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Abstract 

This paper proposes a method of two-factor interaction effect detection for the 

generalized linear models. To test whether an interaction effect is significant, a likelihood 

ratio test is used because the traditional ANOVA type test, which is valid for linear 

models with the normality assumption, is not applicable. A likelihood ratio test is to 

compare the log-likelihood values between the full model (two main effects and an 

interaction effect) and the main effects only model. The log-likelihood value for the full 

model can be computed without estimating parameters, but parameter estimation is 

needed to obtain the log-likelihood value for the main effects only model. We propose to 

estimate parameters for the main effects only model under a linear model framework 

using only basic statistics. Since those basic statistics can be computed in a single data 

pass, the new method overcomes the drawback of many data passes needed in the 

traditional parameter estimation process for the generalized linear models. 

Implementation of such tests in a single data pass is important for the large and 

distributed data sources which become increasingly common in practice now. 
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1. Introduction 

 

Business Analysts like to know which factors (or categorical predictors) impact the target 

variable of interest and by how much they impact the target. A linear regression model is 

often used to answer that question. Furthermore, in many business scenarios, the 

interaction between factors is important though often overlooked. The patent application 

publication by Shyr et al. (2012) changes that by proposing an automated report 

discovery method. It is a linear-model-based and scalable process for discovery of a 

multitude of low-dimensional tabular reports exhibiting strong interaction, which 

describes a situation in which the simultaneous influence of two factors on the target is 

not additive. The interaction detection test is a traditional “ANOVA” (analysis of 

variance) method, but the test based on basic statistics will be applied many times to 

accommodate datasets with the large number of factors. 
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However the ANOVA method only works in linear regression models which assume the 

target follows a normal distribution and the linear relationship exists between the target 

and factors, so it won’t work in more general models which have been developed and 

applied to solve many business problems as shown in the following examples. 

 

A software company would like to determine which characteristics of customers will 

affect their decision to buy or not to buy its product, then a logistic regression model will 

be more appropriate because the target (buy or not to buy a product) is binary so a normal 

distribution is not right then Bernoulli distribution is assumed; and the mean of the target 

has to be between 0 and 1 so the linear assumption is not suitable then a function of the 

target mean is assumed to be linearly related to factors which is called a “logit link 

function”.  

 

A car insurance company would like to analyze what factors contribute the most to 

customer’s claim size, then a seasoned analyst knows to fit a gamma regression to 

damage claims for cars because it is more appropriate to the analysis of positive range 

data by using a gamma distribution and an inverse link function to relate the mean of the 

target to a linear combination of the factors. 

 

A shipping company concerns damage to cargo ships caused by waves and would like to 

determine which factors, such as ship types, years of construction, etc., are more prone to 

damage, then the incident counts should be modeled as occurring at a Poisson rate and a 

log-linear model (with a Poisson distribution and a log link function) is usually used. 

 

Many such general models belong to so called “generalized linear models” which were 

first introduced by Nelder and Wedderburn (1972) and later expanded by McCullagh and 

Nelder (1989). The generalized linear model expands the linear regression model so that 

the target variable is linearly related to the predictors via a specified link function. 

Moreover, the model allows for the target to have a non-normal distribution. 

 

Since the ANOVA method is not applicable in generalized linear models, a likelihood 

ratio test can be used to detect interaction. The likelihood ratio test is to compare log-

likelihood values between the full and reduced models. For a two-way interaction, the 

full model includes two factors (also called “main effects”) and an interaction effect 

while the reduced model includes only two main effects. Unfortunately, computation of 

log-likelihood value in the reduced model is an iterative process and requires many data 

passes. It might be tolerable if only one or few tests need to be performed. However, in 

order to apply the automated report discovery method to generalized linear models, it is 

not practical nor efficient to perform interaction detection many times for a large number 

of predictors because number of data passes will be multiplied when multiple interaction 

detection processes are conducted. This tremendous computation cost makes it 

impossible for the application under generalized linear models to handle large and 

distributed data sources. Hence a new efficient method for generalized linear models is 

needed to conduct multiple interaction detection processes based on basic statistics 

between categorical predictors and the target, which can be collected and computed in a 

single data pass.   

 

The rest of sections are arranged as follows: Section 2 introduces the generalized linear 

model and the interaction detection based on log-likelihood ratio test. Log-likelihood 

value computation based on basic statistics is given in Section 3. Section 4 extends the 

JSM 2013 - Social Statistics Section

4083



 

 

two-way interaction method to m-way interaction detection. A conclusion is given in 

Section 5. 

