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Abstract 
Charting the Progress of Education Reform: An Evaluation of the Recovery Act’s Role is 
sponsored by the Institute for Education Sciences in the U.S. Department of Education. 
The evaluation assesses how states, districts, and schools are working to implement 
education reforms. We required a nationally representative sample of school districts and 
schools to examine the role that Recovery Act programs may have played in such efforts. 
The school sample was nested within the district sample (a two-stage design), and we 
required at least two sampled schools within each district for analysis purposes. In 
addition, we required stratification control for grade span and school performance. This 
required then a multiway (three-way) stratification structure. To carry this out, we 
utilized the new balanced sampling theory as developed by Deville and Tillé (e.g., 
Deville and Tillé (2004)). This paper describes our new methodology for executing this 
theoretical approach, given the large sample sizes, and also presents evidence that the 
methodology was successful in meeting the desired criteria (respecting the desired 
probabilities of selection, meeting the three sets of stratification criteria, and being a 
randomized rather than a controlled sampling approach). 
 
Key Words: balance sampling, multiway stratification, school sampling, 
martingale 
 
 

1. The Problem 
 
The Charting the Progress of Education Reform: An Evaluation of the Recovery Act’s 
Role survey is sponsored by the Institute for Educational Sciences in the US Department 
of Education, and studies the role of funding in the development of reform efforts in the 
national educational system. A major focus is the effect of the 2009 American Recovery 
and Reinvestment Act allocations to the educational sector (e.g., the Race To The Top). 
As part of this effort, a nationally representative sample of districts and schools was 
required. 
 
A total of 1,700 districts were included in this sample from the 2009-2010 Common Core 
of Data (CCD) public school district frame. These districts were sampled probability 
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proportionate to enrollment, with high-poverty districts1 oversampled by a factor of 2.75. 
There were 378 districts which had measures of size exceeding the sampling interval, and 
these became ‘certainty districts’ (in the sample with probability 1). Information is being 
canvassed from these 1,700 sampled districts regarding their reform agendas and how 
they are implementing reform programs in the years 2011 through 2014.  
 
Part of the study also included gathering of information at the school level to check on 
whether or not the schools were conforming with district reform programs. The sample 
sizes necessary for this purpose were deemed to be small, but it was considered important 
to have at least two sampled schools per sampled district (except for districts with only 
one school, in which case the single school was selected with certainty). Only large 
certainty districts had school sample sizes exceeding two. A total of 3,800 schools were 
sampled, nested within the 1,700 sampled districts (a mean sample size of 2.24 sampled 
schools per sampled district). 
 
After removing schools in one- and two-school sampled districts (all schools were 
selected with certainty within the sampled district in these two cases), the school 
sampling process was probability proportionate to school enrollment, with assigned 
school samples for most districts equal to 2, except for the larger certainty districts. The 
districts were a stratification variable for school sampling, in fact a “deep” stratification 
(small sample sizes per stratum). If districts were the only stratification variable, then this 
sampling process would essentially be two-stage sampling, with districts the first stage 
and schools the second stage of sampling within distrits. But, it was desirable also to 
stratify the schools according to school span (elementary, middle, high, and other), to 
control the sample sizes for these four classes of schools, and school size within school 
span, and also to stratify the schools according to ‘school performance’ (Persistently Low 
Achieving (PLA) schools, non PLA SINI schools (Schools in Need of Improvement, non 
SINI schools). PLA schools were oversampled by a factor of 8 given their great 
importance in this study. In addition, school performance needed to be stratified by 
school span, as high schools tended to be PLA and SINI schools more frequently, and 
elementary schools less frequently. To have these extra stratification structures in 
addition to the district stratification precluded any simple two-stage sample design, as 
there was no room for strata within each district sample. We required a multiway 
stratification scheme: in particular, a three-way stratification structure. 
 

2. Potential Solutions 

 
Multiway stratification and its allied procedure controlled selection has a long history in 
survey sampling. The original paper introducing controlled selection was Goodman and 
Kish 1950. Bryant et al. 1960 presents a scheme for carrying out two-way stratification, 
which Jessen 1970 extends to three-way stratification. Causey et al. 1985 and Sitter and 
Skinner 1994 present further methodologies for carrying out controlled selection to 
implement multiway stratification. These methodologies have the benefits of matching 
desired inclusion probabilities exactly, but require extensive, intricate linear 
                                                 
1  These were districts with more than 21.66% of their children in families below the poverty line, 
according to SAIPE (Small Area Income and Poverty Estimates program of the Bureau of the 
Census. 21.66% was chosen as the weighted 75th percentile: i.e., exactly 25% of the district 
enrollment was in districts exceeding this cutoff percentage). Note that some districts such as 
charter school districts were not in SAIPE and had poverty percentages imputed for them based on 
geographic location. 
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programming efforts to ensure this. These methodologies are nearly impossible to 
implement when the sample sizes are greater than 3,000, with more than 1,000 strata in 
one stratification dimension, as all of these authors admitted. In addition, variance 
estimation is a difficult issue. 
 
