations (Section 5), we have k = 26 seasonal poles! This is done without much

worry about the potential loss of accuracy due to truncation, because we only have the approximation error

due to the splitting method, which is typically negligible due to the rapid decay of autocovariances of short

memory processes. Thus, complex time series data with multiple persistencies (where the frequency of

persistency may be either unknown – in which case it is a parameter to be estimated – or known) can now

be readily treated, whereas previously only special cases (e.g., seasonal ARFIMA, or the two-pole cases of

McElroy and Holan (2012)) could realistically be handled. We demonstrate this algorithmic breakthrough

on a broad array of series.

The resulting algorithms have been implemented for both a Gaussian likelihood and a Whittle likelihood,

where the short memory portion is semi-parametrically described via the device of a cepstral model – this

is just a Fourier expansion of the log spectrum. The aforementioned algorithms have been coded using

the R programming language (R Development Core Team, 2014) and are available upon request from the

first author. Adapting them to versions where the short memory portion is described via an ARMA process
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is straightforward, and thus is not pursued here. Another application would be to consider several latent

components, each of which are potentially cyclically persistent – in this case, the autocovariance of the

observed process is given as the sum of the autocovariances associated with each latent process, as described

in a more limited context in Holan and McElroy (2012).

The focus of this paper is primarily algorithmic and can be adapted across a wide-array of statistical

models. Specifically, the algorithms herein should be useful in computing any of the cyclical long memory

models currently being utilized to analyze time series with multiple persistencies. Section 2 provides the

general semiparametric framework and shows how popular models can be embedded therein. Section 3

thoroughly develops the algorithm, whereas Section 4 presents numerical studies of speed and accuracy. We

provide several illustrations in Section 5, utilizing our algorithm to fit data with multiple persistencies across

a variety of scientific disciplines. Concluding discussion is provided in Section 6, with derivations in the

Appendix.

2. A Semiparametric Description of Multiple Persistencies

The k-GEXP model was introduced in McElroy and Holan (2012), and is recapitulated here. Let {Xt} be

a mean zero covariance stationary time series. We will suppose that {Xt} follows a k-factor Generalized

Exponential model, or k-GEXP model, whose spectral density can be written compactly as

f(λ) = f−a
0 (λ) f−b

π (λ)

k
∏

j=1

f
−cj
ωj (λ) g(λ), (1)

where the functions of frequency fϑ are defined via

fϑ(λ) =



















|1− e−iλ|2 ifϑ = 0

|1 + e−iλ|2 ifϑ = π

|1− e−iϑe−iλ|2 |1− eiϑe−iλ|2 ifϑ 6= 0, π

. (2)

and the function g is bounded, representing the short memory portion of the spectrum. Also, the parameters

a, b, c1, . . . , ck are each bounded in (−1/2, 1/2) in order to guarantee stationarity. The frequencies ωℓ are

distinct from one another, and not equal to zero or π. When a parameter a, b, or cj is positive, there is a

corresponding pole in the spectral density at frequency zero, π, or ωj respectively – this is the case of long

memory. On the other hand, negative parameters correspond to a zero in the spectrum, and correspond to

intermediate memory (or negative memory, also called anti-persistence by some authors; see Beran (2010)

and the references therein). Note that the total number of poles/zeroes in (1) is at most k + 2, with a factor

being omitted when the corresponding persistency parameter is zero.

The short memory spectrum g corresponds to an EXP(q) model (Bloomfield, 1973) so that

g(λ) = σ2 exp







q
∑

j=1

gj cos(λj)







= exp







g0 +
1

2

∑

0<|j|≤q

gje
−iλj







, (3)
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where g−j = gj . So the innovation variance σ2 of the model is equal to exp(g0). Here q can be viewed

as a finite integer, with the case q = ∞ allowing for an arbitrary invertible short memory spectral density.

Putting together the short memory and long memory portions yields the k-GEXP(q) model: k parameters

govern the degree of persistence, with up to another k parameters governing the peak locations (when they

are not known a priori) or periodicities, and q parameters governing the short memory dynamics. Typically

a mean parameter would also be utilized, whereas the innovation variance can be estimated via utilizing a

profile likelihood.

By shifting the various ωℓ, one can capture a variety of quasi-cyclical phenomena, such as seasonality,

cyclicality, and long-term movements in the process. For a mean-zero Gaussian process, the spectrum f

contains all of the model parameters of interest, so that one only needs compute the autocovariances, i.e.,

the inverse Fourier Transform (FT), of the spectrum in order to determine the likelihood function. Therefore

both a classical and a Bayesian treatment of model estimation requires an efficient method of computing

autocovariances for any given values of the associated model parameters.

