eventscribe

The eventScribe Educational Program Planner system gives you access to information on sessions, special events, and the conference venue. Take a look at hotel maps to familiarize yourself with the venue, read biographies of our plenary speakers, and download handouts and resources for your sessions.

close this panel
support

Technical Support


Phone: (410) 638-9239

Fax: (410) 638-6108

GoToMeeting: Meet Now!

Web: www.CadmiumCD.com

close this panel
←Back

695 – Nonresponse and Total Survey Error

Simulation Based Nearest Neighbor Entropy Estimation for (Adaptive) MCMC Evaluation

Sponsor: Section on Statistical Computing
Keywords: Entropy Estimation, Adaptive MCMC Algorithms, Nonparametric Statistics, Parallel Computation, Nearest Neighbor Estimates, Kullback Divergence

Didier Chauveau

CNRS

Pierre Vandekerkhove

University Marne la Vallée - CNRS

Many recent (including adaptive) MCMC methods are associated in practice to unknown rates of convergence. We propose a simulation-based methodology to estimate MCMC efficiency, grounded on a Kullback divergence criterion requiring an estimate of the entropy of the algorithm successive densities, computed from iid simulated chains. We recently proved in Chauveau and Vandekerkhove (2013) some consistency results in MCMC setup for an entropy estimate based on Monte-Carlo integration of a kernel density estimate based on Gyorfi and Van Der Meulen (1989). Since this estimate requires some tuning parameters and deteriorates as dimension increases, we investigate here an alternative estimation technique based on Nearest Neighbor (NN) estimates. This approach has been initiated by Kozachenko and Leonenko (1987) but used mostly in univariate situations until recently when entropy estimation has been considered in other fields like neuroscience. We show that in MCMC setup where moderate to large dimensions are common, this estimate seems appealing for both computational and operational considerations, and that the problem inherent to a non neglictible bias arising in high dimension can be overcome. All our algorithms for MCMC simulation and entropy estimation are implemented in an R package taking advantage of recent advances in high performance (parallel) computing.

"eventScribe", the eventScribe logo, "CadmiumCD", and the CadmiumCD logo are trademarks of CadmiumCD LLC, and may not be copied, imitated or used, in whole or in part, without prior written permission from CadmiumCD. The appearance of these proceedings, customized graphics that are unique to these proceedings, and customized scripts are the service mark, trademark and/or trade dress of CadmiumCD and may not be copied, imitated or used, in whole or in part, without prior written notification. All other trademarks, slogans, company names or logos are the property of their respective owners. Reference to any products, services, processes or other information, by trade name, trademark, manufacturer, owner, or otherwise does not constitute or imply endorsement, sponsorship, or recommendation thereof by CadmiumCD.

As a user you may provide CadmiumCD with feedback. Any ideas or suggestions you provide through any feedback mechanisms on these proceedings may be used by CadmiumCD, at our sole discretion, including future modifications to the eventScribe product. You hereby grant to CadmiumCD and our assigns a perpetual, worldwide, fully transferable, sublicensable, irrevocable, royalty free license to use, reproduce, modify, create derivative works from, distribute, and display the feedback in any manner and for any purpose.

© 2013 CadmiumCD