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Abstract
The Lasso is a computationally efficient procedure that can produce sparse estimators when
the number of predictors (p) is large. Oracle inequalities provide probability loss bounds for
the Lasso estimator at a deterministic choice of the regularization parameter. These bounds
tend to zero if p is appropriately controlled, and are thus commonly cited as theoretical
justification for the Lasso and its ability to handle high-dimensional settings. Unfortunately,
in practice the regularization parameter is not selected to be a deterministic quantity, but
is instead chosen using a random, data-dependent procedure. To address this shortcoming
of previous theoretical work, we study the loss of the Lasso estimator when tuned optimally
for prediction. Assuming orthonormal predictors and a sparse true model, we prove that the
best possible predictive performance of the Lasso deteriorates as p increases with positive
probability. We further demonstrate empirically that the deterioration in performance can
be far worse than suggested by the commonly held views in the literature and that this
deterioration persists as the sample size increases.

Key Words: Least Absolute Shrinkage and Selection Operator (Lasso), Oracle Inequali-
ties, High-Dimensional Data

1. Introduction

Regularization methods perform model selection subject to the choice of a regular-
ization parameter, and are commonly used when the number of predictor variables
is too large to consider all subsets. In regularized regression, these methods operate
by minimizing the penalized least squares function

1

2
||y −Xβ||2 + λ

p∑
j=1

p(βj)

where y is a n× 1 response vector, X is a n × p deterministic matrix of predictor
variables, β is a p× 1 vector of coefficients, and p(·) is a penalty function. A com-
mon choice for the penalty function is the L1 norm of the coefficients. This penalty
function was first proposed by Tibshirani (1996) and termed the Lasso (Least abso-
lute shrinkage and selection operator). The solution to the Lasso is sparse in that it
automatically sets some coefficients equal to zero, and the entire regularization path
can be found using the computationally efficient Lars algorithm (Efron et al., 2004).
Given its computational advantages, understanding the theoretical properties of the
Lasso is an important research area.

This paper focuses on the performance of the Lasso for predictive purposes.
To that end, we evaluate the Lasso estimated models using the L2 loss function.
Assume that the true data generating process is

y = µ+ ε (1.1)
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where µ is a n× 1 unknown mean vector and ε is a n× 1 random noise vector. The
L2 loss is defined as

L(λ) =
||µ− µ̂||2

n
=

||µ−Xβ̂λ||2

n
(1.2)

where β̂λ is the Lasso estimated vector of coefficients for a specific choice of the
regularization parameter λ and || · ||2 is the squared Euclidean norm. If the true
model is included amongst the candidate models, then µ = Xβ0 for some unknown
true coefficient vector β0 and the L2 loss function takes the form

L(λ) =
||X(β0 − β̂λ)||2

n
.

In most modern applications, it is assumed that β0 is sparse and only has p0 < p
non-zero entries.

A large portion of the regularization literature has focused on establishing prob-
ability loss bounds for the Lasso and its variants (see e.g., Bunea et al., 2007,
Negahban et al., 2009, Bickel et al., 2010, and Buhlmann and van de Geer, 2011).
Roughly, for a deterministic choice of λ, these probability bounds are of the form

L(λ) ≤ kσ2
log(p)p0

n
(1.3)

(Buhlmann and van de Geer, 2011). Here σ2 is the true error variance, and k is a
constant that does not depend on p or n.

These bounds are commonly termed “oracle inequalities” since, apart from the
log(p) term and the constant, they closely resemble the loss expected if an oracle
told us the true set of predictors and we fit least squares. In light of this connection,
it is commonly noted in the literature that the “l1-estimator achieves the ideal risk
. . . up to a logarithmic log(p)” (Fan and Lv, 2008) and that the “[log(p) factor]
can be seen as the price to pay for not knowing the active set”(p. 102, Buhlmann
and van de Geer, 2011). Furthermore, since the bound depends on n, one can
conclude that “the ambient dimension and structural parameters can grow as some
function of the sample size n, while still having the statistical error decrease to
zero” (Negahban et al., 2009). Similar asymptotic conclusions exist in the work
by Greenshtein and Ritov (2004) on the “persistence” of the Lasso estimators. In
this context, the authors showed that the difference in the expected prediction error
of the Lasso estimator and the optimal estimator converges to zero in probability.
From this result, the authors concluded that there “there is ‘asymptotically no harm’
in introducing many more explanatory variables than observations.” The extended
work by Greenshtein (2006) similarly concludes that “in some ‘asymptotic sense’,
when assuming a sparsity condition, there is no loss in letting [p] be much larger
than n.”