One problem with the model as it stands, is that it is not identifiable when k > 1. This is because we can

swap any two frequencies ω1, ω2, along with their corresponding memory parameters, and obtain the exact

same value of the spectral density. In order to guarantee identifiability in practice, one might put a priori

restrictions on the frequencies ωℓ, such as insisting that each one belongs to a disjoint subset of (0, π). In

our own implementations, we ensure that the various ωk are distinct via the following parametrization: for

θ1, θ2, . . . , θk ∈ R, and θ0 = 0, set

ωj+1 =
π exp(θj+1) + ωj

exp(θj+1) + 1

for j = 0, 1, . . . , k − 1. This ensures that ωj+1 ∈ (ωj, π).

For many applications of the model, the frequencies are known ahead of time and therefore are not even

parameters. For example, extremely persistent cyclical effects typically correspond to trends or seasonality,

for which the corresponding frequencies are known. Seasonality is a term referring to a situation where the

sampling frequency relative to annual time units is an integer. If there are p seasons, where p is integer, and

the sampling frequency coincides with p, then seasonality might manifest in the data. If seasonality is present

then it can often be described through peaks in the spectral density at frequencies 2πj/p for 1 ≤ j ≤ p.

Trend, on the other hand, is often described through polynomial functions or stochastic components, and

tends to contribute spectral mass at the low frequencies.

However, there may be some occasions where the cyclical frequencies are not known ahead of time. For

phenomena that are not tied to the terrestrial cycle (approximately 365 days), the sampling frequency may

have no special meaning in terms of seasons. For astronomical data, the existence of long-range cycles with

strong persistence is a known phenomenon, where the period can involve non-integer multiples of years.

One of our case studies involves a time series of wind measurements, and has long-range persistencies – one

of which does not correspond to a regular seasonal effect. Such phenomena might manifest as peaks in the

spectral density, but the peak frequency is not known a priori, and must be estimated.
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A secondary issue is weak identifiability problems due to possible confounding of the short memory g

and the zero-pole (ZP) contributions to (1). Because values of the exponents close to zero make the spectrum

approximately flat, excepting a kink, the same behavior can be approximated by the cepstral coefficients.

In finite samples it is possible to have confusion between these elements, and therefore we have found it

advisable to keep the cepstral order low (i.e., q ≤ 5). In practice, this issue is not terribly important, because

highly persistent peaks/troughs have a distinct spectral shape that is difficult to capture, or even approximate,

with a short memory spectral density.

3. Derivation of the New Algorithm

A key challenge in the computation of the autocovariance function (acf) for multiple-pole long memory

processes is the trade-off between computational efficiency and accuracy mentioned in McElroy and Holan

(2012); truncation techniques attempt to balance the horns of this dilemma. A splitting method, such as that

proposed in Bertelli and Caporin (2002) and Hurvich (2002), can be successful when there is only a single

long memory pole in the spectrum; but with multiple poles in the spectrum, long memory autocovariances

become convolved with other long memory autcovariances, implying that truncation of the convolution

involves a substantial approximation error. The novel idea of this paper is to factor the multi-pole form

of the spectrum into a sum of several components, each of which only contains a single long memory

pole. Then each component can have its autocovariances calculated via splitting, and the results summed to

produce the desired result.

Some notation that we require is given next. We use z = e−iλ where λ ∈ [−π, π], and for any real-

valued function g(λ), its inverse FT is defined to be the (possibly complex) sequence γh(g), defined via the

formula

γh(g) =
1

2π

∫ π

−π
g(λ)z−h dλ.

Conversely, the FT of a sequence {ah} is the function
∑∞

h=−∞ ahz
h. This establishes our conventions

concerning 2π. In the case that g is even, its inverse FT sequence is symmetric. Furthermore, if g is the

spectral density of a time series, its inverse FT is interpretable as the acf of the process.

The key result is a factorization that we describe below, which is akin to a partial fractions decomposition

of the spectrum. Let d+ = max{d, 0} and d− = min{d, 0} where d can be any of the exponents a, b, cj

– if a particular term is not present in the spectrum, this is handled by setting the exponent to zero. So

d+ + d− = d throughout. Then, apart from the short memory portion g, we can split f into two factors

f− and f+ corresponding to the terms having zeroes and the terms having poles, respectively. That is,

f = f−f+g with

f− = f−a−

0 f−b−
π

∏k
j=1 f

−c−j
ωj and f+ = f−a+

0 f−b+

π

k
∏

j=1

f
−c+j
ωj .

