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Abstract 
Metabolomics data sets typically have a large number of “non-detects”: features that are 
left-censored at the limit of detection (LOD). To analyze data with non-detects, modern 
methods such as maximum-likelihood estimation and multiple imputation have been 
deployed in fields as diverse as AIDS research and environmental monitoring. However, 
such modern methods have yet to be deployed in the metabolomics research arena, where 
currently prevailing practices for analyzing data with non-detects instead seem to be (A) 
exclude the non-detects from the analysis, or (B) assign to the non-detects a value such as 
0.5 or 1.0 times the LOD. Tekwe et al. [1] applied survival-analysis methods to left-
censored proteomics data, but their methods were limited to accelerated failure-time 
models in which parametric distributions were assumed. Here, I apply to left-censored 
metabolomics data the non-parametric survival-analysis method of Helsel [2], in which 
data are ‘flipped’ by subtracting them from a suitably large number, then analyzed using 
Kaplan-Meier methods and the log-rank test. I use simulation to compare Helsel’s 
method both to currently prevailing practices and to parametric survival regression. 
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1. Background 
 
Often, the first task in metabolomics analysis is to compare two groups univariately for 
differences in each metabolic “feature”, and to display the results in a “volcano plot” of P 
values versus fold changes. Individual features are then selected for further consideration 
if their P value and fold change satisfy user-defined criteria, such as “P<0.05 and fold 
change >2.0”. However, many metabolomics data sets are full of non-detects: features 
whose intensities are not reported in some samples because they are below the Limit of 
Detection (LOD). Although such data are obviously left-censored, the current 
metabolomics literature rarely notes this fact. Most labs restrict analysis to features 
having <20% non-detects, but provide few further details on how they treat the non-
detects they have. In publications, one well-known lab [3] imputed their non-detects as 
being equal to half the LOD, while another [4] noted the left-censoring, but excluded 
non-detects from subsequent analysis. Methods that explicitly accommodate the left-
censored nature of non-detects could improve the power and accuracy of univariate 
feature-finding in metabolomics research.  
 
At least two survival-analysis methods can be adapted to metabolomics data with non-
detects. One is survival regression, which has already been applied by Tekwe et al. [1] to 
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proteomics data with non-detects. This fits the data with parametric error models that 
assume the equivalent of equal variance between groups. Another is the method of Helsel 
[2], in which data are ‘flipped’ by subtracting them from a suitably large number, then 
analyzed using Kaplan-Meier methods and the log-rank test. Helsel’s flipped-data 
survival-analysis method makes no parametric assumptions about the data. 
 
The purpose of the research reported in this manuscript was to compare Helsel’s method 
both to parametric survival regression and to the common practice of setting non-detects 
equal to half the LOD. To measure performance, I assessed power to detect a 2-fold 
change, and I assessed bias when estimating the amount of change. 
 

2. Methods 
 
2.1 Data Simulation 
The data-simulation model had the following form: 
 
    log2(Wij) = μ + 0.5*ki*Δ + εij, 
 
where Wij represented the true but unobserved (uncensored) data, μ ranged from 12 to 16 
in 0.5-unit steps, Δ was either 0 or 1, ki was –1 and +1 for groups One and Two, 
respectively, and εij~Nor(0,22). At each value of μ and Δ, 50 Wij per group were 
generated to create a simulated data set, and 1000 simulated data sets were created. The 
LOD (limit of detection) was defined to be 5,000. The LOD was used to generate the 
observed data values Yij and left-censoring indicators Iij from the Wij according to the 
following rule: 
 
 if Wij≥LOD, then Yij=Wij and Iij=0 (the value was observed at its true value);  
 if Wij<LOD, then Yij=LOD and Iij=1 (the value was left-censored at the LOD).  
 
All Yij were transformed to log2 units for analysis. The log2-transformed LOD was 
12.2877 for purposes of comparing with the different values of μ + 0.5*ki*Δ from the 
data-simulation model. 
 