Unfortunately, there is a disconnect between these oracle inequalities and the
way that the Lasso is implemented in practice. In practice λ is not taken to be
a deterministic value, but rather it is selected using an information criterion such
as Akaike’s information criterion (AIC; Akaike, 1973), the corrected AIC (AICc;
Hurvich and Tsai, 1989), the Bayesian information criterion (BIC; Schwarz, 1978),
or Generalized cross-validation (GCV ; Craven and Wahba, 1978) or using the data-
dependent procedure 10-fold cross-validation (CV ) (see, e.g., Fan and Li, 2001, Leng
et al., 2006, Zou et al., 2007, and Flynn et al., 2013). This motivates us to study
the behavior of the loss based on a data-dependent choice of the tuning parameter.
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Define the random variable λ∗ = argminλ L(β̂λ) to be the optimal (infeasible)
choice of λ that minimizes the loss function. In what follows, we will focus on the
loss of the Lasso evaluated at λ∗. By the definition of λ∗, the loss bound (1.3)
still applies, making it possible to compare the observed performance against the
commonly held views in the literature. Furthermore, although this choice of the
regularization parameter is infeasible, it is the ultimate goal for any model selection
procedure and Flynn et al. (2013) showed that the loss at λ selected by 10-fold CV
or AICc is close to optimal.

The remainder of this paper is organized as follows. Section 2 presents some
theoretical results on the behavior of the Lasso and proves that the best case predic-
tive performance can deteriorate as the number of predictor variables is increased.
Section 3 investigates the rate of deterioration empirically and shows that it can be
much worse than one would expect based on the established loss bounds. Finally,
Section 4 presents some final remarks and areas for future research. The appendix
includes some additional technical results.

2. Theoretical Results

Here we consider a simple framework for which there exists an exact solution for
the Lasso estimator. We assume that

y = Xβ0 + ε

where y is the n×1 response vector, X is a n×p matrix of determinisitic predictors
such thatXTX = I (the p×p identity matrix), β0 = (β1, . . . , βp)

T is the p×1 vector
of true unknown coefficients, and ε is a n × 1 noise vector where εi ∼iid N(0, σ2).
For simplicity, we will assume that β1 ̸= 0 but all of the other true coefficients are
equal to zero.

By construction z = XTy is the vector of the least squares estimated coefficients
based on the full model. It follows that

z1 ∼ N(β1, σ
2)

and
zj ∼iid N(0, σ2)

for 2 ≤ j ≤ p, and that z1 is independent of zj for 2 ≤ j ≤ p . Furthermore, for a
given λ, the Lasso estimated coefficients are

β̂λj = sgn(zj)(|zj | − λ)+

for j = 1, . . . , p (Fan and Li, 2001). To measure the performance of this estimator,
define

Lp(λ) =
||Xβ0 −Xβ̂λ||2

n
.

Here we subscript the loss by p in order to emphasize that the loss at a particular
value of λ depends on the number of predictor variables. In particular, for this
example,

Lp(λ) =
1

n
(β1 − β̂λ1)

2 +
1

n

p∑
j=2

β̂2λj . (2.1)

We wish to study the sensitivity of the Lasso to the number of predictor vari-
ables. To do this, we’ll vary the number of predictor variables in a nested fashion,
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so that if p1 < p2, then the p1 predictors are a subset of the p2 predictors. Under
this set-up, if p1 < p2, then Lp1(λ) ≤ Lp2(λ) for any given λ. In what follows, we
establish the stronger result that minλ Lp1(λ) < minλ Lp2(λ) with non-zero proba-
bility.

Define
λ∗p1 = argmin

λ
Lp1(λ) and λ∗p2 = argmin

λ
Lp2(λ).

