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Abstract 
For concentration measurements, the detection limit (DL) is a small concentration below 
which, due to measurement error, a measurement is not statistically different from zero. 
Non-detects are measurements reported as below the detection limit (e.g., < 5), resulting 
in censored data. In many situations, the measurement distribution can be described as 
the sum of a lognormal distributed concentration and a normally distributed measurement 
error. The data may be modeled by replacing the non-detects by substitute values, such as 
DL/2, or using survival analysis assuming a lognormal distribution. Environmental time-
series can often be approximated by an AR(1) time-series model for the log-transformed 
concentrations. However, time series models do not account for non-detects. Bayesian 
procedures provide adequate flexibility to fit time-series models to data with non-detects, 
whether assuming the concentration distribution is lognormal or the sum of a normal and 
lognormal distribution. This paper illustrates a Bayesian approach to fit water pollution 
data with non-detects and provides simulation results comparing the Bayesian fit to some 
simpler approximations. 
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1. Introduction 
 
Environmental time-series, such as pollutant concentrations in water treatment effluent, 
may be serially correlated and can often be approximated by an AR(1) time-series model 
for the log-transformed concentrations. However, some concentrations may be reported 
as less than the detection (or reporting) limit for the measurement process (i.e., non-
detects, e.g., < 5), resulting in censored data. For establishing water treatment effluent 
limitations, EPA needs to model the distribution of the pollutant concentrations including 
estimating the serial correlation. This paper illustrates a Bayesian approach to estimate 
the serial correlation in water pollution data with non-detects and provides simulation 
results comparing the Bayesian fit to some simpler approximations. 
 
Standard time-series and survival models do not estimate serial correlation adjusted for 
censoring. Naïve approaches such as replacing the non-detect by half the detection limit 
tend to give biased estimates of parameters. Several approaches to this problem have 
been suggested including full likelihood estimation (Zeger and Brookmeyer, 1986), 
imputation based on maximum likelihood (Park, Genton, and Ghosh, 2007), and multiple 
imputation based on a Bayesian approach (Hopke, Liu & Rubin, 2001). This paper 
investigates Bayesian options for fitting an AR(1) model to serially correlated 
concentration data with non-detects. All computation was done using SAS/STAT® 
software. 
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1.1 Serial Correlation 
Assume N normally distributed observations (𝑌𝑖 , such as log-transformed effluent 
concentrations) collected over time: (𝑌𝑖 18T, 𝑇𝑖, 18T i = 1 to N). The time difference between 
observations is: Δ𝑖 = 𝑇𝑖 − 𝑇𝑖−1 . Let ∅  (Phi) be the correlation between observations 
separated by one time unit. Then the AR(1) model, can be represented as: 
 

𝛿0~𝑁(𝜇,𝜎𝑌2); Δ1 = 1 
𝜇𝑖 = 𝜇 + ∅Δ𝑖𝛿𝑖−1 

𝑌𝑖~𝑁�𝜇𝑖 ,𝜎𝑌2�1 − ∅2Δ𝑖�� 
𝛿𝑖 = 𝑌𝑖 − 𝜇. 

 
Although more complicated correlation patterns can be modeled, the AR(1) model 
provides a good first order approximation for many concentration time series for which 
measurements close together in time are more similar than observations farther apart in 
time.  
 
1.2 Measurement Error 
Environmental concentration measurements (𝑋𝑖) might be approximated by a log-normal 
distribution for the true concentrations with two additional measurement error 
components: 1) an error with constant CV; and 2) an error with constant variance. These 
errors can be modeled by 𝑚𝑖 and 𝑒𝑖 (both normally distributed) where: 
 

𝑋𝑖 = 𝑒𝑥𝑝(𝑌𝑖 +𝑚𝑖) + 𝑒𝑖. 
 
Without duplicate or QC measurements, the variances of 𝑚𝑖 and 𝑌𝑖 cannot be estimated 
independently. This paper assumes that either 1) the variance of 𝑚𝑖 is ignorable, or 2) the 
serial correlation of 𝑌𝑖 +𝑚𝑖 is to be estimated by an AR(1) model. Thus, assume: 
 

𝑋𝑖 = 𝑒𝑥𝑝(𝑌𝑖) + 𝑒𝑖,   𝑒𝑖~𝑁(0,𝜎𝑒2). 
 