2.2 Data Analysis 
Data analysis was conducted using SAS v9.3 (The SAS Institute, Cary, NC). For t-tests 
and Kruskal-Wallis tests (and associated effect-size estimates), left-censored values were 
imputed to be equal to log2(0.5*LOD)=11.2877. The SAS Ttest Procedure was used to 
estimate the difference in group means and assess it for significance via 2-sided t-test 
assuming equal group variances. The SAS Npar1way Procedure was used to compute the 
Hodges-Lehmann estimate of median difference between groups and assess it for 
significance via 2-sided Kruskal-Wallis test. For Helsel’s method, data were “flipped” by 
subtracting all log2-transformed data points from the value 30, thereby converting all left-
censored data points into right-censored data points. The SAS Lifetest Procedure was 
used on flipped data to estimate the Kaplan-Meier median of each group, find the 
difference in the medians, and compare the groups via 2-sided log-rank test for 
differences in their Kaplan-Meier functions. (If a group experienced ≥50% non-detects, 
then the median of its flipped data was right-censored at 30.0–log2(LOD)=17.7123, and 
this value was used to compute the difference of group medians.)  For parametric survival 
regression, data were re-expressed using [lower,upper] syntax [5] to allow direct analysis 
of left-censored data. The SAS Lifereg Procedure, with “distribution=normal” specified 
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in the Model Statement, was used to estimate the regression parameter for the group 
difference and assess it for significance using the Wald chi-square test. Under these 
conditions, the survival regression assumed that data for each group followed normal 
distributions related purely by location shift, which is equivalent to the equal-variance 
assumption under which the t-tests were conducted.  
 
To estimate the Type I error of each test procedure when there was no difference between 
the two groups’ means, I tabulated the proportion of simulations in which the test yielded 
P<0.05 when Δ=0 and the number of samples per group was 50. To estimate the power of 
each test procedure when the two groups’ means differed by one log2 unit, I tabulated the 
proportion of simulations in which the test yielded P<0.05 when Δ=1 and the number of 
samples per group was 50. Both proportions were accompanied by simulation-based 95% 
confidence intervals calculated using asymptotic normality. 
 
The bias in each simulated data set was calculated as the estimated group difference 
minus Δ, both when Δ=0 (no difference between group means) and when Δ=1 (one log2 
unit of difference between group means). The average and standard error of the bias was 
calculated as the mean and standard deviation (SD) of bias across the 1000 simulated data 
sets within each combination of μ and Δ. To explore the effect of sample size on bias in 
estimating Δ, analyses were conducted on each simulated data set using the first 10, the 
first 25, or all 50 data points per group.  
 

3. Results and Discussion 
 
3.1 Type I Error  
Figure 1 shows how the simulated Type I error rates of the test procedures varied with 
the average non-detect rate in the data; the vertical error bars (sim95%CIs) represent 95%  

 
Figure 1. Type I error versus average non-detect rate for the four 2-sided test procedures indicated 
in the legend when nominal α was 5%, N=50/group, and the true group difference was Δ=0. 
Vertical error bars represent simulation-based 95% confidence intervals (sim95%CIs) on the Type 
I error. “Kr-Wallis” = Kruskal-Wallis test on data having non-detects set equal to log2(0.5*LOD); 
“Life-Reg” = parametric survival regression with non-detects left-censored at log2(LOD); “Log-
rank” = log-rank test on flipped data with non-detects right-censored at 30–log2(LOD); “Ttest:0.5” 
= 2-sample equal-variance t-test on data having non-detects set equal to log2(0.5*LOD).  
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confidence intervals on the Type I errors. Although the simulated Type I error rates 
tended to be above the nominal alpha=5% rate, this nominal rate was excluded by only 
two of the 36 sim95%CIs shown in Figure 1, indicating that, under the conditions 
examined, the four test procedures had Type I error rates not significantly higher than the 
nominal alpha=5% rate. Just as importantly, Figure 1 shows that the four test procedures 
had Type I error rates that were not significantly different from each other. Interestingly, 
the four curves of Type I error rate tend to zig-zag up and down together instead of 
independently. This correlated behaviour suggests that, when Type I error is high, it is 
high because of a feature of the simulated data, not because of the test procedure.  
 