Under the orthonormality assumption, we require p1, p2 ≤ n.

Theorem 2.1. If 1 ≤ p1 < p2, then

Pr
(
Lp2(λ

∗
p2) > Lp1(λ

∗
p1)

)
> 0.

The proof of Theorem 2.1 makes use of the following two lemmas.

Lemma 2.2. Let 1 < p1. For any 0 < ε < |β1|, if z1 ∈ [β1 − ε, β1 + ε] and

max
2≤j≤p1

|zj | <
(
β21 − ε2

p1

)1/2

, (2.2)

then Lp1(0) <
1
nβ

2
1 .

Lemma 2.3. Let 1 ≤ p1 < p2. For any 0 < ε < |β1|, if z1 ∈ [β1 − ε, β1 + ε] and

|β1|+max(|β1 − ε|, |β1 + ε|) < max
p1+1≤j≤p2

|zj |, (2.3)

then Lp2(λ
∗
p2) =

1
nβ

2
1 .

The proofs of Lemmas 2.2 and 2.3 are presented in Appendix A. Next, we prove
our main result.

Proof of Theorem 2.1. Consider

Pr(Lp2(λ
∗
p2) > Lp1(λ

∗
p1)) ≥ Pr

(
Lp1(0) <

1

n
β21 , Lp2(λ

∗
p2) =

1

n
β21

)
.

If p1 > 1, then by Lemmas 2.2 and 2.3, for any 0 < ε < |β1| ,

Pr
(
Lp2(λ

∗
p2) =

1

n
β21 , Lp1(0) <

1

n
β21

)
≥ Pr

(
z1 ∈ [β1 − ε, β1 + ε],

max
2≤j≤p1

|zj | <
(
β21 − ε2

p1

)1/2

,

max
p1+1≤j≤p2

|zj | > |β1|+max(|β1 − ε|, |β1 + ε|)
)
.

Since the z′js, 1 ≤ j ≤ p2, are independent normals, β1 and ε are fixed constants,

and
(
β2
1−ε2

p1

)1/2
and |β1|+max(|β1−ε|, |β1+ε|) are strictly positive, this probability

is strictly positive.
Similarly, if p1 = 1, then by Lemma 2.3, for any 0 < ε < |β1| ,

Pr
(
Lp2(λ

∗
p2) =

1

n
β21 , Lp1(0) <

1

n
β21

)
≥ Pr

(
z1 ∈ [β1 − ε, β1 + ε],

max
p1+1≤j≤p2

|zj | > |β1|+max(|β1 − ε|, |β1 + ε|)
)
.
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This probability is also strictly positive.
It follows then that

Pr(Lp2(λ
∗
p2) > Lp1(λ

∗
p1)) > 0.

As a final remark, note that as p2 gets farther away from p1, the probability
that maxp1+1≤j≤p2 |zj | > |β1|+max(|β1 − ε|, |β1 + ε|) increases, so the lower bound
on this probability increases.

Theorem 2.1 establishes that, with non-zero probability, the best case predictive
performance for the Lasso deteriorates as more predictors with no predictive power
are added to a given set of predictors. Intuitively, this conclusion makes sense.
Increasing the number of noisy predictor variables will make more shrinkage optimal,
and more shrinkage results in more bias. However, it is important to note that this
cannot happen if one uses least squares with all subsets. In that case the optimal
loss would never increase as the number of predictor variables increases. Thus, we
are paying a price for not knowing the true set of predictor variables. The next
section investigates this price.

3. Empirical Study

This section investigates the cost of not knowing the true set of predictors when
working with high dimensional data. We assume that y is generated according to
the generating model in (1.1). We consider two simulation set-ups. The first is in
line with our theoretical work and studies the performance of the Lasso when the
columns of X are trigonometric predictors. Since these predictors are orthogonal,
this setting requires p < n. To allow for situations with p > n, we also study the
case where the columns of X are independent standard normals.

The main goal of our simulations is to understand the behavior of the infeasible
optimal loss for the Lasso as p and n vary. We focus on cases where p is large or is
getting large in order to be consistent with high-dimensional frameworks.