The distribution of 𝑋𝑖 will be referred to as the Normal+Lognormal (NLN) distribution. 
The additive measurement error spreads out the lognormal distribution ( 𝑒𝑥𝑝(𝑌𝑖) ), 
resulting in possibly negative concentration estimates for 𝑋𝑖, as illustrated in Figure 1. 
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Figure 1: Example lognormal and NLN distribution 
 
1.3 Detection Limits and Censoring by the Analytical Laboratory 
The detection limit (DL) is a small concentration below which a measurement is not 
reliably different from zero. Detection limits may differ by sample. For some 
measurements, the detection limit is defined as M (perhaps 3 or 10) times the standard 
deviation of replicate QC measurements with zero or very low concentrations, i.e., 
𝐷𝐿 ≅ 𝑀𝜎𝑒. For each measurement, the lab reports if the concentration is censored (𝐶𝑖) 
and reports a value, either the measured concentration or the sample specific detection 
limit (𝐷𝐿𝑖). The data available for analysis are: 𝐶𝑖,𝐷𝑖, and 𝑇𝑖, 𝑖 = 1 𝑡𝑜 𝑁. 
 

𝐶𝑖 = �1 𝑖𝑓 𝑋𝑖 < 𝐷𝐿𝑖
0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝐷𝑖 = �𝐷𝐿𝑖 𝑖𝑓 𝐶𝑖 = 1
𝑋𝑖 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. 

 
1.4 Handling Non-Detects  
When not using survival analysis, non-detects may be replaced by a substitute value (𝑆𝑖) 
between zero and the detection limit, such as 𝐷𝐿𝑖 2⁄ , 𝐷𝐿𝑖 √2⁄ , or 𝐷𝐿𝑖. The adjusted data 
are analyzed using standard statistical procedures. However, the analysis results may be 
sensitive to the choice of substitute value, particularly if there are many non-detects.  
 
When using substitute values for non-detects, the data for analysis are: 𝑍𝑖  and 𝑇𝑖, 𝑖 =
1 𝑡𝑜 𝑁 where: 
 

𝑍𝑖 = �𝑆𝑖 𝑖𝑓 𝐶𝑖 = 1
𝑋𝑖 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. 

 
The choice of substitute value may depend on the distribution of the data. The substitute 
value can be described by a percentile (P) within the distribution of the non-detects. The 
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example in Figure 2 shows the distribution of the detected values in blue, the distribution 
of the non-detects in red, and P corresponding to various possible substitute values. 
 

 
Figure 2: Example: Substitute value defined by percentiles within the non-detect 
distribution. 
 
1.5 Serial Correlation Estimates Using Substitute Values 
If a substitute value (defined by P) is to be used for non-detects, the best choice for P 
depends on the parameter being estimated. A roughly unbiased estimate of the mean log-
transformed concentration can be achieved with P approximately equal to 0.45. An 
unbiased estimate of the standard deviation requires a lower P. When estimating the serial 
correlation, the estimation bias is relatively insensitive to the choice of P, as illustrated in 
Figure 3. The serial correlation estimates are generally lower than the true values, with 
increasing bias associated with high correlations and lower sample sizes. Figure 3 shows 
the mean estimate of serial correlation for N = 60 using 800 simulated data sets with ∅ 
equal to 0, .4, or .8 and 0%, 30%, or 60% non-detects. Note that, for N = 60, the 
maximum likelihood estimate of the serial correlation is biased low even when the true 
correlation is zero. This bias goes to zero as the sample size increases.  
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Figure 3: Mean phi estimate versus P, by true phi and percentage of non-detects (800 
simulated data sets with N = 60 for each combination of parameters). 
 
For the simulations above, substitute values were based on P and the known distribution 
of the data. Given field data, the parameters of the distribution must be estimated from 
the data.  
 

2. Simulations 
 
Simulations were used to evaluate five models for estimating serial correlation using 
seven different data distributions, three serial correlations, and three sample sizes. This 
section describes the models and parameters. 
 
2.1 Models 
Table 1 provides details of the five models, designated: ARIMA AR(1), BayesianNLN, 
BayesianNLN|DL, BayesianLN, and BayesianLN|P. The tilde notation defines the 
likelihood for the data.   
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Table 1: Models for fitting an AR(1) model to environmental measurements with non-detects 
 
ARIMA AR (1)  

Use survival analysis to estimate the mean 
and standard deviation of 𝑌𝑖 assuming ∅ = 0 
(using the SAS LIFEREG procedure). 