3.2 Power 
Figure 2 shows the simulated power of the four test procedures to declare the group 
difference significant at 5% alpha when the true difference between groups was Δ=1 log2 
unit, and how this power varies with the rate of non-detects. The vertical error bars 
(sim95%CIs) represent 95% confidence intervals on the power. Survival regression 
(magenta curve) uniformly had the highest power at all non-detect rates examined; this 
result was expected for a survival-regression model with a correctly specified error 
distribution. Unexpectedly, the log-rank test on flipped data (red curve) had noticeably 
less power than other methods at non-detect rates of 30% or less. Moreover, in the same 
range of non-detect rates, the sim95%CIs of the log-rank test show no overlap with those 
of survival regression, and only a little overlap with those of the Kruskal-Wallis test 
(green curve). This indicates that the power of the log-rank test on flipped data was 
significantly lower than that of parametric survival regression. It also indicates that the 
power of the log-rank test tended to be significantly lower than that of the Kruskal-Wallis 
test on data that had non-detects set equal to log2(0.5*LOD), one of several values that 
made all non-detects tied for lowest rank. Interestingly, the t-test on data having non-
detects set equal to log2(0.5*LOD) (blue curve) had power that was intermediate between 
survival regression and the Kruskal-Wallis test at all non-detect rates examined.  

 
Figure 2. Power versus average non-detect rate for the four 2-sided test procedures indicated in 
the legend when nominal α was 5%, N=50/group, and the true group difference was Δ=1 log2 unit. 
Vertical error bars represent simulation-based 95% confidence intervals (“sim95%CIs”) on the 
power. “Kr-Wallis” = Kruskal-Wallis test on data having non-detects set equal to log2(0.5*LOD); 
“Life-Reg” = parametric survival regression with non-detects left-censored at log2(LOD); “Log-
rank” = log-rank test on flipped data with non-detects right-censored at 30–log2(LOD); “Ttest:0.5” 
= 2-sample equal-variance t-test on data having non-detects set equal to log2(0.5*LOD).  
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Table 1: Bias1 in Estimating Group Differences When True Difference = Zero 
delta=0 log2 units Difference in 

group means 
H-L2 Median of 

Differences 
Difference in 

K-M3 Medians 
 Regression4 

Estimate 
% non-
detects 

N / 
group 

Mean 
Bias 

SD 
Bias 

Mean 
Bias 

SD 
Bias 

Mean 
Bias 

SD 
Bias 

Mean 
Bias 

SD 
Bias 

3.2% 
10 -0.02 0.90 -0.02 0.92 -0.04 1.05 -0.02 0.89 
25 -0.02 0.57 -0.03 0.58 -0.02 0.70 -0.02 0.57 
50 -0.00 0.40 -0.00 0.41 -0.01 0.50 -0.00 0.40 

8.8% 
10 -0.01 0.88 -0.01 0.92 0.01 1.02 -0.01 0.89 
25 0.00 0.58 -0.00 0.58 -0.00 0.68 0.00 0.58 
50 -0.01 0.41 -0.01 0.41 -0.01 0.49 -0.01 0.41 

19.6% 
10 -0.02 0.83 -0.02 0.88 -0.02 1.03 -0.02 0.89 
25 -0.01 0.56 -0.01 0.56 -0.01 0.71 -0.01 0.59 
50 -0.01 0.39 -0.01 0.36 -0.01 0.49 -0.01 0.41 

36.1% 
10 0.03 0.77 0.03 0.78 0.01 0.88 0.03 0.95 
25 0.03 0.51 0.02 0.44 0.01 0.67 0.03 0.61 
50 0.02 0.36 0.01 0.24 0.04 0.51 0.02 0.43 

55.7% 
10 -0.00 0.68 0.01 0.56 -0.01 0.49 0.02 1.50 
25 -0.01 0.40 -0.00 0.20 -0.01 0.26 -0.01 0.64 
50 -0.01 0.29 0.00 0.05 0.00 0.15 -0.01 0.45 

1: Bias is calculated as estimate minus delta. The bias mean and SD (standard deviation) was 
calculated from 1000 simulations per table row. 2: Hodges-Lehmann estimator. 3: Kaplan-Meier 
estimator (see Methods for when a group had ≥50% non-detects). 4: Survival regression. 
 