To measure the deterioration in optimal loss we consider the optimal loss ratio

minλ Lp2(λ)

minλ Lp1(λ)
,

which compares the minimum loss based on p2 predictors to the minimum loss
based on p1 predictors. Here p1 < p2 and the p1 predictors are a subset of the p2
predictors.

3.1 Orthogonal Predictors

Define the true model to be

yi = 6xi,1 + 5xi,2 + 4xi,3 + 3xi,4 + 2xi,5 + xi,6 + εi (3.1)

for i = 1, . . . , (n − 1), where ε ∼ N (0, σ2). We compare σ2 = 4 and σ2 = 400 in
order to study the impact of varying the signal-to-noise ratio (SNR). We refer to
these cases as “High SNR” and “Low SNR”, respectively.

The columns of X are trigonometric predictors defined by

xi,2j−1 = sin

(
2πj

n
i

)
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and,

xi,2j = cos

(
2πj

n
i

)
for j = 1, . . . , p/2 and i = 0, . . . , n − 1. The columns of X are orthogonal under
this design and the true model is always included amongst the candidate models.

By the definition of the optimal loss, the oracle inequalities in the literature also
apply to minλ Lp(λ). In particular, applying Corollary 6.2 in Buhlmann and van de
Geer (2011), it follows that

min
λ
Lp(λ) ≤ 64σ2p0

t2 + 2 log(p)

nψ2
0

(3.2)

with probability greater than 1 − 2e−t2/2, where ψ0 is a constant that satisfies
a compatibility condition. This condition places a restriction on the minimum
eigenvalue of XTX/n for a restricted set of coefficients and it’s sufficient to take
ψ0 = 1 for an orthogonal design matrix. Unless noted otherwise, t is set so that the
bound holds with 95 percent probability. Since these bounds also depend on p, we
study if the deterioration in optimal loss is adequately predicted by these bounds.
In other words, is the price that we pay equal to log(p)?

Figure 1: Mean optimal loss ratio over 1000 realizations as a function of log(p2)
for n = 100 and p1 = 6. The number of predictor variables p2 is varied from 6 to
100. The “High SNR” and “Low SNR” settings correspond to σ2 = 4 and σ2 = 400,
respectively.
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Figure 1 compares the means of optimal loss ratios over 1000 realizations to the
ratio predicted by the loss bound. We set p1 equal to the true set of six predictors
and vary p2. The bottom line is the optimal loss ratio predicted by the bound,
whereas the top line is the observed mean optimal loss ratios. Clearly the dete-
rioration is far worse than predicted by the bound. For example, if we include n
predictors, then the loss bound suggests we should be about 50% worse off than
if we knew the true set of predictors, but in actuality we are about 300% worse
off on average. This discrepancy is a consequence of the fact that the bounds are
inequalities not equalities.
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Figure 2: Ratio of the loss bound to the observed mean optimal loss over 1000
realizations as a function of p for n = 100. The “High SNR” and “Low SNR”
settings correspond to σ2 = 4 and σ2 = 400, respectively.
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To emphasize the danger of relying only on bounds, Figure 2 plots the ratio
of the bound to the mean optimal loss for varying values of p. This plot suggests
that the bounds are overly conservative when compared to the optimal loss and the
degree of conservatism depends on both p and the signal-to-noise ratio. As a result
of this behavior, the deterioration in optimal loss can be much worse than log(p).

Figure 3: Mean optimal loss ratio for p2 = n predictors compared to p1 = 2 log(n)
predictors over 1000 realizations as a function of n. The “High SNR” and “Low
SNR” settings correspond to σ2 = 4 and σ2 = 400, respectively.
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Our simulations suggest that the performance of the Lasso deteriorates for fixed
n as p varies. In order to investigate its behavior when n varies, we compare
p1 = 2 log(n) against p2 = n. Under this set-up, p increases as n increases, which
is consistent with the standard settings in high-dimensional data analysis. Figure 3
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compares the mean optimal loss ratios over 1000 realizations to the optimal loss
ratio predicted by the bounds. These plots suggest that the deterioration persists
as n increases, and that the bounds under-predict the observed deterioration.

