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Abstract

Neuroscience experiments and neural spike train data have special features that present novel
and exciting challenges for statistical researches. Several standard statistical procedures, widely
used in other fields of science have found their way into mainstream application in neuroscience
data analysis. Given the firing times of an ensemble of neurons, an integrate several inputs and
fire model is introduced based on the conditional intensity function approach. This is different
from the existing methods where the intensity function is approximated by discretization with the
sampling intervals chosen arbitrary. In this paper, we model the log conditional intensity function
directly by employing a polynomial spline function for the target or response spike train and a
tensor product of splines for the peer or predictor spike trains. The parameters are defined by those
used in constructing the polynomial splines, and they will be estimated by the maximum likelihood
method. The statistical properties of this procedure will be evaluated using a simulated experiment.
Our model captures the underlying spontaneous firing of the target as well as the stimulus inputs
from its peers, and both in continuous time.

Key Words: Point process, Log conditional intensity function, Maximum likelihood, Spline re-
gression, Interacting neurons.

1. Introduction

The conditional intensity function is a history-dependent generalization of the rate function
for a neural spike train. The parametric estimation of the conditional intensity function is a
good start, however the strong assumption of the underlying probability model turns to be
inappropriate in most cases. The field of nonparametric estimation has been advanced with
the use of computing technology, we focus on the numerical approximation using spline
functions.

In this paper, the discretization and the parametric component will be relaxed by mod-
eling the log conditional intensity function directly using polynomial spline functions. For
the target neuron, a cubic spline is used to model its effect in the spirit of HEFT (Kooper-
berg, Stone and Truong, 1995); while linear splines and their tensor products are used
to model the associated neurons or peers’ effects. This method is similar to the HARE
methodology for hazard regression (Kooperberg, Stone and Truong, 1995) with the excep-
tion that is a time-dependent covariate approach. The advantage here is that the flexibility
of the model will allow us to examine directly the impacts of other neurons within the neu-
ral network, either stimulating or inhibiting. This model specification will be described in
detail in Section 2.

2. Conditional Log-intensity Function

For one particular neuron, it has the spontaneous firing rate depending on its own natural
characteristics. Also, the firings of other neurons (also called peers) within the neural net-
work have impacts on the target neuron. Suppose there are M such peers and their firing
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times before time ¢ are given by x(¢) = (x1(t),..,xa(t)). Let T be a positive random
variable whose distribution may depend on the peers x(¢).

Let A(:|x(s), s > 0) denote the conditional intensity function of 7" given X(s) so that
A(t|x(t)) dt = Prob(T € (t,t + dt)|x(t)).

Let a(-|x(t)) denote the log conditional intensity function. To simplify the discussion, we
assume the conditional intensity function at time ¢ depends only on the value of the covari-
ates up to that time; that is, we assume that A(¢|x(s),s > 0) = A(¢]x(s),0 < s < t) and
hence that a(t[x(s), s > 0) = a(t[x(s),0 < s < ¢t).

In this paper, we model the log conditional intensity function via a spline function
p(t) = >-F_, 6;B;(t) and a vector of M predetermined functions, 3 - h(x(t)), correspond-
ing to the covariates for the affects of the interacting neurons.

3. Maximum Likelihood Estimation

Given the interspike interval (ISI) data with the vector of covariates x(¢) and aset By, ..., B,
of basis functions, we will estimate the model coefficients by maximum likelihood.

The partial log-likelihood can be written as

B(tIx()) = log A(t|x(¢)) — / As|x(s))ds
0
— altlx(t)) — A(tlx(1)).

We take the partial derivatives of ¢(+) to examine its concavity and maximize the log like-
lihood. It is easily derived to see that the second derivative is always definite nonpositive.

The log-likelihood function is a sum for all NV consecutive ISIs or called waiting time,
denoted as {uy }1_,, then the log-likelihood function is

)

N

N
10,5 = 3 aurlx(ug) — 3 / s|x(s))ds o)
k=170

k=1

The maximum likelihood estimate 6 and B\l is given by maximizing the log-likelihood,

l(0¢61)

4. Simulation Study

We follow the principle ideas in “integrate-and-fire” model by Lapicque (Abbott, 1999).
Stimulus from peers in the form of current inputs are accumulative until the very next fir-
ing of target cell, after that triggering, the stimulus before would have no impact on any
coming events, like resetting the clock and counting from zero. In the meantime, voltage
of membrane naturally decays along the time, referred to as “leaky integrate-and-fire”, so
that the impact of peer firing diminish gradually. Based on those neurobiological supports,
we proposed a model of interspike interval (ISI) data which follows Section 2 while the
function of covariates is decreasing over time.
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Peer: I I
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Figure 1: Target and peer spike trains are recorded simultaneously. Between two consecu-
tive spikes of the target, the distance is our observation and uy, is for the interval ending at
the k' spike. The peer may fire within the interval, and then we record the distance from
the beginning of uy, to the peer firing time as our covariate vy.

For two interacting neural spike trains, the target spike train has N spikes or /N ISIs,
{uk}]kvzl, then each spike of the peer belongs to a specific ISI of the target spike train and
only have its affect within that interval. So, for any uy, we denote the distance form the
beginning of the interval to a particular spike of peer within the interval as vy which is then
the covariate for the k' observation (See Figure 1). For the case that the peer has more than
one time firing occurred within the interspike interval (ISI) of the target, we only consider
the last one as the covariate.

We simulated 100 spike trains and each of which has 650 spike times given a determin-
istic peer spike train. In Figure 2 and Figure 3, the estimators of #; to 64 corresponding to
knot locations {0.2,0.4,0.6,0.8} and the estimators of 3; and [y are shown respectively
after 100 simulations.
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Figure 2: Kernel density estimations of 8’s from 100 simulations. In the setup, the spline
knot locations are fixed as {0.2,0.4,0.6,0.8}, and two covariates are considered in the
model. The estimates have unbiased means and less variations.
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Figure 3: Kernel density estimations of 51 and (2 from 100 simulations. In the setup, the
spline knot locations are fixed as {0.2,0.4,0.6,0.8}, and two covariates are considered in
the model. The estimates have unbiased means and less variations.
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