We wish to factorize f into a sum of ZP terms that each involve a single component of the fω terms, together
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with a short memory portion. Toward that end, we define the ZP “version” of the spectrum via

fZP = f−a
0 1{a6=0} + f−b

π 1{b6=0} +

k
∑

j=1

f
−cj
ωj 1{k>0}. (4)

With this notation, we can state the algebraic factorization result.

Proposition 1 Given a k-GEXP spectrum of the form (1) and factors given by (2), there exists a short

memory spectrum ν such that

ν =
(

f−a−

0 f b
+

π 1{a6=0} + f−b−
π fa

+

0 1{b6=0}

)

k
∏

j=1

f
c+j
ωj + fa

+

0 f b
+

π

k
∑

j=1

∏

ℓ 6=j

f
c+
ℓ

ωℓ
f
−c−j
ωj 1{k>0}

τ = f− · g/ν

f = τ · fZP .

The function ν is bounded, and is also strictly positive if there are at least two ZP factors – in which case it

corresponds to a short memory process. The function τ has only short memory and negative memory (it has

no poles).

This factorization yields a decomposition of f into a sum of up to k + 2 terms, each of which involves

τ divided by a factor f−d
ϑ . Therefore, the inverse FT of each summand of f can be computed by convolving

the inverse FT of numerator τ and denominator f−d
ϑ via the splitting method. This is advantageous, because:

(a) exact formulas for the acfs of the ZP factors f−d
ω are known, and (b) the inverse FT for τ can be calculated

to decent approximation (using the techniques of McElroy and Holan (2012)) since they have short/negative

memory. The formulas needed are summarized in the following result.

Proposition 2 The autocovariance sequence of the ZP factor τ/fdϑ is given by the following formulas:

γh

(

τ/fdϑ

)

=

∞
∑

j=−∞

γj(τ)γh+j(f
−d
ϑ )

γh(f
−d
ϑ ) =























Γ(h+d)Γ(1−2d)
Γ(h−d+1)Γ(1−d)Γ(d) ifϑ = 0

(−1)h Γ(h+d)Γ(1−2d)
Γ(h−d+1)Γ(1−d)Γ(d) ifϑ = π

√
π Γ(1− 2d) (2 sin ϑ)1/2−2d

{

P
2d−1/2
h−1/2 (cos ϑ) + (−1)h P

2d−1/2
h−1/2 (− cos ϑ)

}

ifϑ 6= 0, π

P
2d−1/2
h−1/2 (z) =

(

2h − 2

h− 2d

)

z P
2d−1/2
h−3/2 (z)−

(

2d+ h− 2

h− 2d

)

P
2d−1/2
h−5/2 (z).

The functions P 2d−1/2(z) are Legendre functions, and their recursive definition is initialized with

P
2d−1/2
−1/2 (z) =

(

1 + z

1− z

)d−1/4 F (1/2, 1/2, 3/2 − 2d; (1 − z)/2)

Γ(3/2 − 2d)

P
2d−1/2
1/2 (z) =

(

1 + z

1− z

)d−1/4 F (−1/2, 3/2, 3/2 − 2d; (1 − z)/2)

Γ(3/2 − 2d)
.
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The first formula of Proposition 2, namely the convolution of the short memory τ autocovariances with

the long/negative memory ZP autocovariances, is called a “splitting formula.” We can truncate the splitting

formula at some threshold lag J without much cost to accuracy, because the {γj(τ)} sequence is absolutely

summable, and hence decays exponentially. However, one caution is that the truncation of {γj(τ)} at J (i.e.,

setting γj(τ) = 0 for j > J) can result in a sequence that is not positive definite, such that the approximation

to the inverse FT

γh

(

τ/fdϑ

)

≈ γ0(τ)γh(f
−d
ϑ ) +

J
∑

j=1

γj(τ)
{

γh+j(f
−d
ϑ ) + γh−j(f

−d
ϑ )

}

need not be positive definite. This may seem to be a quibble, but we have found it to be quite important in

practice, because a non positive definite sequence implies negative eigenvalues in the corresponding Toeplitz

covariance matrix, obviating efforts at inversion. Our remedy is to construct a J-dependent process that has

well-defined spectral density that closely approximates τ . One way to do this is to determine the Wold

coefficients of τ (obtained via determining the cepstral coefficients, and utilizing the recursions described

in Hurvich (2002)), and define τ (J) to be spectral density of the MA(J) process corresponding to retaining

only the first J + 1 Wold coefficients (the first Wold coefficient is always equal to one). Letting ξk =