3.3 Bias 
Table 1 shows the bias mean and SD of the four estimation methods in estimating the 
difference between two groups when the true difference was zero; note that the SD of the 
bias is also the SD of the estimator. Table 2 similarly shows the bias mean and SD of the 
four estimation methods in estimating the group difference when the true difference was 
one log2 unit. When there was no difference between the groups, the bias had a mean that   
Table 2: Bias1 in Estimating Group Differences When True Difference = 1 log2 unit 
delta=1 log2 unit Difference in 

group means 
H-L2 Median of 

Differences 
Difference in 

K-M3 Medians 
Regression4 

Estimate 
% non-
detects 

N / 
group 

Mean 
Bias 

SD 
Bias 

Mean 
Bias 

SD 
Bias 

Mean 
Bias 

SD 
Bias 

Mean 
Bias 

SD 
Bias 

3.6% 
10 -0.08 0.90 -0.08 0.93 -0.11 1.07 -0.08 0.90 
25 -0.01 0.54 -0.01 0.56 0.00 0.69 -0.01 0.54 
50 0.01 0.39 0.01 0.40 0.00 0.49 0.01 0.39 

9.4% 
10 -0.06 0.87 -0.04 0.93 -0.03 1.04 -0.04 0.88 
25 -0.04 0.57 -0.02 0.60 -0.03 0.70 -0.03 0.58 
50 -0.01 0.41 0.00 0.43 -0.00 0.50 -0.00 0.41 

20.3% 
10 -0.03 0.87 0.00 0.93 0.02 1.03 0.04 0.93 
25 -0.09 0.53 -0.06 0.60 -0.03 0.70 -0.03 0.58 
50 -0.08 0.37 -0.05 0.43 -0.02 0.49 -0.02 0.40 

36.5% 
10 -0.15 0.80 -0.18 0.89 -0.20 0.86 0.06 1.23 
25 -0.19 0.50 -0.26 0.62 -0.13 0.61 -0.01 0.62 
50 -0.16 0.34 -0.25 0.49 -0.04 0.43 0.02 0.42 

55.5% 
10 -0.36 0.66 -0.54 0.70 -0.63 0.53 0.19 2.02 
25 -0.37 0.40 -0.74 0.47 -0.69 0.35 0.00 0.66 
50 -0.35 0.29 -0.83 0.36 -0.72 0.27 0.02 0.46 

1: Bias is calculated as estimate minus delta. The bias mean and SD (standard deviation) was 
calculated from 1000 simulations per table row. 2: Hodges-Lehmann estimator. 3: Kaplan-Meier 
estimator (see Methods for when a group had ≥50% non-detects). 4: Survival regression. 
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was less than ±5% of its SD for all non-detect rates considered, regardless of the 
N/group, and regardless of the estimation method (Table 1). However, when there was a 
true difference of one log2 unit between groups, the mean bias varied strongly with both 
the non-detect rate and the method (Table 2). At non-detect rates of 20.3% or less, all 
four methods had mean biases that were less than ±10% of their SDs at N/group=10, and 
these means shrank towards zero as the N/group increased. In contrast, at non-detect rates 
of 36.5% or more, the difference of group means and the Hodges-Lehmann median of 
differences had mean biases that were negative (indicating underestimation) and either 
constant or increasing with the N/group. The difference in Kaplan-Meier medians had a 
mean bias that shrank with the N/group at a 35.5% non-detect rate, but increased 
markedly with the N/group at a 55.5% non-detect rate; the reason for this behaviour is 
discussed below. Parametric survival regression showed little bias at all non-detect rates 
examined.  
 