 

2. Generalized Linear Model and Interaction Detection 
 

The multiplicative interaction detection in this paper mainly focuses on the generalized 

linear model. We assume readers understand the concept and terminologies of 

generalized linear models in general, otherwise read McCullagh and Nelder (1989) for 

details. Hence we first give a brief introduction of the generalized linear model then an 

interaction detection process is followed.  

 

A generalized linear model of a target y with a set of predictors X has the form  

 

(E( )) ( ) , ,g g F = y μ Xβ y ~     (1) 

 

where   is the linear predictor; ( )g   is the monotonic differentiable link function which 

states how the expectation of y, Ε( )  y  , is related to the linear predictor ; F is the 

target’s probability distribution. Choosing different combinations of a proper probability 

distribution and a link function can result in different models. The distributions we 

consider here and some commonly used link functions for the specific distributions are 

listed in Table 1. Please note that the combinations will not be limited to the list and the 

method in this paper can be applied to any distribution that belongs to exponential family 

and link function that is monotonic differentiable. However, for the ordinal multinomial 

distribution and its relevant cumulative link functions, the method proposed here cannot 

be extended straightforwardly and some cares are needed. Please contact the authors for 

further details. 

 

Table 1:  Distributions and Some Commonly Used Link Functions 

 

Target distribution Link function 

Normal Identity, Log, Power 

Inverse Gaussian Identity, Log, Power 

Gamma Identity, Log, Power 

Poisson Identity, Log, Power 

Binomial Logit, Probit, Complementary log-log 

Nominal Multinomial Logit 

 

For each pair of categorical predictors, say X1 and X2, we would test whether the 

multiplicative interaction effect 
1 2X X  is significant in the following so called full 

model 
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 1 1 2 2 1 2 3(E( )) +g   = y X β X β X X β    (2) 

 

If the null hypothesis 0 3:H  0β  is not rejected, then the interaction effect 
1 2X X  

should not be considered in the subsequent analyses and it becomes the following so 

called reduced model 

  1 1 2 2(E( )) +g = y X β X β      (3) 

 

Given are data for a target and a set of categorical predictors and some generalized linear 

model information (including the distribution and link function), the log-likelihood ratio 

test can be used to detect the two-way interaction, which can be described as below steps: 

 

1) Compute the log-likelihood value for the full model, denote it as       .  
2) Compute the log-likelihood value for the reduced model, denote it as          .  

3) Compute the likelihood ratio test statistics:                     .  

4) Compute the p-value:             
     , where      

  is a random variable 

that follows a chi-squared distribution with    degrees of freedom, and    is the 

difference of the number of parameters between the full model and the reduced 

model. 

5) If    , where   is a significant level (the default is usually 0.05), then the 

interaction effect 
1 2X X  is significant and it will be included in the subsequent 

analyses.  

 

3. Log-likelihood Value Computation 
 
To compute the log-likelihood value for the reduced model, Equation (3), we need to 

estimate parameters in the reduced model. Since there is no closed form solution unless it 

is a linear model (distribution is normal and link function is identity), the traditional 

method used is the Newton type algorithm which the first derivative (gradient) and/or 

second derivative (Hessian) need to be computed to update the parameters. The process is 

described in the Figure 1. We can see that the method is an iterative process in which 

each iteration means one data pass for computation of gradient and Hessian, so it is not 

practical to use the traditional method for each pair of predictors, in particular for large 

and distributed data sources. To overcome this drawback, this section discusses how to 

use basic statistics to compute log-likelihood values with only one data pass. Therefore, 

in this section, we will discuss how to use basic statistics to compute log-likelihood 

values. Especially, for reduced model, we proposed “recursive marginal mean 

accumulation” which do not need additional data pass. 
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             Figure 1. The traditional Newton Type Method for Log-likelihood Computation 

 

3.1 Basic Statistics Collection 
In this section, basic statistics among the target and each pair of categorical predictors for 

all possible predictors are computed in a single data pass.  

 

For a pair of X1 and X2, Table 2 shows a list of statistics to be collected and computed.  

 
Table 2: Basic Statistics for Target Distribution 

 

Target distribution    Basic statistics 

Normal   , the number of categories for predictor     

  , the number of categories for predictor    

     , the number of records in the combination of      

Inverse Gaussian 

Gamma 

Poisson 
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Binomial and      
      , the target mean in the combination of      and 

     
Nominal Multinomial   , the number of categories for predictor     

  , the number of categories for predictor    

  , the number of categories of target y 

       , the total number of records for the k
th
 target 

category in the combination of      and       
    , the total number of records in the combination of 

     and       
        ,the proportion of the k

th
 target category in the 

combination of      and     , i.e.        