A new methodology that can be utilized to implement multiway stratification is cube 
sampling (Deville and Tillé 2004). The ‘flight phase’ of cube sampling operates by 
defining a stochastic process with T vectors of length N. Each entry in each vector 
corresponds to a frame element, so that N is equal to the frame size. Each vector 
corresponds to one sample unit being sampled, so that T is equal to the flight phase 
sample size. The first vector in the stochastic process (before the first sample unit is 
sampled) will have the probabilities of selection for each frame unit. The next vector will 
replace these probabilities with a ‘1’ for one unit (which becomes the first sampled unit), 
with a ‘0’ for one or more units (which become definitively not sampled), and with 
revised conditional probabilities for all other frame units. If the flight phase completes the 
sampling process the final vector will consist of only 1’s and 0’s, with the frame units 
with a ‘1’ being the sampled elements and the frame units with a ‘0’ being the unsampled 
elements. This vector will simply present the final sample. If the flight phase does not 
complete the sampling process, then the final vector will consist of a mixture of 1’s and 
0’s and conditional probabilities. The 1’s correspond then to elements definitively 
sampled, the 0’s to elements definitively not sampled, and the conditional probabilities 
for the remaining elements are the current conditional probabilities of selection. The 
‘landing phase’ then completes the sampling process that the flight phase left unsampled, 
starting with this final vector as a starting point. 
 
The vectors in the stochastic process form a martingale process, i.e., the expected values 
of each vector are equal to the previous vector. All vectors have the same unconditional 
expectation, equal to the first vector of probabilities of selection. It is this property which 
maintains the desired probabilities of selection, while still allowing for the constraints 
coming from the multiway stratification process.  
 
Cube sampling achieves the sample design desired, and in addition there are approximate 
consistent variance estimators available (see Deville and Tillé 2005). A drawback of the 
method is that the flight phase may sometimes end too soon, requiring too much to be 
sampled through the landing phase. The landing phase is unwieldy if there is too much 
sample size left to select2. This in fact occurred in our application.  
 
Falorsi and Righi (2008) present an application of cube sampling to carry out multi-way 
stratification in the context of small area estimation. Our approach has some overlap with 
their approach as is pointed out below. 
 

3. The Sequential Raked Balanced Sampling Solution 

 
The sequential raked balanced sampling solution is based on the cubed sampling 
approach of Deville and Tillé 2004, but with some important modifications. First, it 
should be noted that of the original 1,700 sampled districts, 107 had only one or two 

                                                 
2  The public use software available for cube sampling (the macro samplecube in 
http://www.cran.r-project.org/web/packages/sampling) cannot go beyond relatively small sample 
sizes in the implementation of the landing phase (as all possible samples are enumerated). 
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schools. All schools were sampled within these districts, and these were set aside. This 
leaves a frame of 38,736 schools within 1,593 sampled districts. The school sample size 
is 3,608 (the designated sample size of 3,800 minus the 192 schools in the one- and two-
school districts).  
 
The school frames are divided into eight separate frames based on three dichotomous 
indicators: district poverty status (whether the district is high-poverty3 or not), district 
certainty status (whether or not the district was a certainty district in district sampling), 
and whether or not the district has at least one Persistently Low Achieving (PLA) school. 
Balanced sampling is carried out separately within each of these eight major strata 
defined at the district level.  
 
The first step is to define unconditional probabilities of selection for the process. These 
will reflect the overall probability of entering the sample at the end of the process, and 
are then used in developing the sampling weights (the inverse of these unconditional 
probabilities of selection multiplied to the inverse district probabilities of selection are the 
initial school base weights). We defined desired sample sizes for the three stratification 
margins by adding together measures of size in each stratification cell and rounding these 
to integer values4. Then, the preliminary measures of size were raked to these integer 
totals. The probabilities were raked so that they added to the rounded sample sizes for 
each cell in each of the stratification margins. It should be noted that this ‘distorts’ the 
probabilities based on the original measures of size so that they fit the rounded, adjusted 
totals. Note that this approach was utilized by Falorsi and Righi (2008): see their Section 
3.2.  
 
Table 3-1 provides frame sizes and sample sizes for the final school frame, as well as the 
coefficient of variation of the ratio between the final raked weight and the original weight 
proportional to the initial measure of size. Also included is 1 plus the CV squared, a 
measure of a design effect induced from a ‘haphazard’ variability in the weights (see for 
example Kish 1992). This is a measure of the effect of the ‘distortion’ from adjusting the 
probabilities to agree with rounded, consistent sample sizes for each of the three 
stratification dimensions, and reflects the increase in variability induced from corseting 
the probabilities in this way. It is hoped that the gains in precision from having the 
multiway stratification offset this loss: if not, the multiway stratification is not justified. 
 
  

                                                 
3  High-poverty is defined as greater than the 75th percentile for the percentage of families in 
poverty (as per the SAIPE estimates provided by the US Bureau of the Census).  
4  There was also an extra step to adjust the values so that matching totals across the three 
stratification margins were equal.  
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Table 3-1: Final School Frame Sample Sizes and CVs of Weight Ratios 
 

Poverty 
stratum 

District 
certainty 
stratum PLA status 

School 
frame size 

School 
sample size 

CV of 
weight 
ratios 
(times 100) 1+CV2 

High Noncrt noPLA 2700 796 9.48 1.009 
High Noncrt w/PLA 819 191 49.53 1.245 
High Cert noPLA 2782 269 49.15 1.242 
High Cert w/PLA 9713 621 31.31 1.098 
Low Noncrt noPLA 8825 1,270 1.21 1.000 
Low Noncrt w/PLA 2557 179 45.09 1.203 
Low Cert noPLA 4518 130 36.62 1.134 
Low Cert w/PLA 6822 152 35.20 1.124 
All All All 38,736 3,608     
 
The balanced sampling draws 3,608 noncertainty schools within 1,593 districts, done 
separately within each of the eight major strata. For simplicity’s sake, we will not include 
in this report the ݏ subscript for the major strata. It should be understood that all formulas 
and calculations below refer to each major stratum one by one. The object of this 
balanced sampling was to select the schools respecting the final measures of size ෬ 
(district ݅, school ݆) while simultaneously respecting three sets of assigned stratification 
sample sizes: 
 

 ݊, ݅ ൌ 1, … ,  ;where I is the total number of districts 	,ܫ
 ݊, ܽ ൌ 1, … ,  ܣ where ܽ corresponds to a span-performance stratum cell, and 	,ܣ

is the total number of span-performance strata cells. 
 ݊, ܾ ൌ 1,… ,  is the ܤ where ܾ corresponds to a span-size stratum cell, and 	,ܤ

total number of span-performance strata cells. 
 