3.4 Discussion 
When I began this research, I originally investigated setting the non-detects equal to three 
different imputation values commonly found in the environmental-sciences and 
occupational-hygiene literature: half the LOD (the value used in this report), 0.7071 times 
the LOD (the LOD divided by the square root of 2), and 1.0 times the LOD. The three 
different values gave similar results when assessing estimation bias using either the 
difference of group means or the Hodges-Lehmann median of differences, similar results 
when assessing Type I error and power of the two-sample equal-variance t-test, and 
identical results when assessing Type I error and power of the Kruskal-Wallis test. The 
identical results with Kruskal-Wallis test were expected, since all non-detects will be tied 
for the lowest-ranked value no matter which imputation value is used, so long as that 
value is ≤1.0 times the LOD. Because overall results were very similar regardless of the 
imputation value used, I chose to simplify the manuscript, and report results for only the 
most commonly used imputation value, half the LOD. 
 
Astute readers will notice that I applied the Kruskal-Wallis test from the SAS Npar1way 
Procedure to my two groups, instead of the equivalent Wilcoxon rank-sum test that was 
also available. I did so in order to avoid potential confusion: the SAS Lifetest Procedure 
has a weighted variant of the log-rank test that is also called the Wilcoxon test, and I 
originally applied this Wilcoxon test as well as the log-rank test to the flipped data. 
Although I found that the log-rank test on the flipped version of the data (with non-
detects treated as right-censored) had significantly inferior power compared to the 
Kruskal-Wallis test on the unflipped version of the data (with non-detects tied for lowest 
rank), I also found that the Wilcoxon test on the same flipped data version had power that 
was stochastically equal to that of the Kruskal-Wallis test on the unflipped data version. 
This implies that Helsel’s method using the Wilcoxon test had superior power compared 
to Helsel’s original method using the log-rank test, at least when the two were applied to 
data whose underlying error components were normally distributed.  
 
Finally, Helsel’s method produced differences in Kaplan-Meier medians that had a mean 
bias that shrank with the N/group at a 35.5% non-detect rate, but increased markedly with 
the N/group at a 55.5% non-detect rate. The reason for this was a flaw in my estimation 
procedure. If a group experienced ≥50% non-detects, then the median of its flipped data 
was right-censored at 30.0–log2(LOD)=17.7123, and this value was used to compute the 
difference of group medians. Obviously, the difference of group medians will be 
underestimated if one of the medians was right-censored, and the chance of having a 
right-censored group median rises with the non-detect rate. One route to correcting this 
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flaw would be to keep track of the differences calculated from at least one right-censored 
median, and to exclude them from the bias assessment.  
 

4. Conclusions and Future Research 
 
4.1 Conclusions 
At <30% non-detects, the log-rank test on flipped data had less power than the other 3 
procedures to detect a 2-fold change between groups. As for estimation, bias was 
appreciable at >36% non-detects for 2 of the methods, but in the metabolomically 
relevant regime of ≤20% non-detects, all 4 methods showed mean biases that were small 
relative to their SDs. These facts indicate that the log-rank test on flipped data may be an 
inferior procedure when applied to metabolomics data with non-detects. 
 
4.2 Future Research 
Parametric survival regression was superior to Helsel’s method in this study, presumably 
because it fit a correctly specified model to normally distributed data adhering to the 
equal-variance assumption. An obvious direction for future research is to compare how 
the two methods perform on data whose error components come from the gamma, 
Weibull, or other distributions. A less obvious, but still important direction for future 
research is to compare how the two methods perform on data that still is normally 
distributed, but that violates the equal-variance assumption. Finally, we found 
preliminarily that the power of Helsel’s method at detecting a group difference was 
improved when a weighted version of the log-rank test was used instead of the 
unweighted version; future research will explore the conditions on, and limits of, that 
finding.    
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