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Quickest Change-Point Detection: A Bird’s Eye View

Aleksey S. Polunchenko Grigory Sokolov Wenyu Du

Abstract

We provide a bird’s eye view onto the area of sequential cegraint detection. We focus on the
discrete-time case with known pre- and post-change datidbdisons and offer a summary of the
forefront asymptotic results established in each of the foajor formulations of the underlying
optimization problem: Bayesian, generalized Bayesianjmmax, and multi-cyclic.
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1. Introduction

Quickest change-point detection is concerned with thegdeaind analysis of procedures
for “on-the-go” detection of possible changes in the chiargstics of a running (random)
process. Specifically, the process is assumed to be mahitametinuously through se-
guentially made observations (e.g., measurements), anddstheir behavior suggest the
process may have statistically changed, the aim is to cdacto within the fewest obser-
vations possible, subject to a tolerable level of the riskatdfe detection. See, e.g., Wald
(1947); Shirvaev (1978); Siegmund (1985); Poor and Hauii§ (2008). For nonparamet-
ric change-point detection theory see, €.q., Brodsky an@hoasky (1993). The area
finds applications across many branches of science andesngig: industrial quality and
process control (see, e.q., Ryan, 2011; Montgomery, | 20Xxh&ll and Brown| 1991;
Kenett and Zacks, 1998; Shewhart, 1931), biostatisties €sg., Cohen, 1987), clinical tri-
als (see, e.gl, Siegmund, 1985), econometrics (see, eaenRling and Tsurumi, 1987),
seismology (see, e.q., Basseville and Nikiforov, 1993krisics, navigation, cybersecurity
(see, e.gl, Tartakovsky et al., 2006 and Polunchenkad &(Hl2; Tartakovsky et al., 2013),
and communication systems (see, €.d., Basseville anddxiikif 1993 Tartakovsky, 1991)
— to name a few. See also, elg., Chernoff (1972). A sequerti@hge-point detection
procedure, a rule whereby one stops and declares that @mtlyara change is in effect, is
defined as a stopping tim&, adapted to the observed d&td,}n>1.

The desire to detect the change quickly causes one to beetfiggppy. That is, if
one is too hasty, i.e., too quick to stop, the risk of a falsect®n is high. On the other
hand, however, if one is too wary, i.e., too slow to stop, thkayto (correct) detection is
substantial. Hence, there is a loss in either case and teaassf the problem is to attain
a tradeoff between two contradicting performance meastthe loss associated with the
delay to detection of a true change and that associated aighng a false alarm. A good
sequential detection policy is expected to minimize theaye loss related to the detection
delay, subject to a constraint on the loss associated Wb &arms (or vice versa).

To put this idea on rigorous mathematical grounds one is soffirmally define both
the “detection delay” and the “risk of raising a false alarnTo this end, contemporary
theory of sequential change-point detection distingustoeir different approaches: the
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minimax approach, the Bayesian approach, the generalizggdtan approach, and the
approach related to multi-cyclic detection of a distantngjein a stationary regime. The
aim of this paper is to give a brief overview of all four. For am detailed overview
see, e.gl, Polunchenko and Tartakovsky (2012), Tartakomsét Moustakides (2010), and
Tartakovsky and Veeravalli (2005).

2. Change-Point Models

To formally state the general quickest change-point distegiroblem, one is to first in-

troduce a change-point model, i.e., describe a probabikstucture of the observations
(independent, identically or non-identically distribditecorrelated, etc.) as well as that
of the change-point (unknown deterministic, random comepfeor partially dependent

on the observed data, random fully independent from thereatiens). To this end, a

myriad of scenarios is possible; see, €.g., Fuh (2003, 20@4dakovsky (1991, 2009a),

Tartakovsky and Moustakides (2010),/Llai (1995, 1998),\&i&iv (1961), 1963, 1978, 2009,
2010), Tartakovsky and Veeravalli (2005), and Polunchearke Tartakovsky (2012). This

section is intended to review the major ones.

Fix a probability triple 2, 7, P), wheref = V0Fn, Fnis the sigma-algebra generated
by the firstn > 1 observationsfy = {@, Q} is the trivial sigma-algebra), arfit ¥ ~ [0, 1]
is a probability measure. Lé,, andPy be two mutually locally absolutely continuous
(i.e., equivalent) probability measures; for a generakcagh singular measures present
see _Shiryaev (2009). For= {0, oo}, write Pg‘) = Py, for the restriction ofPg to F,, and
let p(”)() be the density onj”) (with respect to a dominating sigma-finite measure).

Let {Xn}n>1 be the series of observations such thatXo, ..., X,, for somev, adhere to
measuré®,, (“normal” regime), butX,,1, X,.2, ... follow measuréPq (“abnormal” regime).
That is, at an unknown time instant{change-point), the observations undergo a change-
of-regime from “normal” to “abnormal”. Hence,is the serial number of the last normal
observation, so that i#f = 0, then the entire serigs{y}n>1 iS in the abnormal regime
admitting measur@®g, while if v = oo, then{Xq}n>1 is in the normal regime admitting
measureP,, (i.e., there is no change).