           

 

 3.2 Pseudo Log-Likelihood functions  
In reduced model and full model, there are some terms are the same in their log-

likelihood function. So we exclude these terms from the original log-likelihood function 

and call the resulted function as pseudo log-likelihood functions which are listed in Table 

3. 

Table 3: Target Distribution and Pseudo Log-likelihood Function 

 

Target distribution Pseudo log-likelihood  

Normal    
 

 
               

 
 

   

 

   

 

Inverse Gaussian    
 

 
      

         

   
  

 

   

 

   

 

Gamma                
    

   
 

 

   

 

   

 

Poisson                         

 

   

 

   

 

Binomial 
                                      

 

   

 

   

 

Nominal multinomial                      

 

   

 

   

 

   

 

 

For the full model, the pseudo log-likelihood value will be computed by replacing the 

expectation of y in each cell,     or      , by        or        , respectively.  

 

JSM 2013 - Social Statistics Section

4087



 

 

For the reduced model,     or        will be computed together with parameters estimation 

using the recursive marginal mean accumulation method which is described in section 3.3. 

 

3.3 Recursive Marginal Mean Accumulation Method 
In this sub-section, we proposed a new method called “recursive marginal mean 

accumulation” to compute log-likelihood value for reduced model. The method is a 

doubly iteratively process: updating parameters is iterative and computing parameter 

increments is also iterative. However, the advantage is that it doesn’t need any data pass.   

 

First, we can rewrite the reduced model in Equation (3), for all distributions except 

nominal multinomial (see a note in the end of this sub-section for nominal multinomial) 

based on each category combination of two factors X1 and X2 as follows:  

 

  ( )ij ij i jg     
      

(4)
 

 

where    and    are the parameters for      and     , and can be called “row 

parameter” and “column parameter”, because their increments will be computed by the 

row marginal mean and column marginal mean of a two way table, respectively.  

 

Then the doubly iterative process is described as follows: 

    

(a) Set the initial values of    and    to be 0, for  1, ,  and 1, , ,i R j S  and compute 

initial value of 1( )ij i jg     , see Table 5 for the corresponding inverse forms. 

(b) Compute the initial log-likelihood value by plugging initial values of      into 

formulae in Table 3. 

(c) A     two-way table is created with the elements       and      in each cell, where 

  

    
 

       

     
2 2 3

ij ij ij ijij

ij ij ij ij

ij ij ij ij

V g V gN
w N y

V g V g

   


   

  
   

 
 (5) 

 

And 

   

 1

( ) ( )

ij ii ii

ij

ij ij ij

N y
s

w V g



 


 


      

(6) 

 

and  ijV  is the variance function of the target,  ijV   is the first derivative of 

 ijV  ,  ijg   and  ijg   are the first and second derivatives of the link function, 

 ijg  , respectively. Table 4 lists the variance functions and the corresponding first 

derivatives for distributions except nominal multinomial and Table 5 lists some 

commonly used link functions, the inverse forms and the first and second derivatives.  

 

Table 4: Distribution and Its Variance Function and First Derivative 

 

Distribution V() ( )V   
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Normal 1 0 

Inverse Gaussian 
3  23  

Gamma 2  2  

Poisson   1 

Binomial (1 )   1 2  

 

Table 5: Link function, its inverse forms and first and second derivatives 

 

Link function   g   
Inverse 

 1g   

1
st
 derivative 

 g






   


 

2
nd

 derivative 

 
2

2
g







 


 

Identity      1  0 

Log  ln    exp    
1


  2  

Power(*
)

0

0









 

 ln









 
 

1/

exp









  

1

1











  
2

1








 

Logit ln
1





 
 
 

 
exp( )

1 exp( )




  

 

1

1 
   2 2 1   

Probit 

 1  , where 

 
2 21

2

ze dz








  

 

   

  1

1

 
, 

where

 
2 21

2

zz e




 

  2 1    

Complementary 

log-log 
  ln ln 1    

  1 exp exp  

 

 
   

1

1 ln 1  
   2 1 ln 1   

 

 

(d) Compute the search directions,  and ,i jd d  for row and column parameters, 

iteratively, by the following sub-steps: 

(d-1) Set the initial values of  and i jd d   to be 0. 