The batches are designated in order as ܿ ൌ 1,… ,  are ݐ The districts within each batch .ܥ
designated as ࣞ, with these districts indexed as ݅ ൌ 1,… ,  . Schools within districts areܫ
indexed as ܾ݆݅ܽ, with ݅ representing district, ܽ ൌ 1,… , -representing the span ܣ
performance stratum containing the school, ܾ ൌ 1,… ,  representing the span-size ܤ
stratum, and ݆ ൌ 1, … , ܵ representing the specific school within the cell defined by 
district ݅, and strata ܽ and ܾ. ܵ is the number of schools in each of these district-strata 
cross-cells. It should be noted that some of the possible cross-cells are empty: not every 
district has every ܽ-	ܾ cross cell represented within it. Each iteration of the sequential 
process is designated as ݐ ൌ 1,… , ܶ, with each iteration having two components : 1—
completing the sampling for one batch, and 2—updating the conditional probabilities in 
preparation for the next iteration. Thus, iteration 2=ݐ will complete the sampling for batch 
ܿ=2, and update the probabilities in preparation for the sampling of batch ܿ =3. Note that 
 is equal to ܶ (the number of batches is equal to the number of iterations), but we keep ܥ
the notation separate for clarity. We also have a 0=ݐ which represents the values of 
particular parameters before the first batch is sampled: the ‘initial values’ of these 
parameters. 
 
Following the general concept of Deville and Tillé (2004) in defining a discrete time 
stochastic process define a set of vectors ૈሺݐሻ, ݐ ൌ 0,… , ܶ, for each time t, with the first 
vector ૈሺ0ሻ consisting of the initial inclusion probabilities for each school ෬, 
ordered by batch, district, stratum ܽ, stratum ܾ, and school with cells ܾܿ݅ܽ: 
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ૈሺ0ሻ ൌ ሼૈሺ0ሻ, … , ,ሺ0ሻ܋ૈ … . , ૈ۱ሺ0ሻሽ \ 
with each       ૈ܋ሺ0ሻ=൛ૈ܋ሺ0ሻ, … , ,ሺ0ሻܑ܋ૈ … . ,  ሺ0ሻൟ܋۷܋ૈ
and each       ૈܑ܋ሺ0ሻ=൛෬ଵଵଵ, … , ,෬ … . ,  ෬ௌಲಳൟ
 
The vectors ૈܑ܋ሺ0ሻ	 can also be written as 
 
,ଵଵଵሺ0ሻሺ0ሻ=൛ܑ܋ૈ … , ,ሺ0ሻ … . ,  ௌಲಳሺ0ሻൟ
 
The initial probability ሺ0ሻ is equal to the unconditional probability ෬. 
 

Each vector ૈሺݐሻ following ૈሺ0ሻ represents the situation after sampling one batch fully, 
and then revising (via raking) the remaining probabilities to satisfy the balancing 
equations as they are after finishing all batches up to that point. Let’s move to the second 
vector ૈሺ1ሻ, which represents the situation after completing the selection of batch 1 and 
re-raking the conditional probabilities. The subvectors of ૈሺ1ሻ are defined as follows. 
The first subvector ૈሺ1ሻ corresponding to the first batch which is sampled out in step 1 
is equal to a vector of 1’s and 0’s (called ۷ሻ	with the 1’s representing the sampled 
schools, and the 0’s the nonsampled schools. All other subvectors ૈ܋ሺ1ሻ, ܿ ൌ 2,… ,  in ܥ
ૈሺ1ሻ are equal to the revised set of conditional probabilities ሺ1ሻ (revised to be 
consistent with the revised sample sizes following the first batch selection). 
 

ૈሺ1ሻ ൌ ሼ۷, ૈሺ1ሻ… , ,ሺ1ሻ܋ૈ … . , ૈ۱ሺ1ሻሽ     
with each       ૈ܋ሺ1ሻ=൛ૈ܋ሺ1ሻ, … , ,ሺ1ሻܑ܋ૈ … . , ܿ ,ሺ1ሻൟ܋۷܋ૈ ൌ 2,… ,  ܥ

with each      ૈܑ܋ሺ0ሻ=൛ଵଵଵሺ1ሻ, … , ,ሺ1ሻ … . , ܿ  ,ௌಲಳሺ1ሻൟ ൌ 2,… ,  ܥ
 
For the general step ݐ, ૈሺݐሻ is equal to  
 

ૈሺݐሻ ൌ ሼ۷, … , ,ܜ۷ ,ሻݐାሺܜૈ … . , ૈ۱ሺݐሻሽ 
 
where ۷	through ۷ܜ consist of 0’s and 1’s representing the final samples for batches 1 
through ݐ, and ૈܜାሺtሻ through ૈ۱ሺݐሻ are equal to revised sets of conditional probabilities 
following the selection of the school sample from batch ݐ.  
 