3.2 Independent Predictors

Here we again assume that y is generated from the model given by (3.1) except in
this section the columns of X are independent standard normal random variables.
This matrix is simulated once and used for all realizations. This allows us to consider
situations where p > n. We consider both a high and low SNR setting by taking
σ2 = 9 and σ2 = 625, respectively.

Figure 4: Mean optimal loss ratio over 1000 realizations as a function of log(p2) for
n = 100 and p1 = 6. The number of predictor variables p2 is varied from 6 to 1000.
The “High SNR” and “Low SNR” settings correspond to σ2 = 9 and σ2 = 625,
respectively.
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Figure 4 compares the means of optimal loss ratios over 1000 realizations to the
optimal loss ratio predicted by the bound given in equation (3.2). We again set p1
equal the true set of six predictors and vary p2 from six to 1000. The bottom line is
the optimal loss ratio predicted by the bound, whereas the top line is the observed
mean optimal loss ratios. As in the orthonormal design case, this plot shows that
the bounds do not adequately measure the deterioration in performance, and that
the performance of the Lasso is sensitive to the number of predictor variables.

4. Concluding Remarks

The Lasso allows the fitting of regression models with a large number of predictor
variables, but the resulting cost can be much higher than the commonly held views in
the literature would suggest. We proved that when tuned optimally for prediction
the performance of the Lasso deteriorates as the number of predictor variables
increases with non-zero probability under the assumptions of a sparse true model
and an orthonormal deterministic design matrix. Our empirical results further
suggest that this deterioration persists as the sample size increases.
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In light of this deterioration, data analysts should be careful when using the
Lasso with high-dimensional data sets. One possible modification to the procedure
is to use the Lasso as a subset selector, but not as an estimation procedure. An
implementation of this is the extreme version of the Relaxed Lasso (Meinshausen,
2007), which fits least squares regressions to the Lasso selected subsets. Another
possible solution is to screen the predictor variables before fitting the Lasso penalized
regression. In screening, the typical goal is to reduce from huge scale to something
that is o(n) (Fan and Lv, 2008). However, our results suggest that it is not enough
to merely reduce the number of predictors, which implies that how to optimally
tune the number of screened predictors is an interesting model selection problem
for future research.

A. Additional Technical Results

Proof of Lemma 2.2. First note that

p1∑
j=2

|zj |2 ≤ p1 max
2≤j≤p1

|zj |2. (A.1)

Next, if z1 ∈ [β1 − ε, β1 + ε], then

(β1 − z1)
2 ≤ ε2, (A.2)

and if (2.2) is satisfied, then

ε2 + p1 max
2≤j≤p1

|zj |2 < β21 . (A.3)

Combining (A.1)-(A.3), it follows that

Lp1(0) =
1

n
(β1 − z1)

2 +
1

n

p1∑
j=2

|zj |2 ≤
1

n
ε2 +

1

n
p1 max

2≤j≤p1
|zj |2 <

1

n
β21 .

Proof of Lemma 2.3. First note that by zeroing out all of the coefficients, we can
achieve a loss equal to 1

nβ
2
1 , so Lp2(λ

∗
p2) ≤

1
nβ

2
1 . If (2.3) holds, then

|β1| < max
p1+1≤j≤p2

|zj | −max(|β1 − ε|, |β1 + ε|)

= max
p1+1≤j≤p2

(|zj | −max(|β1 − ε|, |β1 + ε|))+

= max
p1+1≤j≤p2

|β̂jλmax |

where λmax = max(|β1 − ε|, |β1 + ε|). If z1 ∈ [β1 − ε, β1 + ε] , then |z1| ≤ λmax.
Therefore, for any λ < |z1|,

β21 < max
p1+1≤j≤p2

β̂2jλmax
≤ max

p1+1≤j≤p2
β̂2jλ.

From this it follows that, for any λ < |z1|,

1

n
β21 <

1

n
max

p1+1≤j≤p2
β̂2jλ <

1

n
(β1 − β̂1λ)

2 +
1

n

p2∑
j=2

β̂2jλ = Lp2(λ). (A.4)

Combining (A.4) with the fact that Lp2(λ) ≥ 1
nβ

2
1 for λ ≥ |z1|, it follows that

Lp2(λ
∗
p2) =

1
nβ

2
1 .
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