For every fixedv > 0, the change-of-regime in the serip§,},>1 generates a new
probability measur®,. We will now construct the pdp(V”)(XQ) of ]P(V”) forn>landv >0
in the most general case. For the sake of brevity, we will dhdtsuperscript and write
Py (XD). , ,

For 1<i < j, let X! = (Xi, Xis1.. .., X)), that is,X! is a sample of — i + 1 successive
observations indexed fromthrough j. Hence, if the sampleX] = (X1, Xp,...,X,) is
observed, thelx'i = (Xg, ..., Xy) is the vector of the firgt observations in this sample and
XE+1 = (Xks1, - - - » Xp) IS the vector of the rest of the observations in the sampden k + 1
ton.

First, suppose is deterministic unknown. This is the main assumption ofrtin@max
approach. To get densitg,(X]), observe that by the Bayes rupg,(X]) = p.(X}) x
Peo (X7, 11X7) @and po(X7) = po(X}) x po(X?,,X}), whence by combining the first factor of
the pre-change densitp.,(XY), with the second one of the post-change dengig(X?),
we obtainp,(X]) = p(X]) x po(X7,,IX}), or, after some more algebra using the Bayes
rule,

pv(X)—[]_[p‘”(xHX”J []—[ P O6j1X4 ) J (1)

j=v+1

Wherep(’)(xj|x ) and p(’)(lexi_l) are the conditional densities of theh observation,
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Xj, given the past informatiov(’l_l, j = 1. Note that in general these densities depend on
j. Hereafter it is understood thgf?_, p&”(X”X’l_l) =1fork>n.

Model () is very general: it does not require the obserwatito be independent or
homogeneous. Suppose now thaf}..1 areindependentand such thaXy, ..., X, are
each distributed according to a common density), while X,.1, X,,2, ... each follow a
common density(x) # f(x). This is the simplest and most prevalent case. From now on it
will be referred to as thid case or theiid model In this case, model{1) reduces to

p/(X]) = [1_[ f(xo]x[ [] g(x,-)J, 2)

=1 j=v+1

and it will be referenced repeatedly throughout the paper.

If the change-pointy, is random, which is the ground assumption of the Bayesian
approach, then any change-point model has to be supplidd amithange-point'grior
distribution To this end, letrg = P(v < 0) andmy = P(v = n|X}), n > 1, and observe
that the serie$mn}nso is {#n}-adapted. That is, the probability of the change occurring
at time instancer = k depends or)('{, the observations’ history accumulated up to (and
including) time momenk > 1. With the so defined prior distribution one can describg ver
general change-point models, including those that assuisea {#,}-adapted stopping
time; see Moustakides (2008).

To conclude this section, we note that when the probabittjes{z,}n-0 depends on
the observed dat8Xn}n-1, it is argumentative whethdrr,}-o can be referred to as the
change-point'sprior distribution: it can just as well be viewed as the changey®ia
posterioridistribution. However, a deeper discussion of this sulifeouit of scope to this
paper, and from now on, we will assume that}-o do not depend ofX,}n>1, in which
case it represents the “true” prior distribution.

3. Overview of Optimality Criteria

3.1 Bayesian Formulation

The signature assumption of the Bayesian formulation i ttie change-point is a ran-
dom variable with a prior distribution. This is instrumeniia certain applications (see,
e.g.,. Shirvaev, 2006, 2010 and Tartakovsky and VeerazdlD5), but mostly of interest
since the limiting versions of Bayesian solutions lead ttnoal or asymptotically optimal
procedures in more practical minimax problems.

Let {mk}k=0 be a prior distribution of the change-point, wherery = P(v < 0) and
nx = P(v = k) for k > 1. From the Bayesian point of view, the risk of sounding aefals
alarm is reasonable to measure by the Probability of Falae\{PFA), which is defined
as

PEAT(T) = PX(T <v) = i BT < K), ©)
k=1

whereP"(A) = §] nPk(A) and ther in the superscript emphasizes the dependence on the

prior distribution. Note that summation i (3) is over 1 since by conventiofy(T > 1) =
1, so thatP (T < 0) = 0. The most popular and practically reasonable way to beadhm
the detection delay is through the Average Detection DeMdY), which is defined as

ADD™(T) = E"[T =T > v] = E"[(T — v)*]/P*(T > v), 4)
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where hereaftext = max0, x} andE™ denotes expectation with respectPth

We now formally define the notion of Bayesian optimality. et = {T: PFA'(T) <
a} be the class of detection procedures (stopping times) faxthwthe PFA does not exceed
a preset (desired) levele (0, 1). Then under the Bayesian approach one’s aim is to

find Topt € A, such that ADD(Topr) = TinAf ADD™(T) for everya € (0, 1). (5)
e (g

For the iid modell(R) and under the assumption that the chpnge v has ageometric
prior distribution this problem was solved by Shirvaesyv (196963, 1978). Specifically,
Shiryaev assumed thats distributed according to the zero-modified geometritridhistion

P(v<0)=x and P(v=n)=(1-7)p(L-p)", n>0, (6)

wherer € [0,1) andp € (0,1). This is equivalent to choosing the ser{@g}n-o asng =
Pv<O)=n+(@A-n)pandm,=P(v=n)=Q-m)p(l-p",n>1.