The final vector ૈሺܶሻ consists of ۷	through ۷۱ (only 0’s and 1’s) and is the final vector 
of school sample selections.  
 
Deville and Tillé’s theory envisages that the ૈሺݐሻ, ݐ ൌ 1, . . , ܶ	will be a martingale 
process, i.e., all of the ૈሺݐሻ	vectors will have conditional expectation equal to the 
preceding vector ૈሺݐ െ 1ሻ,	while also satisfying the balancing conditions (see Definition 
5 in Deville and Tillé (2004). For the schools that are subject to being sampled at time	ݐ, 
this will mean that the sample indicator vector of 1’s and 0’s will have as its probabilities 
the conditional probabilities from ૈሺݐ െ 1ሻ. These conditional probabilities then have 
expectation equal to the preceding set of conditional probabilities, and so on back to the 
set of unconditional probabilities in ૈሺ0ሻ.  

 
We can facilitate things by defining the following random variable as is done in Deville 
and Tillé (2004):  
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(t)=൜ߨ
ሻݐሺ ݐ ൏ ܿ
0	or	1 ݐ  ܿ

 

 
With this definition, each ૈሺݐሻ is simply a vector of the random variables ߨ(ݐ) in the 
appropriate ordering. 
 
The next random variables we will define are summations of the ߨ(ݐ). We can prove 
certain summations do in fact have the martingale property. For example, suppose we 
sum over the schools within each district ܿ݅. These will add to the district sample size 
݊… for each and every iteration ݐ: 
 

݊… ൌ   ሻݐሺߨ

ௌೌ್

ୀଵ



ୀଵ



ୀଵ

 

 
For ݐ ൏ ܿ (before the district is selected out) the formula expresses that the summation of 
the ሺݐሻ equals ݊…. This in fact is ‘guaranteed’ by the raking process, which has 
district as a dimension. For ݐ  ܿ (after the district is selected out) the formula expresses 
that the summation of the sample indicators in the district is equal to ݊… (i.e., that ݊… 
schools were selected within district ܿ݅). It should be noted that these summations of 
random variables are in fact a martingale process for 1=ݐ,..,	ܶ: the summations are equal 
to a common expectation ݊… with certainty.  
 
Suppose now we sum over the schools within each span-performance stratum cell ܽ. 
These will add to the stratum cell sample size ݊.... for each and every iteration ݐ: 
 

݊.... ൌ   ሻݐሺߨ

ௌೌ್

ୀଵ



ୀଵ

ூ

ୀଵ



ୀଵ

 

 
This summation of random variables again will add to a fixed value for all 1=ݐ,…,T. In 
this case (unlike the district case), each and every ݐ will have ߨሺݐሻ that are 0’s and 
1’s and ߨሺݐሻ that are conditional probabilities, as we are summing over all batches 
(except for 0=ݐ, in which case all of the ߨሺݐሻ are probabilities, and for ݐ=T, in which 
case all of the ߨሺݐሻ are sample indicators). Again the fact that this summation of 
random variables adds to a fixed value is guaranteed by the raking process, which rakes 
the ߨሺݐሻ to equal this fixed value within each ܽ-cell. This summation is a martingale 
process again, in a trivial sense (all conditional expectations are equal to the fixed 
expected value ݊....).  
 
In a similar way, we can sum over the schools within each span-performance stratum cell 
ܾ. These will add to the stratum cell sample size ݊.... for each and every iteration ݐ: 
 

݊….. ൌ   ሻݐሺߨ

ௌೌ್

ୀଵ



ୀଵ

ூ

ୀଵ



ୀଵ

 

 
This summation of these random variables is a martingale process.  
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Another martingale process that is a function of the ߨሺݐሻ random variables are the 

proportions 
ሺሻሺݐሻ within each nonempty cell ܾܿ݅ܽ (district crossed with span-

performance and span-size strata cells): 
 


ሺሻሺݐሻ ൌ

ሻݐሺߨ

∑ ሻݐሺߨ
ௌೌ್
ୀଵ

 

 

For ݐ ൏ ܿ (before the district is selected out) the 
ሺሻሺݐሻ are equal to the proportions 

that each school has of the overall aggregate measure of size in the cross-cell. The raking 
process guarantees that these cross-cell proportions do not change as the ߨሺݐሻ 
change as ݐ increases: raking only changes the total measure assigned to every cross-cell. 
This is a well-known property of raking (all observations in the lowest-level cross-cells 
receive the same raking adjustment). For ݐ  ܿ (after the district is selected out) the 


ሺሻሺݐሻ will be equal to 1 for one school and 0 for all other schools if one school is 

sampled, will be equal to ½ for each sampled school if two schools are sampled, and 0 for 
all other schools, etc.  
 
Another important stochastic process that is a summation of the ߨሺݐሻ is the 
summation over the district-span performance-span size cross cells: 
 

݊ሺݐሻ ൌ  ሻݐሺߨ

ௌೌ್

ୀଵ

 

 
We cannot prove that each and every ݊ሺݐሻ by itself is a martingale process, in other 
words that for every nonempty ܾܿ݅ܽ and every ݊ሺݐሻ we have ܧ൫݊ሺݐሻ൯=݊ሺݐ െ
1ሻ. In that sense, this procedure does not satisfy the balanced sampling definition 
(Definition 5 in Deville and Tillé (2004)). But we can say that particular linear 
combinations are martingales, in particular 
 

݊ሺݐሻ


ୀଵ



ୀଵ

ൌ ݊… 

 

݊ሺݐሻ


ୀଵ

ூ

ୀଵ



ୀଵ

ൌ ݊.... 