�
𝑌𝑖~𝑁(𝜇𝑁,𝜎𝑁2) 𝐶𝑖 = 0

𝐶𝑖~𝐵𝑖𝑛𝑎𝑟𝑦�∅(𝐿𝑛(𝐷𝐿), 𝜇𝑁,𝜎𝑁2)� 𝐶𝑖 = 1
 

Replace non-detects by the estimated 
median (P=0.5) of the non-detects, creating 
𝑍𝑖 . 

�
𝑍𝑖 = 𝑌𝑖 𝐶𝑖 = 0

𝑍𝑖 = Φ−1(𝑃 ∗ Φ(𝐿𝑛(𝐷𝐿𝑖), 𝜇𝑁 ,𝜎𝑁2), 𝜇𝑁 ,𝜎𝑁2) 𝐶𝑖 = 1 

Using 𝑍𝑖 , estimate ∅  using time series 
models (using the SAS AUTOREG 
procedure). 

𝛿0~𝑁(𝜇,𝜎𝑍2);  Δ1 = 1 
𝜇𝑖 = 𝜇 + ∅Δ𝑖𝛿𝑖−1 

𝑍𝑖~𝑁 �𝜇𝑖 ,𝜎𝑌2(1 − ∅2Δ𝑖)� 

𝛿𝑖 = 𝑍𝑖 − 𝜇 
BayesianNLN  

Fit the NLN distribution, estimating the 
parameters (𝜇,𝜎𝑌2,∅,𝜎𝑒2) and imputing 𝛿0,𝑌𝑖, 
and the non-detects. The model has an 
equation for 𝑌𝑖, 𝑋𝑖|𝑌𝑖 , and 𝐶𝑖|𝑋𝑖 ,𝑌𝑖 .  

𝛿0~𝑁(𝜇,𝜎𝑌2);  Δ1 = 1 
𝜇𝑖 = 𝜇 + ∅Δ𝑖𝛿𝑖−1 

𝑌𝑖~𝑁 �𝜇𝑖 ,𝜎𝑌2(1 − ∅2Δ𝑖)� 

𝛿𝑖 = 𝑌𝑖 − 𝜇 
𝑋𝑖|𝑌𝑖~𝑁(𝑒𝑥𝑝(𝑌𝑖),𝜎𝑒2) 

𝐶𝑖|𝑋𝑖 ,𝑌𝑖~𝐵𝑖𝑛𝑎𝑟𝑦(𝑋𝑖 < 𝐷𝐿𝑖) 
BayesianNLN|DL  

Assume the detection limit was defined as 
𝐷𝐿 = 𝑀𝜎𝑒 , removing one parameter from 
the BayesianNLN model. 

Above with: 

𝑋𝑖|𝑌𝑖~𝑁 �𝑒𝑥𝑝(𝑌𝑖),
𝐷𝐿𝑖
𝑀
� 

BayesianLN  

Assume a lognormal distribution, 𝜎𝑒 = 0 , 
removing one parameter from the 
BayesianNLN model and removing the 
requirement to impute 𝑌𝑖. 

Above with: 
𝑋𝑖|𝑌𝑖 = 𝑒𝑥𝑝(𝑌𝑖) 

BayesianLN|P  

Assume a lognormal distribution, use the 
likelihood function from survival analysis, 
which does not require imputation of the 
non-detects. However, if the previous 
observation is a non-detect, use a substitute 
value (using P = .5) calculated using all of 
the parameters estimates. 

𝛿0~𝑁(𝜇,𝜎𝑌2);  Δ1 = 1 
𝜇𝑖 = 𝜇 + ∅Δ𝑖𝛿𝑖−1 
𝜎𝑎𝑖
2 = 𝜎𝑌2(1 − ∅2Δ𝑖) 

𝑃𝐷𝐿 = Φ�𝐿𝑛(𝐷𝐿1), 𝜇𝑖 ,𝜎𝑎𝑖
2 � 

�
𝑌𝑖~𝑁�𝜇𝑡,𝜎𝑎𝑖

2 � 𝐶𝑖 = 0
𝐶𝑖~𝐵𝑖𝑛𝑎𝑟𝑦(𝑃𝐷𝐿) 𝐶𝑖 = 1

 

�
𝛿𝑖 = 𝑌𝑖 − 𝜇 𝐶𝑖 = 0

𝛿𝑖 = Φ−1�𝑃 ∗ 𝑃𝐷𝐿 , 𝜇𝑖 ,𝜎𝑎𝑖
2 � − 𝜇 𝐶𝑖 = 1 

 
Note: the Bayesian models impute the missing values by modeling both the data and the 
mechanism creating the missing values. Bayesian models were fit using the SAS MCMC 
procedure. 
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2.1.1 Data Distributions 
Data was simulated from seven distributions with either 0%, 30%, or 60% of the 
observations below the detection limit. Figures 4 and 5 show the distributions. All plots 
use the same scales. 
 