Observe now that itr > 1 — x, then problem[(5) can be solved by simply stopping
right away. This clearly is a trivial solution, since for shstrategy the ADD is exactly
zero, and PFA(T) = P(v > 0) = 1 — x, so that the constraint PEAT) < « is satisfied.
Therefore, assume that< 1 - and in this case, Shiryaev (1961, 1963, 1978) proved that
the optimal detection procedure is based on testing theposprobability of the change
currently being in effectP(v < n|¥,), against a certain detection threshold. The procedure
stops as soon &v < n|¥,) exceed the threshold. This strategy is known as the Shiryae
procedure. To guarantee its strict optimality the detectimeshold should be set so as to
guarantee that the PFA is exactly equal to the selecteddgwehich is rarely possible.

The Shiryaev procedure will play an important role in theustgvhen considering non-
Bayes criteria. It is more convenient to express Shiryaendeedure through the average
likelihood ratio (LR) statistic

o A
R”""(l—n)pn(l—p)

=1

n n AJ
(). @

k=1 j=k
whereAn = g(Xn)/ f(Xp) is the “instantaneous” LR for the-th data pointX,. Indeed, by
using the Bayes rule, one can show that

Rn.p

Rnp + 1/p’
whence it is readily seen that “thresholding” the postepmbability P(v < n|F,) is the

same as “thresholding” the proce$%, p}n-1. Therefore, the Shiryaev detection procedure
has the form

P(v < nifn) = 8

Ts(A) = inf{n > 1: Ryp > Al, 9)

and if A = A, can be selected in such a way that the PFA is exactly equal ice.,
PFA'(Ts(Ay)) = a, then itis strictly optimal in the class(a), that is, infrea@) ADD™(T) =
ADD”(Ts(A,)) for any O< a < 1 - 7. Note that Shiryaev’s statistig, , can be rewritten
in the recursive form

1-mp

We also note thaf{7) and](8) remain true under the geometdcgiistribution [6) even
in the general non-iid casgl(1), witkh, = g(Xa|X7)/f(XalX]™1). However, in order for
the recursion(10) to hold in this cagé\},-1 should be independent of the change-point.

Rup = (1+ R”‘l’p)]_/i—np’ n>1 with Ryp= (10)
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As p — 0, wherep is the parameter of the geometric prigl (6), the Shiryaeeati&n
statistic [10) converges to what is known as 8teryaev—Roberts (SR) detection statistic
The latter is the basis for the so-call8& procedureAs we will see, the SR procedure is a
“bridge” between all four different approaches to changaypdetection mentioned above.

For a general asymptotic Bayesian change-point detedtieory in discrete time see
Tartakovsky and Veeravalli (2005). Specifically, this waddresses the Bayesian approach
assuming merely that the prior distribution is independaéiiie observations, and the over-
all conclusion is twofold: a) the Shiryaev procedure is asymptotically fas> 0) optimal
in a very broad class of change-point models and prior bigions, and) depending on
the behavior of the prior distribution at the right tail, t8&® procedure may or may not
be asymptotically optimal. Specifically, if the tail is expmtial, the SR procedure is not
asymptotically optimal, though it is asymptotically op#hif the tail is heavy. When the
prior distribution is arbitrary and depends on the obsé@wat we are not aware of any
strict or asymptotic optimality results.

3.2 Generalized Bayesian Formulation

The generalized Bayesian approach is the limiting caseeoBtyesian formulation, pre-
sented in the preceding section. Specifically, in the gémechBayesian approach the
change-point is assumed to be a “generalized” random variable with a tmif@mproper)
prior distribution.

First, return to the Bayesian constrained minimizatiorbfgm [3). Specifically, con-
sider the iid model{2) and assume that the change-pagtlistributed according to zero-
modified geometric distributiori (6). Then the Shiryaev paare defined i (10) andl(9)
is optimal if the thresholdA = A, is chosen so that PPATs(A,)) = a. Suppose now
thatr = 0 andp — O; this is turning the geometric pridrl(6) to an improper onifi dis-
tribution. It can be seen that in this ca$® p}n-0 becomegRy o}n-0, WhereRyg = 0 and
Rno = (1+Rn-1.0) An, n > L with Ay = g(Xn)/ f(Xn). The limit{Rno}ns0 is known as the SR
statistic, and is customarily denoted {&}n>0, i.€., Ry = Ry for all n > 0; in particular,
note thatRy = 0.