2π−1
∫ π
0 log τ(λ) cos(λk) dλ be the kth cepstral coefficient, for k ≥ 1, we have Pourahmadi’s recursions

(Pourahmadi, 1984) involving the Wold coefficients ψj (with ψ0 = 1):

ψj =
1

2j

j
∑

k=1

ψj−kkξk. (5)

Then τ (J)(λ) = |∑J
k=0 ψke

−iλk|2 by definition, and its autocovariance sequence is guaranteed to be posi-

tive definite; hence we utilize the approximation

γh

(

τ/fdϑ

)

≈ γ0(τ
(J))γh(f

−d
ϑ ) +

J
∑

j=1

γj(τ
(J))

{

γh+j(f
−d
ϑ ) + γh−j(f

−d
ϑ )

}

. (6)

There is no need to take J particularly large in practice, due to the rapid decay rate of the Wold coefficients

of τ(z) – typically J = 10 is more than sufficient. We note that this approach to obtaining the J-dependent

approximation is practicable, because the jth Wold coefficient only depends (recursively) upon the first j

cepstral coefficients, as shown in Pourahmadi (1984) and Hurvich (2002). Therefore, one only needs the

first J cepstral coefficients (we compute these using numerical integration, which is extremely accurate for

short memory spectra). Using the recursions to obtain the first J Wold coefficients, one then computes the

autocovariances of this MA(J) process.

Explicit steps of the entire algorithm are given as follows. Choose a truncation level J , and a total

number of lags H for the acf sequence.

1. Read in the parameters

2. Compute g(λ), f−(λ), ν(λ), and τ(λ) for a mesh of λ frequencies
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3. The jth cepstral coefficient of τ is 2
∫ 1
0 log τ(πx) cos(πjx) dx, which can be Riemann approximated

at a given mesh

4. Obtain the Wold coefficients ψj for 1 ≤ j ≤ J of τ from the cepstral coefficients via (5), and compute

the autocovariances of τ (J) from these Wold coefficients

5. The acf of each long/negative memory pole is given by the direct formula in Proposition 2

6. Combine the acfs by convolution (6).

This algorithm might be used to do forecasting, taking the parameters in the first step to be known

estimates; or this algorithm could be embedded in a routine to compute the Gaussian likelihood, in which

case the parameters in Step 1 reflect the current iterates in a numerical optimization scheme. In the case

of the Gaussian likelihood, the innovations algorithm (Brockwell and Davis, 1991) can be utilized, which

has a loop over the sample size and is recursive in nature; similarly, a variant for the Whittle likelihood is

available. The mean-zero scaled log Gaussian likelihood, based on a sample of size n from the data process

– denoted by X = [X1,X2, · · · ,Xn]
′

– is

L(ϕ;X) = X ′ Σ−1(fϕ)X + log detΣ(fϕ), (7)

where Σ(fϕ) denotes the n × n Toeplitz covariance matrix corresponding to the spectral density fϕ, and

ϕ abbreviates the full list of model parameters excluding the mean (in our applications, we also include a

parameter for the mean). Here we utilize fϕ given by (1), and ϕ consists of all the memory parameters,

together with the ZP locations (unless these are assumed to be known based on metadata) and the short

memory cepstral coefficients gj . This assumes some truncation order q for the EXP portion of the model.

The innovations algorithm will evaluate both summands of (7), given only the acf sequence of fϕ. The

Whittle likelihood is instead given by

W(ϕ;X) = X ′ Σ(f−1
ϕ )X + log σ2, (8)

where recall that σ2 equals the exponential of g0, the initial cepstral coefficient. Here we must compute

the autocovariance of the inverse spectral density, but given the form of (1) this is quite easy to find: we

just flip the sign on all the memory parameters d, as well as the cepstral coefficients gj , and apply the

algorithm above, followed by evaluation of (8). Together with a routine to conduct nonlinear optimization,

either objective function can be utilized to fit these models to time series data (R code is available from the

authors), resulting in Maximum Likelihood Estimates (MLEs) and Whittle Likelihood Estimates (WLEs)

respectively. Mean effects can also easily be added if desired, either by direct optimization over specified

regression effects or via a concentrated likelihood utilizing GLS formulas (cf. discussion in McElroy and

Holan (2014)).
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4. Accuracy and Speed of the Algorithm

In order to assess the accuracy of the proposed algorithm in Section 3 we conduct a numerical study in which

we compare estimates of the log determinant (ldet) of the autocovariance matrix (of dimension n) with

those from other approaches. By comparing the log determinants, we provide an “aggregate” discrepancy

measure. However, aside from a few special cases, the true value of the ldet is unknown and needs to

be approximated. Under these scenarios, we compare the ldet from the proposed acf sequence and the

asymptotic ldet of Proposition 1 of McElroy and Holan (2012), denoted as ldetProp.