 

݊ሺݐሻ


ୀଵ

ூ

ୀଵ



ୀଵ

ൌ ݊….. 

 
All of these linear combinations are martingales, since they add to fixed values for each 
 ሻ from theirݐThis controls the degree of systematic deviation of the ݊ሺ .ܶ	,…,1=ݐ
predecessor values ݊ሺݐ െ 1ሻ. If the conditional expectation of, say, ݊ሺݐሻ exceeds 
݊ሺݐ െ 1ሻ, then another cell, say ݊ᇲሺݐሻ, must have its conditional expectation less 
than ݊ᇲሺݐሻ to allow equality of the marginal totals by district, a-cell, and b-cell for 
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every 1=ݐ,…,	ܶ. In this sense the sequence of conditional expectations of the cross-cells 
is well-controlled. But exact martingale properties for each and every cross-cell cannot be 
asserted.  
 
4. Empirical Evaluation of the Sequential Raked Balanced Sampling Solution 
 
We evaluated the balanced sampling algorithm by running it 100 times independently. 
This simulation study allows us to generate mean-squared errors for the sample sizes for 
the span-performance and span-stratum sample sizes. These will be used in the process of 
generating variance estimators. The simulation study also allows us to evaluate the 
inclusion probabilities for each school on the frame empirically.  
 
Table 4-1 presents the variability in the final sample sizes for each span-performance 
stratum cell over these 100 samples. The summary values are the simulation mean (the 
mean sample size over the 100 samples), the simulation standard deviation (the standard 
deviation of sample sizes), and the simulation root mean squared error (the mean 
deviation of the sample sizes from the target value). Table 4-2 provides similar 
calculations for the span-size stratum cells.  
 
Table 4-3 presents data on the true inclusion probabilities for each school on the final 
frame. Each row corresponds to a set of frame schools with similar assigned probabilities 
of selection (a ‘bin’). For example, the first row represents frame schools with assigned 
probabilities between 0 and 0.5%. Given are the minimum, mean, and maximum 
probabilities, the aggregate measure of size (which is also the expected sample size), the 
mean value of sample indicators of all schools on the frame in this ‘bin’, and the mean 
sample percentage. The mean value of sample indicators should have as its expected 
value the aggregate measure of size, and the mean sample percentage should have as its 
expected value the mean bin probability. This does appear to be the case. 
 

Table 4-1: Span-performance Strata Cells with Balance Results from 100-Sample 
Simulation 

 

Poverty 
stratum 

District 
certainty 
stratum 

PLA 
status Span 

PLA/SINI 
status 

Assigned 
sample 
size Mean Std Dev Root MSE 

High Noncrt NoPLA Elem NonPLA 283 282.9 0.80 0.80 
High Noncrt NoPLA Elem regSINI 76 76.0 0.68 0.68 
High Noncrt NoPLA High NonPLA 175 175.0 0.92 0.92 
High Noncrt NoPLA High regSINI 45 45.1 0.49 0.50 
High Noncrt NoPLA Md&O NonPLA 151 151.0 1.13 1.13 
High Noncrt NoPLA Md&O regSINI 51 51.1 0.60 0.60 
High Noncrt w/PLA Elem NonPLA 48 48.2 1.34 1.34 
High Noncrt w/PLA High NonPLA 37 36.8 1.16 1.18 
High Noncrt w/PLA Md&O NonPLA 7 7.4 0.90 0.98 
High Noncrt w/PLA Md&O regSINI 6 6.3 0.83 0.88 
High Noncrt w/PLA Md&O PLA 16 15.4 0.86 1.06 
High Cert NoPLA Elem NonPLA 99 99.1 0.90 0.90 
High Cert NoPLA Elem regSINI 34 34.0 0.50 0.50 
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Table 4-1: Span-performance Strata Cells with Balance Results from 100-Sample 
Simulation (Continued) 

 