Next, whenr = 0 andp — 0 it can also be shown that

PT>y) E[(T - »)*]

Eo[T] and - iEk[(T -k, (11)
k=0

whereT is an arbitrary stopping time. As a result, one may conjectiuat the SR procedure
minimizes theRelative Integral Average Detection Delé®IADD)

Zico Bel(T - K)*]
Eoo[T]

RIADD(T) = (12)

over all detection procedures for which theerage Run Length (ARL) to false alarm
Eo[T], is no less thary > 1, ana priori set level.
Let

AQy) ={T: E[T] 2 7}, (13)

be the class of detection procedures (stopping times) fochwitne ARL to false alarm
Eo[T] is “no worse” thany > 1. Then under the generalized Bayesian formulation one’s
goal is to

find Topt € A(y) such that RIADD{ o) = TirAnE )RIADD(T) for everyy > 1. (14)
EALY.
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We have already hinted that this problem is solved by the Sfegaure. This was
formally demonstrated by Pollak and Tartakovsky (2009b)him discrete-time iid case,
and by Shiryaev (1963) and Feinberg and Shiryaev (2006 )ntiragous time for detecting
a shift in the mean of a Brownian motion.

We conclude this subsection with two remarks. First, oleséinat if the assumption
m = 0is replaced withr = rp, wherer > 0 is a fixed number, then, gs— 0, the Shiryaev
statistic{Rn p}n=0 converges tdR{}n-0, whereR}, = (L+ R ;) Ap, n> 1 withRj =1 > 0.
This is the so-calle&hiryaev—Roberts—r (SR—-r) detection statjsdiad it is the basis for the
SR~ detection procedure that starts from an arbitrary detesticrpointr. This procedure
is due to Moustakides etlal. (2011). The $Rrocedure possesses certain minimax prop-
erties (cf. Polunchenko and Tartakovsky, 2010 land Tartisoand Polunchenko, 2010).
We will discuss this procedure at greater length later.

Secondly, though the generalized Bayesian formulatiohadimiting (asp — 0) case
of the Bayesian approach, it may also be equivalently reqiméted as a completely differ-
ent approach multi-cyclic disorder detection in a stationary regim#fe will consider this
approach in Subsecti¢n_3.4.

3.3  Minimax formulation

Contrary to the Bayesian formulation the minimax approagsitp that the change-point
is an unknown not necessarily random number. Even if it isloam its distribution is
unknown. The minimax approach has multiple optimalityesid.

First minimax theory is due to Lorden (1971) who proposed &asure the risk of
raising a false alarm by the ARL to false alar[T]. As far as the risk associated with
detection delay is concerned, Lorden suggested to use ihrstworst-case” ADD defined
as

ESADD(T) = sup {ess SUfE, [(T - v)+|7:,,]}.

(3923

Lorden’s minimax optimization problem seeks to

find Topt € A(y) such that ESADDIgpt) = Tirg]? )ESADD(I') for everyy > 1, (15)
eA(y.

whereA(y) is the class of detection procedures with the lower bound the ARL to false
alarm defined in(13).

For the iid scenario{2), Lorden (1971) showed that Pageé§4)1 Cumulative Sum
(CUSUM) procedure is first-order asymptotically minimaxyas> . For anyy > 1, this
problem was solved hy Moustakides (1986), who showed th&&@\ is exactly optimal
(see also_Ritovi (1990) who reestablished Moustakioes’ @198ding using a different
decision-theoretic argument).

Though the strict ESADD()-optimality of the CUSUM procedure is a strong result, it
is more natural to construct a procedure that minimizes\beeage (conditional) detection
delay,E,[T — v|T > v], for all v > 0 simultaneously. As no such uniformly optimal proce-
dure is possible, Pollak (1985) suggested to revise Losdesrsion of minimax optimality
by replacing ESADDY) with

SADD(T) = sup E,[T = V[T > ],

O<y<oo

the worst conditional expected detection delay. Thus,aRallversion of the minimax
optimization problem seeks to

find Topt € A(y) such that SADD{opt) = TirAnE )SADD(T) for everyy > 1. (16)
€A(y.
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It is our opinion that SADDY) is better suited for practical purposes for two rea-
sons. First, Lorden’s criterion is effectively a doubleaimiax approach, and therefore,
is overly pessimistic in the sense that SADD(< ESADD(T). Second, it is directly
connected to the conventional decision theoretic appreacthe optimization problem
(@8) can be solved by finding the least favorable prior distion. More specifically,
since by the general decision theory the minimax solutiomesponds to the (general-
ized) Bayesian solution with the least favorable prior ribsition, it can be shown that
sup, ADD”*(T) = SADD(T), where ADD¥(T) is defined in[(#). In addition, unlike Lorden’s
minimax problem[(15), Pollak’s minimax problem (16) is Istibt solved. For these rea-
sons, from now on, when considering the minimax approacHoags on Pollak’s supre-
mum ADD measure SADO{). Some light as to the possible solution (in the iid case) is
shed in the work of Polunchenko and Tartakovsky (2010);akantsky and Polunchenko
(2010), and Moustakides etlal. (2011). A synopsis of thelte&igiven in the sequel.