In the case of fractional Gaussian noise the ldet of the autocovariance sequence can be exactly calculated

or approximated to any degree of accuracy using the splitting method. In this case, examining the ldet of

the newly proposed approach, we find that all estimated ldets are within 1e-4 of ldetProp and within 1e-12 of

the ldet obtained using splitting method – even for d = .45 (for both n = 500 and 1000). Similarly, for

FEXP processes with unit innovation variance and various short memory specifications, all estimated ldets

are within 1e-4 of the asymptotic ldet (ldetProp) and within 1e-12 of the ldet obtained using splitting method

– even for d = .45 (for both n = 500 and 1000).

For the 1-GEXP case, we consider sample sizes of n = 500 and 1000 with long memory parameter c1

ranging from .1 to .45. Additionally, the seasonal frequency is set at ω = .56, with the short memory portion

g = (g0, g1) = (0, .75) – which implies unit innovation variance. In particular, we compare the difference

between the ldet of the new approach and the asymptotic ldet (i.e., ldetProp) to the difference between the ldet

from the truncation approach and the asymptotic ldet (Table 1). Note that, for the method of McElroy and

Holan (2012), the truncation level JTrunc was set between 5,000 and 100,000.

From Table 1, we see that both approaches are highly accurate and closely agree with the asymptotic

approximation. Further, for the 1-pole case, the number of terms needed for accurate approximation in-

creases as the degree of persistence increases. Even for the case of c1 = .25, it happens that 25,000 terms

(Wold coefficients) are needed in order to obtain an accurate approximation (for both n = 500 and 1000).

The number of terms quickly increases to 100,000 for c1 = .35. Consequently, computation is significantly

more expensive for the truncation method relative to the newly proposed algorithm.

The 2-GEXP case presents additional complications, as there are now multiple seasonal poles in the

spectral density. Here, we consider sample sizes of n = 500 and 1000 with long memory parameters

(c1, c2) ranging from (.1,.2) to (.1,.45) and (.45,.2) to (.45,.4). Additionally, the seasonal frequency is set at

ω = (.1, .56), with the short memory portion g = (g0, g1) = (0, .75) (implying unit innovation variance).

Again, we compare the difference between the ldet of the new approach and the asymptotic ldet to the

difference between the ldet from the truncation approach and the asymptotic ldet (Table 2).

From Table 2, we see that both approaches are fairly accurate and are in agreement with the asymptotic

approximation. However, in contrast to the 1-GEXP case, there is no definitive correspondence between the

truncation needed for the approach of McElroy and Holan (2012) (MH2012) and the degree of cyclical persis-

tence; i.e., the truncation point in the MH2012 approach is a non-monotonic function of the level of cyclical
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persistency. Also, although for moderate persistent cases the MH2012 method slightly outperforms the new

approach relative to the asymptotic approximation, this performance highly depends on the truncation cho-

sen, which would be unknown in practice. Further, for a “poor” choice of truncation the MH2012 method

and asymptotic approach could differ significantly when there is strong persistence. Finally, it should be

noted, that even in the “best” case scenarios it is not clear whether the MH approach outperforms the new

approach, as there is no definitive “ground-truth.” Instead, our approximations are compared relative to the

asymptotic approximation, which could exhibit error due to finite samples.

Aside from accuracy, the main advantages of the new algorithm are computational efficiency and the

ability to easily accommodate spectra with more than two poles. The capacity to readily compute the

autocovariance sequence in the multiple-pole setting is extremely advantageous and not feasible without the

algorithm of Section 3. In terms of speed, we compare the computation time of one likelihood evaluation

for several cases. In particular, we compute the likelihood with the autocovariance matrix calculated using

the truncation approach of McElroy and Holan (2012) and using the new algorithm. All computations are

carried out in the R programming language (R Development Core Team, 2014) using a MacBook Pro 2.7

GHz Intel Core i7 with 16 GB 1600 MHz DDR3 RAM.