Figure 4 shows the three lognormal distributions. The shaded portion of the distribution 
indicates the detected values. The models that assume the data has a lognormal 
distribution without additional measurement error (BayesianLN, BayesianLN|P, and 
ARIMA AR (1)) were fit using simulated data from these distributions.  
 

 
Figure 4: Lognormal distributions used for the simulations. 
 
Figure 5 shows the four NLN distributions with either 30% or 60% non-detects. The 
shaded portion of the distributions indicates the detected values. The gray line shows the 
distribution of the lognormal data before adding normally distributed error. The NLN 
distributions were constructed so that the detection limit is three times the standard 
deviation of the normal additive error (M=3). All models were fit to data with these NLN 
distributions.  
 

JSM 2013 - Section on Statistics and the Environment

4113



 
Figure 5: NLN distributions used for the simulations. 
 
2.1.2 Simulation Parameters: 
The simulations used three levels of serial correlation, Phi = 0, .4, and .8, and three 
different sample sizes (30 sequential observations, 100 sequential observations, and 50 
observations spread across 100 time points, i.e., with half of the values missing at 
random). 
 
2.2 Simulation Details: 
The following provides some additional details regarding the simulations and Bayesian 
models: 

• SAS macros were prepared to fit each model; 
• MCMC parameters for variance are 𝐿𝑛(𝜎); 
• The BayesianNLN|DL model assumed 𝑀 = 3, corresponding to the simulated 

data; 
• Uninformative normal priors used for all parameters except for Phi which had a 

uniform [-1,1] prior; 
• For each combination of simulation parameters, the number of simulations was 

set so that the mean effective sample size for posterior estimates was greater than 
300; 

• In rare cases the ARIMA AR (1) procedure did not converge or had numerical 
problems; 

• In rare cases the BayesianNLN|DL procedure had numerical problems; and 
• Probabilities of 0 and 1 were changed to 0.00001 and 0.99999 to avoid numerical 

problems. 
• The number of simulations for each combination of simulation parameters was 

160 for lognormal distributions and 56 for NLN distributions.  
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2.3 Outcome Measures 
For analysis of bias, the estimates of Phi were transformed using Fisher’s Z. Estimates in 
the Z scale were roughly normally distributed.  
 
For each combination of the simulation parameters (model, distribution, percentage of 
non-detects, serial correlation, and sample size), the analysis of precision used the log 
transformed ratio of the pooled standard error of Phi to the standard deviation of Phi 
across simulations.  
 

3. Simulation Results 
 
On the Fisher’s Z scale, the distribution of the serial correlation estimates is relatively 
normally distributed. For the results from the BayesianLN model, boxplots in Figure 6 
illustrate the distribution of the estimated correlation for different values for N, the true 
serial correlation, and percentage of non-detects. The vertical axis scale uses Fisher’s Z 
transformation with the labels showing the corresponding correlation. For N = 100 (the 
red boxplots) the serial correlation estimates are relatively unbiased. However, for N = 
30, the serial correlation estimates are biased low when the correlation is high and the 
percentage of non-detects is high.  
 

 
Figure 6: Boxplots illustrating the distribution of the estimated serial correlation when 
using the BayesianLN model. 
 
3.1 Log-Normally Distributed Data 
For each combination of simulation parameters (model, distribution, percentage of non-
detects, serial correlation, and sample size), the following plot shows the geometric mean 
precision ratio on the vertical axis and the mean bias for Phi (calculated on the Fisher’s Z 
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scale) on the horizontal axis. Separate plots are used for the lognormal and NLN 
distributions. Both plots use the same axis scales. Separate colors are used for each 
model. The ellipses help to show the distribution of the points for each model. For the 
preferred model, the ellipses would be centered close to zero bias on the horizontal axis 
and a ratio of 1.0 on the vertical axis and cover a small area. 
 