Yet another way to gauge the false alarm risk is through thestwocal (conditional)
probability of sounding a false alarm within a time “windowf a given length. As argued
by|Tartakovsky! (2005, 2008), in many surveillance appilicet (e.g., target detection) this
may be a better option than the ARL to false alarm: the lagtendre global. Specifically,
the concern is that for a generic detection procediliteghe ARL to false alarmE.[T],
is not an exhaustive measure of the false alarm risk, untes®.$-distribution of T is
geometric (at least approximately); see Tartakavsky (28088). The geometric distribu-
tion is characterized entirely by a single parameter, whichniquely determineE.[T],
and b) is uniquely determined [B,[T]. For the iid modell(R), Tartakovsky etlal. (2008);
Pollak and Tartakovsky (2009a) showed that under mild aptions theP.,-distribution
of the stopping times associated with detection schemes &aertain class is asymp-
totically (asy — o) exponential with parameter/ E.,[T]; the convergence is in thiP
sense, wher@ > 1. The class includes all of the most popular procedures.céleior
the iid model [(2), the ARL to false alarm is an acceptable measf the false alarm rate.
However, for a general non-iid model this is not necessanilg. Hence, alternative mea-
sures of the false alarm rate are in order. As a resul, i§ geometric, one can evaluate
Po(k < T <k+mT > k) for anyk > O (in fact, for allk > 0 at once). Specifically, let

AT = {T: SUPPo(k < T <k+mT > K) < a/}, 17)
k=0

be the class of detection procedures for whitghik < T < k+ mT > k), the conditional
probability of raising a false alarm inside a sliding windofvm > 1 observations is “no
worse” than a certaia priori chosen level € (0, 1). The size of the windown may either
be fixed or go to infinity agr — 0.

As argued by Tartakovsky (2005), in general, sBp(k < T < k+mT > k) < e is a
strongercondition tharE.[T] > y. Hence, in generalh\™ c A(y). See also Tartakovsky
(2009b). For a specific example where the optimization @mb[16) is solved in the
class[(1V) see Polunchenko and Tartakavsky (2012).

3.4 Multi-cyclic detection of a disorder in a stationary regme

Consider a context in which it is of utmost importance to detee change as quickly as
possible, even at the expense of raising many false alaraisg(a repeated application
of the same stopping rule) before the change occurs. Thiguivaent to saying that the
change-poinv is substantially larger than the tolerable level of falssralky. That is, the
change “strikes” in a distant future and is preceded lsgationary flow of false alarms
This scenario is shown 1. As one can see, the ARLIse falarm in this case
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(a) An example of the behavior of a process of interest adérldithrough the series of observations
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(b) An example of the behavior of the detection statistic mtiee decision to terminate surveillance
is madepastthe change-point.

Figure 1. Multi-cyclic change-point detection in a stationary regi.

is the mean time between (consecutive) false alarms, aneftine may be thought of the
false alarm rate (or frequency).
As argued by Pollak and Tartakovsky (2009b), the multiHcyapproach is instrumen-
tal in many surveillance applications, in particular in #ieas concerned with intrusion/anomaly
detection, e.g., cybersecurity and particularly detectibattacks in computer networks.
Formally, letT4, To, ... denote sequential independent repetitions of the sampistpp
time T, and let7(j) = Ty + Te) + --- + Tj) be the time of thej-th alarm. Defind, =
min{j > 1: 7 > v}. Put otherwise7y,) is the time of detection of the true change that
occurs at the time instamtafterl, — 1 false alarms have been raised. Write

STADD(T) = lim E, [T, — v]

for the limiting value of the ADD that we will refer to as tistationary ADD(STADD).
We now formally state the multi-cyclic change-point dei@tt{problem:

find Topt € A(y) such that STADD{opt) = Tirlf( )STADD(T ) for everyy > 1 (18)
€Ay

(among all multi-cyclic procedures).

For the iid modell(R), this problem was solved by Pollak andakovsky (2009b), who
showed that the solution is the multi-cyclic SR procedurealguing that STADD() =
RIADD(T) defined in[[(I2). This suggests that the optimal solutiomefdroblem of multi-
cyclic change-point detection in a stationary regime is gletely equivalent to the solution
of the generalized Bayesian problem. The exact resulttedia the next section.

4. Optimality Properties of the Shiryaev—Roberts Detectia Procedure

From now on we will confine ourselves to the iid scendrio (2), assume that) the obser-
vations{X,}n>1 are independent throughout their history, dmdy,..., X, are distributed
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according to a common known pd{x) and X,,1, X,2, ... are distributed according to a
common pdig(x) = f(x), also known.