The first example considers the 2-GEXP specified in Table 2 with (c1, c2) = (.1, .45). For n = 500

(JTrunc = 100, 000), the computation time for the MH approach is 3.074 minutes, whereas the new algorithm

(with mesh size 10001) is 1.180 seconds. Similarly, for n = 1000 (JTrunc = 50, 000), the MH approach

takes 51.410 seconds, whereas the new algorithm took only 2.478 seconds (with mesh size 10001). For

(c1, c2) = (.45, .4), with n = 500 (JTrunc = 50, 000) the MH computation time was 50.167 seconds, whereas

with the new approach the computation took 1.229 seconds. Finally for (c1, c2) = (.45, .4), with n =

1000 (JTrunc = 25, 000) the MH computation time was 15.275 seconds, whereas with the new approach the

computation took 2.548 seconds.

It is important to emphasize that all computations done here are completely in R (R Development Core

Team, 2014). In order to make estimation feasible, McElroy and Holan (2012) made use of Fortran subrou-

tines using the R package inline. Without the use of a lower level programming language such as Fortran

or C++, maximum likelihood estimation would be impractical using the approach of McElroy and Holan

(2012). In contrast, the new approach easily handles such computations without the need to “optimize”

computer code.

5. Case Studies

To illustrate the application of the algorithm introduced in Section 3, we examine four different datasets.

The four examples demonstrate the effectiveness of our approach under various model specifications (i.e.,

varying number of long range persistencies). As such, no formal attempt has been made toward selecting

the “optimal” candidate model (i.e., via model selection).
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5.1 Quasi-biennial Oscillations

We consider a series consisting of 11,000 daily observations beginning November 19, 1964, corresponding

to the east/west wind component from Truk Island (see Cressie and Wikle, 2011, Chapter 3), which are

down-sampled at a rate of 50 days in order to produce suitable separation between the annual frequency and

the secondary spectral peak (corresponding to a period of roughly 2.3 years). This latter effect is referred

to as a quasi-biennial oscillation (QBO), and is further described in Andrews, Holton, and Leovy (1987)

and Wikle et al. (1995). We then fitted a 2-GEXP(5) model with two seasonal poles to the differenced

series. The seasonal poles were located at frequencies ω ∈ (0, π), with the frequency ordinates and peak

strengths estimated as parameters. The cepstral parameter MLEs were −2.644,−.567, .311, .145,−.180.

The peak locations were estimated to be .3608 and .8586, which correspond to periods of 2.385 and 1.003

years respectively, i.e., the QBO and annual effect. The latter peak was quite strong, with memory parameter

estimated to be .478, whereas the QBO peak was similar, with memory parameter .472. The mean estimate

was −4.589.

Repeating the exercise with the Whittle likelihood, the cepstral parameter WLEs were −2.516, −.526,

.266, .076, and −.188. The peak locations were .3597 and .8584, corresponding to periods of 2.393 and

1.003 years each. The memory parameters were .472 and .478 respectively, which very closely match the

Gaussian likelihood results. Then mean estimate was −4.596.

5.2 Industrial Production

The monthly series of Industrial Production (Federal Reserve Board) is available from 1919 onwards. Hav-

ing first adjusted the data for a trading day effect, Easter holiday effects, and additive outliers, we then

studied the years 1949.1 through 2007.12 in the log-scale. Nonstationary trend effects in the data required

a single differencing; although a seasonal difference could be applied as well, we decided to attempt an

estimation of the seasonal poles through a GEXP model instead. The data has terrestrial periodicities, being

sampled at monthly intervals, and hence we expect the spectral peaks to have the form 2πj/12. Therefore,

the differenced log series was fitted by a 7-GEXP(3) model where the trend/seasonal poles were fixed at

πj/6 for 0 ≤ j ≤ 6. We might expect a, b 6= 0 in the model, and cj 6= 0 for 1 ≤ j ≤ 5, which is indeed

borne out by our estimates. The choice of the order of the EXP portion was only meant for illustration and

could be formally chosen through model selection methods if desired..

The cepstral MLEs were 2.447, 1.045, .410. The memory parameter MLEs were .046, .136, .470, .490,

.489, .475, and .464 respectively, indicating the trend memory is fairly weak (differencing having removed

most of the structure). Moreover, the first seasonal peak is somewhat weak, but the memory at peaks two

through six all exceed .45, yielding pronounced effects. The estimated mean was .0027.

The cepstral WLEs were similar: 2.910, 1.249, .513. The memory parameters were −.146, .056, .477,

.491, .491, .482, and .474; it is interesting that the frequency zero memory parameter is negative in this

case, which indicates that for the raw data the point estimate for the order of trend integration is .854 – in
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the nonstationary range for memory parameters. The point estimate for the first seasonal peak is also hardly

distinguishable from short memory, and the results for the other peaks resemble those from the Gaussian

likelihood. The mean was .0026.