Poverty 
stratum 

District 
certainty 
stratum 

PLA 
status Span 

PLA/SINI 
status 

Assigned 
sample 
size Mean Std Dev Root MSE 

High Cert NoPLA High NonPLA 45 45.1 0.41 0.41 
High Cert NoPLA High regSINI 33 32.9 0.57 0.59 
High Cert NoPLA Md&O NonPLA 34 34.0 0.32 0.32 
High Cert NoPLA Md&O regSINI 24 24.0 0.49 0.49 
High Cert w/PLA Elem NonPLA 114 114.1 1.02 1.02 
High Cert w/PLA Elem regSINI 66 66.0 1.15 1.15 
High Cert w/PLA Elem PLA 46 46.0 0.65 0.65 
High Cert w/PLA High NonPLA 37 37.0 0.95 0.95 
High Cert w/PLA High regSINI 29 29.0 0.70 0.70 
High Cert w/PLA High PLA 127 126.7 0.76 0.81 
High Cert w/PLA Md&O NonPLA 35 35.3 0.76 0.81 
High Cert w/PLA Md&O regSINI 28 28.0 0.75 0.75 
High Cert w/PLA Md&O PLA 46 45.9 0.70 0.71 
Low Noncrt NoPLA Elem NonPLA 511 511.1 0.77 0.78 
Low Noncrt NoPLA Elem regSINI 63 62.9 0.40 0.41 
Low Noncrt NoPLA High NonPLA 352 351.9 0.74 0.75 
Low Noncrt NoPLA High regSINI 16 16.0 0.00 0.00 
Low Noncrt NoPLA Md&O NonPLA 286 286.1 0.46 0.46 
Low Noncrt NoPLA Md&O regSINI 32 32.0 0.22 0.22 
Low Noncrt w/PLA Elem NonPLA 34 34.1 1.67 1.68 
Low Noncrt w/PLA Elem regSINI 14 14.1 1.37 1.37 
Low Noncrt w/PLA Elem PLA 8 8.0 0.82 0.82 
Low Noncrt w/PLA High NonPLA 20 20.1 1.01 1.01 
Low Noncrt w/PLA High regSINI 4 4.1 0.63 0.64 
Low Noncrt w/PLA High PLA 24 23.5 0.87 0.99 
Low Noncrt w/PLA Md&O NonPLA 16 16.2 0.90 0.91 
Low Noncrt w/PLA Md&O regSINI 4 3.9 0.81 0.82 
Low Noncrt w/PLA Md&O PLA 20 20.0 0.88 0.88 
Low Cert NoPLA Elem NonPLA 60 59.9 1.19 1.19 
Low Cert NoPLA Elem regSINI 3 3.3 0.72 0.76 
Low Cert NoPLA High NonPLA 36 35.7 1.12 1.16 
Low Cert NoPLA High regSINI 1 0.9 0.57 0.58 
Low Cert NoPLA Md&O NonPLA 28 28.0 1.29 1.29 
Low Cert NoPLA Md&O regSINI 2 2.3 0.92 0.96 
Low Cert w/PLA Elem NonPLA 41 41.0 1.40 1.40 
Low Cert w/PLA Elem regSINI 16 15.7 1.39 1.42 
Low Cert w/PLA Elem PLA 4 4.2 0.54 0.59 
Low Cert w/PLA High NonPLA 24 24.3 0.91 0.96 
Low Cert w/PLA High regSINI 4 3.9 0.78 0.79 
Low Cert w/PLA High PLA 29 28.1 1.47 1.72 
Low Cert w/PLA Md&O NonPLA 20 19.8 1.56 1.58 
Low Cert w/PLA Md&O regSINI 8 8.4 1.02 1.09 
Low Cert w/PLA Md&O PLA 6 6.6 1.05 1.18 
Total Total Total Total Total 3,378 3378.0     
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Table 4-2: Span-size Strata Cells with Balance Results from 100-Sample Simulation 
 

Poverty 
stratum 

District 
certainty 
stratum 

PLA 
status Span Size 

Assigned 
sample size 

Simulation 

Mean 
Std 
error 

Root 
MSE 

High Noncrt NoPLA Elem Large 127 126.8 0.94 0.96 
High Noncrt NoPLA Elem Small 232 232.1 1.08 1.09 
High Noncrt NoPLA High Large 21 21.0 0.57 0.57 
High Noncrt NoPLA High Small 199 199.1 0.89 0.89 
High Noncrt NoPLA Md&O All 202 202.1 0.96 0.96 
High Noncrt w/PLA Elem Large 17 17.1 0.99 0.99 
High Noncrt w/PLA Elem Small 31 31.1 1.18 1.18 
High Noncrt w/PLA High Large 37 35.8 1.16 1.18 
High Noncrt w/PLA Md&O All 29 29.1 1.28 1.28 
High Cert NoPLA Elem Large 86 86.0 0.39 0.39 
High Cert NoPLA Elem Small 47 47.0 0.53 0.53 
High Cert NoPLA High Large 55 54.9 0.61 0.62 
High Cert NoPLA High Small 23 23.0 0.39 0.39 
High Cert NoPLA Md&O All 58 58.0 0.40 0.40 
High Cert w/PLA Elem Large 125 125.2 0.96 0.98 
High Cert w/PLA Elem Small 101 100.9 1.06 1.06 
High Cert w/PLA High Large 46 45.7 0.94 0.97 
High Cert w/PLA High Small 147 147.0 0.95 0.95 
High Cert w/PLA Md&O All 109 109.2 0.85 0.86 
Low Noncrt NoPLA Elem Large 237 237.0 0.50 0.50 
Low Noncrt NoPLA Elem Small 337 337.0 0.79 0.79 
Low Noncrt NoPLA High Large 162 162.0 0.28 0.28 
Low Noncrt NoPLA High Small 206 205.9 0.81 0.81 
Low Noncrt NoPLA Md&O All 318 318.1 0.47 0.47 
Low Noncrt w/PLA Elem Large 23 22.9 2.02 2.02 
Low Noncrt w/PLA Elem Small 33 33.3 1.38 1.40 
Low Noncrt w/PLA High Large 22 22.0 0.86 0.86 
Low Noncrt w/PLA High Small 26 25.8 1.09 1.11 
Low Noncrt w/PLA Md&O All 40 40.1 1.22 1.22 
Low Cert NoPLA Elem Large 50 50.1 1.13 1.14 
Low Cert NoPLA Elem Small 13 13.1 0.84 0.85 
Low Cert NoPLA High Large 31 31.0 1.29 1.29 
Low Cert NoPLA High Small 6 5.6 1.14 1.21 
Low Cert NoPLA Md&O All 30 30.2 1.25 1.27 
Low Cert w/PLA Elem Large 40 40.1 1.32 1.33 
Low Cert w/PLA Elem Small 21 20.8 1.45 1.46 
Low Cert w/PLA High Large 42 42.1 1.06 1.06 
Low Cert w/PLA High Small 15 14.2 1.59 1.76 
Low Cert w/PLA Md&O All 34 34.7 1.03 1.27 
All All All All All 3,378 3,378.0     
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Table 4-3: Simulation Empirical Probabilities for Bins Determined by Final Selection 
Probability 