Let Hy: v = kfor 0 < k < o0 andH,,: v = oo be, respectively, the hypotheses that the
change takes place at the time moment k, k > 0, and that no change ever occurs. The
densities of the sampl&] = (Xy,..., Xy), n > 1 under these hypotheses are given by

n

1) [ ] ax)) fork<n,

k
P(XTIHe) =
=1 j=k+1

n
f(X;), and p(X}lHy) =
i=1

and p(X{IH.) = p(X}|Hy) for k > n, so that the corresponding LR is

P(X71Hk) A
Aﬁz—z Aj for k< n,

whereAn = g(Xn)/ f(Xp) is the “instantaneous” LR for theth observatiornX,.

To decide in favor of one of the hypothesk& or H.,, the likelihood ratios are “fed”
to an appropriate sequential detection procedure, whiahasen according to the par-
ticular version of the optimization problem. In this seatiwe are interested in the gen-
eralized Bayesian problerh {14) and in the multi-cyclic diles detection in a stationary
regime [(18). We have already remarked that for the iid mdueBR procedure solves both
of these problems. We preface the presentation of the easalts with the introduction of
the SR procedure.

The SR procedure is due to the independent work of Shirya@®1(11963) and that
of Roberts|(1966). Specifically, Shiryaev considered tlublem of detecting a change in
the drift of a Brownian motion; Roberts focused on the cas#etdcting a shift in the mean
of an iid Gaussian sequence. The name “Shiryaev—Roberts’'taiaed by Pollak (1985).
See Pollak (2009) for a brief account of the SR procedurstohy.

Formally, the SR procedure is defined as the stopping time

Sa=infin>1: R, = A}, (19)
whereA > 0 is the detection threshold, and
Ri=(Q+Ri1)An n>1 with Rp=0 (20)

is the SR detection statistic. As usual, we setdnf= o, i.e.,Sa = = if R, hever crosses
A

Recall first thatR, = limp_o Ry p, WhereR, , is the Shiryaev statistic given by recur-
sion [10). Recall also that the limiting relatioris J(11) holthese allow us to conjecture
that the SR procedure is optimal in the generalized Bayesase. In addition, since the
RIADD is equal to the STADD of the multi-cyclic proceduregthepeated SR procedure
should be optimal for detecting distant changes. The exscitris given next.

Theorem 1 (Pollak and Tartakovsky, 2009b). et S be the SR procedure defined @g)
and (20). Suppose the detection threshole=Ad, is selected from the equatid,[Sa ] =
v, wherey > 1is the desired level of the ARL to false alarm.

(i) Then the SR procedu®s, minimizesRIADD(T) = 32 Ex[(T — K)*]/ E[T] over
all stopping times T that satisB[T] > v, i.e.,RIADD(Sa,) = infrea(,) RIADD(T)
for everyy > 1.

(i) SinceRIADD(T) = STADD(T) for any stopping time T, the SR procedg, mini-
mizes the stationary average detection delay among alli+oyidtic procedures in the
classA(y), i.e., STADD(Sa,) = infrea) STADD(T) for everyy > 1.
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Itis worth noting that the ARL to false alarm of the SR procedsatisfies the inequality
Eo[Sa] = Afor all A > 0, which can be easily obtained by noticing tiRat— n is aP.-
martingale with mean zero. Also, asymptotically fas»> ), E[Sa] = A/, where the
constant 0< ¢ < 1is given by[(28) below (see Pollak, 1987). Hence, setting ¢ yields
Ew[Sa,] =y, asy — co.

5. Optimal and Nearly Optimal Minimax Detection Procedures

In this section, we will be concerned exclusively with thenimiax problem in Pollak’s
setting [16), assuming that the change-peiig deterministic unknown. As of today, this
problem is not solved in general. As has been indicatedegathie usual way around
this is to consider it asymptotically by allowing the ARL talde alarmy — oo. The
hope is to design such proceduré € A(y) that SADD({T*) and the (unknown) optimum
infrea) SADD(T) will be in some sense “close” to each other in the limit,yas> co.
To this end, the following three different types of asymiataptimality are usually distin-
guished.

Definition 1 (First-Order Asymptotic Optimality) A procedureT* € A(y) is said to be
first-order asymptoticallyptimal in the clasd(y) if SADD(T*) = infrea,) SADD(T)[1 +
0(1)], asy — oo, where from now omm(1) — 0, asy — co.

Definition 2 (Second-Order Asymptotic OptimalityA procedureT* € A(y) is said to be
second-order asymptoticalpptimal in the clasa(y) if SADD(T*) —infrea) SADD(T) =
0O(1), asy — oo, whereO(1) stays bounded, gs— oo.

Definition 3 (Third-Order Asymptotic Optimality) A procedureT* € A(y) is said to be
third-order asymptoticallyoptimal in the clasa(y) if SADD(T*) — infrea) SADD(T) =
0o(1), asy — oo.

5.1 The Shiryaev—Roberts—Pollak procedure

The question of what procedure minimizes Pollak’'s meastidetection delay SADDY)
is an open issue. As an attempt to resolve the issue, Pol@8&}Iproposed to “tweak”
the SR proceduré (19). This led to the new procedure that Weefer to as the Shiryaev—
Roberts—Pollak (SRP) procedure. To facilitate the prediemt of the latter, we first explain
the heuristics.