5.3 Mauna Loa

The Mauna Loa time series has now been studied in several papers that treat seasonal long memory. The

dataset consists of 382 monthly atmospheric CO2 measurements collected at the summit of Mauna Loa in

Hawaii, beginning in March 1958. While twin-peak models have been considered before, such as the 2-

factor GARMA of Woodward, Cheng, and Gray (1998) and the 2-GEXP(4) of McElroy and Holan (2012),

the periodogram indicates that a model accommodating additional peaks is warranted. Because the data is

terrestrial and monthly, it is plausible that the spectral peak frequencies take the form πj/6 for 1 ≤ j ≤ 6,

as with the previous example. Therefore we again consider the 7-GEXP(3) model, and we compute the

MLEs and WLEs for the once-differenced data (which was adjusted for missing values in a pre-processing

stage). The cepstral MLEs were −3.340, .524,−.393, with a mean of .101. The memory parameters were

.331, .498, .488, .371, .314, .035,−.051 respectively, which indicate a strong trend effect, as well as strong

seasonality in the first through fourth seasonal frequencies. The point estimate for the fifth seasonal fre-

quency differs little from short memory, and a mildly negative memory effect is present at the sixth fre-

quency.

The WLEs for the cepstrum were −1.352, 1.557,−.460, with a mean parameter of .100. The memory

parameters were −.160, .498, .497, .388, .414, .029,−.124. The point estimate for the trend memory is

now negative, which differs substantially from the results from the Gaussian likelihood, although the other

memory parameters are broadly similar.

5.4 Unemployment Insurance Claims

The weekly time series of unemployment insurance claims from the Bureau of Labor Statistics (1987

through 2007, for a total of 1040 observations) is clearly seasonal, and is a fairly important series for un-

derstanding movements in the employment sector of the economy. Like the industrial production example,

the spectral peak frequencies will be taken as known, where p = 52 is the number of seasons. Therefore,

we assume that spectral peaks are located at frequencies πj/26 for 1 ≤ j ≤ 26, in addition to peaks at

frequency 0 and π. Hence we fit a 27-GEXP(5) model via the Gaussian and Whittle likelihoods. There are

32 parameters in the model, so that the ratio of sample size to parameters is over thirty. The calculation

of autocovariances for such a process is now feasible, which we illustrate through providing model-fitting

results.

The MLEs for the cepstrum were −1.672, −1.385, −.282, .369, −.040, with a mean of −.0007. The

memory MLEs were −.004, .452, .484, .431, .470, .381, .397, .202, .423, .293, .249, .346, .481, .171, .240,

.210, .413, .220, .472, .431, .317, .258, .454, .325, .470, .321, and .357. Excepting the trend frequency, all
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of these are positive, and some are quite large, indicating substantial persistence. It is interesting that one

of the weakest peaks is the thirteenth (.171), which corresponds to quarterly phenomena, whereas the first

seasonal peak (.452), which corresponds to once-a-year phenomena, is one of the strongest.

The cepstral WLEs were −1.559, −1.284, −.231, .388, −.040, with a mean of −.0009. The memory

WLEs were .003, .443, .486, .437, .475, .389, .373, .208, .405, .298, .251, .337, .486, .168, .238, .204,

.419, .210, .471, .428, .308, .254, .457, .319, .475, .315, and .351. These point estimates are remarkably

consistent with the MLEs, in most cases only differing in the third decimal place.

6. Discussion

This paper presents a new algorithm, that allows the computation of the autocovariance function of time

series models with multiple persistencies. This is accomplished by rewriting the model spectral density

as a sum of single pole factors, and using the fast splitting method on each summand. Our numerical

work shows the accuracy of this approach, and the gains in computation time over previous methods are

substantial. More importantly, the encoding for multiple peak processes is straightforward, unlike in the

algorihtm of McElroy and Holan (2012).