 

Bin 
center 

Bin prob 
minimum 

Bin prob 
mean 

Bin prob 
maximum 

Bin sum 
of MOS 

Frame 
size 

Mean of 
simulation 
totals 

Mean 
simulation 
sample pct 

0.25% 0.00% 0.24% 0.50% 5.0 2,091 5.3 0.25% 
1.00% 0.50% 1.05% 1.50% 62.0 5,908 60.8 1.03% 
2.00% 1.50% 1.97% 2.50% 125.4 6,369 127.2 2.00% 
3.00% 2.50% 2.98% 3.50% 130.1 4,371 128.2 2.93% 
4.00% 3.50% 3.98% 4.50% 134.7 3,386 134.7 3.98% 
5.00% 4.50% 4.98% 5.50% 119.7 2,404 119.4 4.97% 
6.00% 5.50% 5.98% 6.50% 104.3 1,744 106.8 6.12% 
7.00% 6.50% 6.99% 7.50% 90.7 1,298 92.3 7.11% 
8.00% 7.50% 7.99% 8.50% 76.3 955 76.5 8.01% 
9.00% 8.50% 8.98% 9.50% 73.1 814 73.7 9.06% 
10.00% 9.50% 9.99% 10.50% 66.3 664 64.2 9.67% 
11.00% 10.50% 10.99% 11.50% 67.0 609 67.7 11.11% 
12.00% 11.50% 12.00% 12.50% 64.9 541 63.8 11.79% 
13.00% 12.50% 13.00% 13.50% 67.2 517 67.4 13.04% 
14.00% 13.50% 14.02% 14.50% 66.2 472 67.4 14.27% 
15.00% 14.50% 14.99% 15.50% 61.2 408 62.3 15.27% 
16.00% 15.50% 16.01% 16.50% 60.5 378 62.5 16.53% 
17.00% 16.50% 16.99% 17.50% 56.1 330 56.0 16.95% 
18.00% 17.50% 17.99% 18.50% 57.4 319 57.4 17.99% 
19.00% 18.50% 19.00% 19.50% 50.5 266 51.2 19.25% 
20.00% 19.52% 19.99% 20.50% 45.8 229 45.4 19.83% 
21.00% 20.50% 21.00% 21.50% 47.7 227 48.5 21.35% 
22.00% 21.51% 22.01% 22.50% 49.1 223 49.3 22.11% 
23.00% 22.50% 23.00% 23.50% 47.6 207 47.5 22.92% 
24.00% 23.50% 23.99% 24.49% 48.2 201 48.5 24.14% 
25.00% 24.51% 24.98% 25.50% 45.0 180 43.8 24.31% 
26.00% 25.50% 25.99% 26.50% 42.1 162 41.0 25.33% 
27.00% 26.50% 26.97% 27.50% 36.7 136 36.1 26.54% 
28.00% 27.50% 27.99% 28.49% 43.4 155 43.9 28.34% 
29.00% 28.50% 28.98% 29.50% 39.7 137 39.6 28.90% 
30.00% 29.52% 29.97% 30.49% 38.1 127 38.5 30.31% 
31.00% 30.50% 31.01% 31.50% 45.0 145 46.2 31.83% 
32.00% 31.51% 31.95% 32.48% 31.0 97 31.6 32.57% 
33.00% 32.52% 33.00% 33.49% 40.9 124 39.6 31.94% 
34.00% 33.50% 33.96% 34.49% 25.1 74 24.0 32.41% 
35.00% 34.54% 34.95% 35.48% 21.0 60 22.0 36.68% 
36.00% 35.51% 35.99% 36.50% 28.4 79 29.3 37.06% 
37.00% 36.50% 37.00% 37.50% 23.3 63 23.1 36.60% 
38.00% 37.52% 38.06% 38.50% 23.6 62 23.0 37.05% 
39.00% 38.50% 39.01% 39.46% 21.8 56 20.9 37.36% 
40.00% 39.51% 40.06% 40.49% 20.0 50 20.3 40.62% 
41.00% 40.51% 41.00% 41.50% 28.7 70 27.7 39.57% 
42.00% 41.52% 42.02% 42.49% 32.8 78 31.4 40.24% 
43.00% 42.53% 43.06% 43.49% 37.9 88 37.8 43.00% 
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Table 4-3: Simulation Empirical Probabilities for Bins Determined by Final Selection 
Probability (Continued) 

 