Figure 7 shows the results for the models applies to lognormally distributed data. The 
BayesianLN and BayesianLN|P models performed better than the ARIMA AR (1) model, 
based on bias and precision.  
 

 
Figure 7: Bias and precision for serial correlation estimates for models applied to log-
normally distributed data. 
 
3.2 Normal + Log-Normal Data 
Figure 8 show the results for the models applied to data with a NLN distribution. The 
BayesianLN and BayesianLN|P models performed better than the ARIMA AR (1) and 
BayesianNLN|DL models, based on bias and precision. 
 
The BayesianNLN model, which estimates all parameters from the data, had some 
convergence problems when modeling data with no censoring and some negative 
concentrations and had serious convergence problems estimating the variance 
components for the censored data. As a result, results for the BayesianNLN model are not 
shown. 
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Figure 8: Bias and precision for serial correlation estimates for models applied to data 
with a NLN distribution. 
 

4. Discussion and Conclusions 
 
Environmental time-series, such as pollutant concentrations in water treatment effluent, 
may be serially correlated and can often be approximated by an AR(1) time-series model 
for the log-transformed concentrations. However, some concentrations may be reported 
as less than the detection (or reporting) limit for the measurement process (Non-detects, 
e.g., < 5), resulting in censored data. When estimating serial correlation in data series 
with non-detects, there are several possible analysis approaches. This paper looked at 
replacing the non-detects by a substitute value and using standard time series models 
versus using four different Bayesian models. Simulations were used to evaluate the 
performance of the different analysis approaches using data with either a lognormal 
distribution or a lognormal distribution with additional normally distributed measurement 
error (Normal+Lognormal (NLN) distribution). The simulations used different sample 
sizes, serial correlations, and percentages of non-detects. The Bayesian models assumed 
the data had either a lognormal distribution or an NLN distribution.  
 
Across all analysis models and data distributions, serial correlation estimates tend to be 
biased low, with larger bias associated with high serial correlations, higher proportions of 
non-detects, and smaller sample sizes. Serial correlation estimates are reasonably 
normally distributed on the Fisher’s Z scale. The presence of missing values appears to 
make the estimates more variable.  
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If a substitute value is used in conjunction with standard ARIMA models, the estimated 
serial correlation is relatively insensitive to how the substitute value is calculated. For the 
ARIMA AR(1) model, a survival model was run to find a substitute value that was 
consistent with the distribution of the data. The ARIMA procedure could be applied to 
data using a substitute value selected using another procedure. To the extent that the 
correlation estimates are insensitive to the choice of the substitute values, I would expect 
the results to be similar.  
 
The BayesianNLN model assumed an NLN distribution for the concentration 
measurements, imputing both the true unknown concentration and, for the non-detects, 
the measured concentration. The BayesianNLN model had some convergence problems 
when modeling data with no censoring and had serious convergence problems estimating 
the variance components for censored data. However, for some measurement processes, 
the detection limit is defined as a multiple (M) of the standard deviation of the 
measurement error. The BayesianNLN|DL model used the known M and detection limits 
to fit the NLN distribution.  
 
Although the assumptions behind the BayesianNLN|DL model correspond to the 
simulated NLN data, the BayesianNLN|DL model performed poorly compared to the 
simpler Bayesian models for some combinations of the simulation parameters. The poor 
performance of the BayesianNLN|DL model may be due to slower convergence and fixed 
limits on the number of Bayesian simulations.  
 
The BayesianLN model assumed a lognormal distribution for the measured 
concentrations. The BayesianLN|P model also assumed a lognormal distribution for the 
measured concentrations; however, it used the likelihood from survival analysis and 
assumed a substitute value equal to the median of the distribution of the non-detects for 
estimating the serial correlation. The primary difference between the ARIMA AR (1) 
model and the BayesianLN|P model is that the substitute value in the BayesianLN|P 
model depends on the correlation in addition to the other parameters. 
 
The BayesianLN|P and BayesianLN models perform similarly and have less bias than the 
BayesianNLN|DL and ARIMA AR(1) models even when the distribution of the data has 
additional measurement error not explicitly included in the model. The BayesianLN|P 
model converges substantially faster, making it preferable to the BayesianLN model. 
 
Overall, for the simulated distributions, the BayesianLN|P procedure is preferred because 
it provides less biased or similar estimates as other approaches and requires less 
computing time. For all models, the estimates are biased low for higher serial 
correlations, higher proportions of non-detects, and smaller sample sizes.  
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