Our focus is not on modeling, although four case studies are provided in order to show that likelihood

evaluation is feasible. We have used the k-GEXP model to demonstrate the new algorithm, but k-GARMA

variants could also be devised along the same lines, with similar gains to speed and accuracy. Previous anal-

ysis of time series with multiple persistencies has been hampered by computation time; this work enables

practitioners to more readily utilize multiple-pole models.
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Appendix

Proof of Proposition 1. Because f = f− f+ g, it suffices to prove that fZP = f+ ·ν. Using d = d++d−

for all values of d, and multiplying each term of ν by f+, we obtain fZP at once. The assertions about ν

follow because the function evidently has no poles, and being a sum of non-negative terms can only have a

zero if this zero is common to all the summands; but this is impossible due to the distinct locations of the

various ϑ frequencies. (In the case where there is only one ZP factor, ν would indeed have a zero.) ✷
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Proof of Proposition 2. The first formula is straight convolution, while the second formula for the ZP

factor follows from the ARFIMA(0,d,0) results described in Brockwell and Davis (1991) in the cases that

ϑ = 0, π. For the third case, we refer to the GARMA(0,d,0) results of Chung (1996). ✷
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log |Σ|: 1-GEXP: g = (0, .75); ω = .56

ldet: n = 500 ldet: n = 1000

c1 Prop New MH2012 Prop New MH2012

.1 0.4299917 .4299917 .429932 0.44379 .4437882 .443785

(1.696498e-5) (1.568073e-5) (9.213278e-6) (5.240159e-6)

JTrunc = 5, 000 JTrunc = 5, 000

.25 1.582358 1.582393 1.582377 1.669002 1.66902 1.668987

(3.501754e-5) (1.854933e-5) (1.775161e-5) (-1.433973e-5)

JTrunc = 25, 000 JTrunc = 25, 000

.35 3.058414 3.058385 3.058331 3.228235 3.228223 3.228115

(-2.889742e-5) (-8.284450e-5) (-1.230519e-5) (-1.201864e-4)

JTrunc = 100, 000 JTrunc = 100, 000

.45 5.973976 5.973767 5.972568 6.254700 6.2546 6.252199

(-2.088053e-4) (-1.407956e-3) (-9.965885e-5) (-2.501926e-3)

JTrunc = 100, 000 JTrunc = 100, 000

Table 1: Log determinant of the autocovariance sequence for a 1-GEXP model obtained using asymptotic
approximation of Proposition 1 of McElroy and Holan (2012) (Prop), the algorithm of Section 3 (New),
and the truncation approach of McElroy and Holan(2012) (MH2012). In the case of the MH2012 approach we
provide the truncation used, JTrunc. The number in parenthesis denotes the difference between the estimated
ldet and ldetProp. In the case of MH2012, JTrunc was chosen to reflect the smallest difference between ldetProp and
the ldet from MH2012.

log |Σ|: 2-GEXP: g = (0, .75); ω = (.1, .56)

ldet: n = 500 ldet: n = 1000

(c1, c2) Prop New MH2012 Prop New MH2012

(.1, .2) 1.528072 1.497591 1.527665 1.597387 1.570535 1.596123

(-3.048125e-2) (-4.072432e-4) (-2.685184e-2) (-1.263973e-3)

JTrunc = 100, 000 JTrunc = 50, 000

(.1, .3) 2.714834 2.687255 2.714331 2.853464 2.830055 2.852651

(-2.757927e-2) (-5.028845e-4) (-2.340929e-2) (-8.126799e-4)

JTrunc = 100, 000 JTrunc = 100, 000

(.1, .45) 6.538299 6.515872 6.535380 6.832886 6.811977 6.834062

(-2.242651e-2) (-2.918457e-4) (-2.090914e-2) (1.175967e-3)

JTrunc = 100, 000 JTrunc = 50, 000

(.45, .2) 8.134616 8.093399 8.13965 8.470792 8.437261 8.486669

(-4.121709e-2) (5.0335e-3) (-3.353121e-2) (1.587655e-2)

JTrunc = 50, 000 JTrunc = 50, 000

(.45, .3) 9.492050 9.457665 9.494429 9.897542 9.874612 9.856134

(-3.438547e-2) (2.378529e-3) (-2.292996e-2) (-4.140792e-2)

JTrunc = 25, 000 JTrunc = 50, 000

(.45, .4) 11.682510 11.66138 11.273010 12.185040 12.173 11.807010

(-2.113188e-2) (-0.409498) (-1.200251e-2) (-0.378036)

JTrunc = 50, 000 JTrunc = 25, 000

Table 2: Log determinant of the autocovariance sequence for a 2-GEXP model obtained using asymptotic
approximation of Proposition 1 of McElroy and Holan (2012) (Prop), the algorithm of Section 3 (New),
and the truncation approach of McElroy and Holan(2012) (MH2012). In the case of the MH2012 approach we
provide the truncation used, JTrunc. The number in parenthesis denotes the difference between the estimated
ldet and ldetProp. In the case of MH2012, JTrunc was chosen to reflect the smallest difference between ldetProp and
the ldet from MH2012.
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