Bin 
center 

Bin prob 
minimum 

Bin prob 
mean 

Bin prob 
maximum 

Bin sum 
of MOS 

Frame 
size 

Mean of 
simulation 
totals 

Mean 
simulation 
sample pct 

44.00% 43.51% 44.00% 44.46% 31.7 72 32.0 44.44% 
45.00% 44.50% 45.03% 45.50% 36.5 81 36.2 44.69% 
46.00% 45.50% 45.97% 46.49% 32.2 70 32.7 46.70% 
47.00% 46.50% 46.96% 47.49% 37.1 79 36.6 46.27% 
48.00% 47.51% 47.99% 48.49% 33.6 70 33.4 47.74% 
49.00% 48.54% 49.03% 49.49% 23.0 47 22.8 48.60% 
50.00% 49.60% 50.04% 50.48% 27.0 54 27.6 51.15% 
51.00% 50.52% 51.03% 51.48% 19.4 38 19.1 50.29% 
52.00% 51.51% 51.89% 52.49% 17.6 34 17.5 51.50% 
53.00% 52.53% 53.03% 53.49% 24.9 47 25.8 54.81% 
54.00% 53.51% 54.04% 54.49% 24.9 46 25.0 54.33% 
55.00% 54.52% 54.90% 55.48% 24.7 45 24.2 53.87% 
56.00% 55.50% 55.97% 56.49% 22.4 40 22.6 56.50% 
57.00% 56.50% 56.96% 57.48% 37.0 65 38.5 59.28% 
58.00% 57.51% 58.02% 58.48% 28.4 49 28.5 58.16% 
59.00% 58.54% 59.05% 59.49% 23.6 40 24.2 60.53% 
60.00% 59.50% 59.94% 60.47% 35.4 59 34.8 58.92% 
61.00% 60.54% 61.00% 61.49% 34.2 56 33.9 60.52% 
62.00% 61.54% 61.97% 62.50% 33.5 54 33.0 61.04% 
63.00% 62.51% 63.01% 63.50% 43.5 69 43.0 62.28% 
64.00% 63.53% 64.06% 64.47% 26.9 42 26.2 62.29% 
65.00% 64.50% 64.95% 65.49% 33.8 52 35.0 67.38% 
66.00% 65.52% 66.00% 66.46% 29.0 44 29.2 66.27% 
67.00% 66.58% 67.00% 67.47% 26.8 40 25.8 64.53% 
68.00% 67.53% 68.02% 68.45% 15.6 23 15.1 65.48% 
69.00% 68.51% 69.02% 69.45% 17.9 26 18.0 69.38% 
70.00% 69.52% 69.97% 70.44% 16.1 23 16.2 70.26% 
71.00% 70.51% 70.93% 71.44% 16.3 23 15.8 68.65% 
72.00% 71.60% 72.00% 72.50% 15.8 22 15.5 70.45% 
73.00% 72.73% 73.11% 73.41% 8.0 11 8.0 73.09% 
74.00% 73.67% 73.97% 74.38% 7.4 10 7.3 73.00% 
75.00% 74.53% 75.11% 75.50% 9.0 12 8.8 73.17% 
76.00% 75.51% 76.06% 76.48% 12.9 17 12.7 74.94% 
77.00% 76.57% 77.00% 77.49% 8.5 11 8.2 74.82% 
78.00% 77.52% 77.91% 78.36% 6.2 8 5.9 74.00% 
79.00% 78.53% 78.86% 79.23% 4.7 6 5.0 83.67% 
80.00% 79.55% 80.07% 80.48% 8.8 11 8.7 78.91% 
81.00% 80.64% 81.06% 81.38% 6.5 8 6.6 83.00% 
82.00% 81.55% 82.07% 82.46% 6.6 8 6.5 81.00% 
83.00% 82.65% 83.00% 83.25% 4.2 5 4.3 85.40% 
84.00% 83.58% 84.13% 84.48% 6.7 8 6.9 85.88% 
85.00% 84.53% 84.80% 85.16% 5.1 6 5.0 82.83% 
86.00% 85.72% 86.08% 86.37% 5.2 6 5.0 82.67% 
87.00% 86.60% 87.03% 87.39% 10.4 12 10.7 88.92% 
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Table 4-3: Simulation Empirical Probabilities for Bins Determined by Final Selection 
Probability (Continued) 

 

Bin 
center 

Bin prob 
minimum 

Bin prob 
mean 

Bin prob 
maximum 

Bin sum 
of MOS 

Frame 
size 

Mean of 
simulation 
totals 

Mean 
simulation 
sample pct 

88.00% 87.60% 87.98% 88.44% 6.2 7 6.2 88.86% 
89.00% 88.50% 89.13% 89.37% 6.2 7 6.4 91.71% 
90.00% 89.77% 90.16% 90.49% 5.4 6 5.3 89.00% 
91.00% 90.50% 91.00% 91.48% 11.8 13 11.6 89.23% 
92.00% 91.81% 92.10% 92.43% 4.6 5 4.4 88.00% 
93.00% 92.64% 93.15% 93.38% 6.5 7 6.5 92.29% 
94.00% 93.56% 93.85% 94.26% 5.6 6 5.8 96.83% 
95.00% 94.75% 95.08% 95.46% 4.8 5 4.7 94.20% 
96.00% 95.51% 96.06% 96.40% 6.7 7 6.6 93.71% 
97.00% 96.52% 96.63% 96.78% 5.8 6 5.7 95.50% 
98.00% 97.59% 98.01% 98.40% 6.9 7 6.8 96.86% 
99.00% 98.54% 98.83% 99.07% 5.9 6 5.8 96.00% 
99.75% 99.59% 99.59% 99.59% 1.0 1 1.0 100.00% 
 
The results of the simulation study appear to be quite favorable. The variability in the 
final sample sizes for the span-performance and span-size strata are quite limited. The 
true inclusion probabilities appear to be very close to the assigned probabilities, at least in 
aggregate within bins defined by 1% intervals for the assigned probabilities. We don’t 
know if there are particular frame schools whose true inclusion probabilities deviate from 
the assigned probabilities, though we can say the number of these and level of deviation 
are likely to be quite limited, given the aggregate results. 
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