As known from the general decision theory (see, e.g., Fergui967, Theorem 2.11.3),
an Fp-adapted stopping tim& solves [(16) if @) T is an extended Bayes rulb) it is an
equalizer, ana) it satisfies the false alarm constraint with equality. Agqadure is said
to be an equalizer if its conditional risk (which we measum@tghE,[T — v[T > v]) is
constant for alv > 0, that is,Eo[T] = E,[T —v|T > v] forall v > 1. Of the three conditions
the one that requireF to be an equalizer poses the most challenge. Pollak |(198% op
with an elegant solution.

It turns out that the sequen@[Sa — vISa > v] indexed byv eventuallystabilizes
i.e., it remains the same for all sufficiently largeThis happens because the SR detection
statistic enters the quasi-stationary mode, which meaatsthie conditional distribution
Po(Ry < XISa > n) no longer changes with time. If one could get to the quadiestary
mode immediately, then the resulting procedure would hlaeesame expected conditional
detection delay for al¥ > 0, i.e., it would be the equalizer. Thus, Pollak’s (1985 rideas
to start the SR detection statistiR,}n-0, defined in[(2D), not from zerdzj = 0), but from
arandom poinRy = Rg, whereRég is sampled from thguasi-stationary distributiomf the
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SR statistic under the hypothestf,, (which is a Markov Harris-recurrent process under
H..). Specifically, the quasi-stationary cdda(x), is defined as

Qa(x) = r!im Peo(Ry < X Sa > n). (21)
Therefore, the SRP procedure is defined as the stopping time
SQ =infin>1: RY > A, (22)
whereA > 0 is a detection threshold, and

RY=(1+R)An n>1 RY~Qa(X (23)

is the detection statistic.

We reiterate that, by design, the SRP procedurk (22Yandq28)equalizer: it delivers
the same conditional average detection delay for any chpaige v > 0, that is,Eo[S/?] =
E,[SY - vISY > v] for all v > 1. [Pollak (1985) was able to demonstrate that the SRP
procedure is third-order asymptotically optimal with respto SADD{). We now state
his result.

Theorem 2 (Pollak,11985) Let Eg[(log A1)"] < . Suppose the detection threshold, A,
of the SRP proceduresy, is set to the solution, A of the equatiorEw[SSJ = y. Then

SADD(Sg) = infreay) SADD(T) + 0(1), asy — co.

Recently, Tartakovsky et al. (2012) proved tlﬁatsg] = (1/D[log A+ x — C] + 0(1),
asA — oo, providedEq[log A1]? < oo, wherex is the limiting average overshoot in the one-
sided sequential test, which is a subject of renewal thesmg, (e.g.. Woodroofe, 1982), and
Cw is a constant that can be computed numerically (e.g., by &@arlo simulations).
Bothx andC,, are formally defined in the next subsection, where we rd#eitze exact
result of Tartakovsky et al. (2012).

Note that for sufficiently large,

A
EolSS) ~ (A/0) - g, Where i = fo ydQu(y). (24)

i.e., ug is the mean of the quasi-stationary distribution, grisla constant defined in_(28)
below. This approximation can be obtained by first noticinagt tfor a fixedR(()g = r the
processR,? —r —nis a zero-mearP.-martingale, and then applying optional sampling
theorem to this martingale as well as a renewal theoretigraemgt (cf. Tartakovsky et al.,
2012).

5.2 The Shiryaev—Roberts+ procedure

Though the SRP procedure is practically appealing due thiitd-order asymptotic opti-
mality, it requires the knowledge of the quasi-stationasgribution [21) to implement. Itis
rare that this distribution can be expressed in a closed;ffmnexamples where this is pos-
sible, see, e.g., Pollak (1985), Mevorach and Pollak (192&lunchenko and Tartakovsky
(2010) and Tartakovsky and Polunchenko (2010). As a rethdtSRP procedure has not
been used in practice.

To make the SRP procedure practical, Moustakides! et al1j2@bposed a numerical
framework. More importantly, Moustakides ef al. (2011)eoéd numerical evidence that
there exist procedures that are uniformly better than the @RRcedure. Specifically, they
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regard starting off the original SR procedure at a fixed (pec&lly designedRy =r, 0 <

r < A, and defining the stopping time with this new deterministitialization. Because of

the importance of the starting point, they dubbed their @doce the SR—procedure.
Formally, the SRrprocedure is defined as the stopping time

Sh=infin>1: R, > A}, (25)
whereA > 0 is the detection threshold, and
RL=(1+R[1_1)An, n>1 with R{)=r>0 (26)

is the SR+ detection statistic.

Moustakides et all (2011) show numerically that for centailues of the starting point,
Ry = r, apparentlyE,[S), — VIS, > v]is strictly less tharEV[S/?2 - v|s,‘32 > y] for all
v = 0, whereA; andA; are such thale[SAl] = Ew[S(Agz] (although the maximal expected
delay is only slightly smaller foskl).

It turns out that using the ideas|of Moustakides ét al. (2@dd are able to design the
initialization pointr = r(y) in the SR+ procedure[(25) so that this procedure is also third-
order asymptotically optimal. In this respect, the averdghly to detection at infinity
ADD(S}) = lim, . E,[S}, — v|S}, > v] plays the critical role. The following theorem,
whose proof can be found lin Polunchenko and Tartakovsky(R@d important.

Theorem 3. Let S), be defined as iif25) and (26), and let A= A, be selected so that
EM[S;W] =v. Then, foreveryr > 0,

rELS) 1+ S Bl(S), — )]
r+ Ew[SrAy]

(inf SADD(T) > = J8(Sh)- (27)

Note thaf Theorem|3 suggests that i€an be chosen so that the SRprocedure is
an equalizer (i.eEo[S}] = E,[S}, — vIS), > v] for all v > 0), then it isexactlyoptimal.
This is because the right-hand side[inl(27) is equadas’,], which, in turn, is equal to
sup E,[S), - IS}, > v] = SADD(S},). Therefore, we have the following corollary.

Corollary. Let A= A, be selected so thﬁw[Sky] = y. Assume that & r(y) is chosen in

such a way that the SR—r procedu&?%yy) is an equalizer. Then it is strictly minimax in the
classA(y), i.e.,infrca) SADD(T) = SADD(SrA(j)).

Polunchenko and Tartakovsky (2010) and Tartakovsky andriébenko [(2010) used
this Corollary to prove that the SRprocedure with a specially designee: ra is strictly
optimal for two specific models. In general, Moustakides.22911) conjecture that the
SR~ procedure is third-order asymptotically minimax, and dkot/sky et al. (2012) show
that this conjecture is true. We will state the exact redtdirave introduce some additional
notation.

Let S, = logA1+--- + logAp and, fora > 0, introduce the one-sided stopping time
Ta = inf{n > 1: S, > a}. Letka = S;, — a be an overshoot (excess over the leaelt
stopping), and let

% = lim Bolks], ¢ = lim Eo[e™]. (28)

The constantsce > 0 and 0< ¢ < 1 depend on the model and can be computed
numerically. Letl = Eg[log A1] denote the Kullback—Leibler information number, and
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letV,, = Z‘j";l e Si. Also, letR,, be a random variable that has the-limiting (stationary)
distribution ofR,, asn — oo, i.€.,QsT(X) = lIMn_e Poo(Rn < X) = Poo(Re < X). Let

Co = E[log(1 + Ry + \700)] = fom fom log(1+ x+Yy)dQst(X) dQ(y),

whereQ(y) = Po(Veo < V).

Theorem 4(Tartakovsky et &l., 2012) etEo[log A1]? < oo and letlog A1 be non-arithmetic.
Then the following assertions hold.

(1) infrea) SADD(T) > (1/1)[log(yd) + % — Co] + 0(1), asy — co.
(i) Foranyr> 0,

ADD(S)) = EO[SS] = %(IogA+ % —Cux)+0(1), as A— co. (29)

(i) Furthermore, if in the SR—r procedure A A, = y{ and the initialization point
r = o(y) is selected so tha&8ADD(S),) = ADD(S}), thenE.[S,] = y(1+0(1)) and
SADD(S}) = (1/D[log(y{) + % — Co] + 0(1), asy — co.

Hence, the SR—r procedure is third-order asymptoticallgioal.

Also,
ADD(S})) = %[Iog A+x-C(r] +o(1), as A — oo, (30)

whereC(r) = E[log(1 + r + V). As we mentioned above, it is desirable to make the
SR~ procedure to look like equalizer by choosing the head stavhich can be achieved
by equalizing ADR and ADD,,. Comparing[(ZB) and (30) we see that this property ap-
proximately holds whem is selected from the equatidd(r*) = C.. This shows that
asymptotically (ag — o) the “optimal” valuer* is a fixed number that does not depend
onvy. Clearly, this observation is important since it allows aglesign the initialization
point effectively and make the resulting procedure appnately optimal.

It is worth mentioning that SADIXA) = ADDg(Sa) = (1/1)[log A+ % — C(0)] + o(1),
asA — oo, is true for the conventional SR procedure that starts freno.z Therefore,
the SR procedure is only second-order asymptotically agtinfror sufficiently largey,
the difference between the supremum ADD-s of the SR proeeaiud the optimized SR—
is given by C(0) — C.)/I, which can be quite large if the Kullback—Leibler infornuati
numberl is small.

Note that similar to[(24), for sufﬁcie~ntly large we haveE.[S,] ~ (A/{) —r. Foran
example where distribution®st(x) and Q(x) and the constants, ¢, C.,, andC(r) can be
computed analytically see Polunchenko and TartakovskyP0
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