(d-2) Update the search direction for row parameter by adding the marginal mean of 

the corresponding row: 

 

i i id d s    ,       (7) 
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where 
is 

 is the weighted marginal mean of ijs  for row , 1, , ,i i R  

 

1

1

.

S

ij ij

j

i S

ij

j

w s

s

w














      

(8) 

 

(d-3) Update the two-way table by subtracting row marginal mean for each row: 

 

.ij ij is s s  
       

(9) 

 

(d-4) Update the search direction for column parameter by adding the marginal mean 

of the corresponding column: 

 

j j jd d s   
      

(10) 

 

where js  is the weighted marginal mean of ijs  for column , 1, , ,j j S  

 

1

1

.

R

ij ij

i
j R

ij

i

w s

s

w












      

(11) 

 

(d-5) Update the two-way table by subtracting column  marginal mean for each 

column: 

 

.ij ij js s s 
       

(12) 

 

(d-6) Check whether the search directions converge by the following criterion 

 

  1max ,i js s    , 

 

where 
1  is a specified tolerance level. If the criterion is not met, go back to (d-

2), otherwise go to (e). 

(e) Update the row and column parameters: 

 

,i i id        and 

,j j jd     
      

(13) 

 

where   is a step length in a line search method. 

(f) Compute the log-likelihood value with the updated mean of the target which is 

computed with the updated parameters. 
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(g) Check whether the parameters converge: the absolute difference of log-likelihood 

values in two successive iterations is less than a specified tolerance level, say 
2 ,  

which can be different from 
1.  

 

If the criterion is not met, go back to (c), otherwise stop and output the final log-

likelihood value. 

Note that for nominal multinomial, computation is more complex with the following 

steps: 

(a) The estimated expectations for each category of the target as 

 

 

 

 

1

1
,

1

1

exp
, 1, , 1,

1 exp

1
,

1 exp

ik jk

K

ik jk

k
ij k

K

ik jk

k

k K

k K

 

 



 









 
  
  


 




 







 

 

(b) The  log-likelihood value as 

 

 , ,

1 1 1

ln
R S K

ij k ij k

i j k

N 
  

  

 

(c) In the     two-way table,       is extended from a scalar to a matrix and and      to 

a vector as  

 

  T

ij ij ij ij ijN diag  w      and  

 1

ij ij ij ij ijN  s w y  , 

 

where  T

,1 ,, ,ij ij ij K   and  T

,1 ,, , .ij ij ij Ky yy  

(d) The search directions,  and ,i jd d   are extended to vectors,  and .i jd d   

The weighted marginal means of ijs  for row , 1, , ,i i R  and for column 

, 1, , ,j j S
 
are extended to vectors: 

1

1 1

S S

i ij ij ij

j j





 

   
     
   
 s w w s

 

and 

1

1 1

,
R R

j ij ij ij

i i





 

   
     
   
 s w w s  respectively. 

(e) The parameters,  and ,i j   are extended to vectors,  and .i j   

 

Figure 2 illustrates the proposed recursive marginal mean accumulation method and it is 

clear the method is a doubly iterative process.  
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Fig 2. The Accumulative Marginal Mean Accumulation Method for Log-likelihood 

Computation 
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4. Extension to m-way Interaction Detection 
 
The two-way interaction detection method that is introduced in previous sections can be 

extended to m-way interaction detection. The full model will contain all main effects, 

two-way interaction effects, …, and  m-way interaction effect, and the reduced model is 

the model that the m-way interaction effect is excluded from the full model. The 

likelihood ratio test is still used to test if an m-way interaction effect is significant. 

Similar to the situation of two-way interaction detection, the basic statistics between the 

target and m categorical predictors are collected firstly. Then the log-likelihood value of 

the full model is computed based on these basic statistics.  For the reduced model, the 

extended recursive marginal mean accumulation method for computation of the log-

likelihood is described as follows: 

 

(a) Set initial parameters corresponding to all main effects, two-way interaction 

effects, … , and (m-1)-way interaction effects to be 0. 

(b) Compute the initial log-likelihood value based on initial parameters. 

(c) Similar to the two-way interaction detection, create an m-way table.  

(d) Compute the search directions iteratively 

(d-1) Set the initial search directions of one-way main effects, two-way interaction 

effects,..., (m-1)-way interaction effects to be 0. 

(d-2) Select one dimension in the m-way table, then update corresponding search 

directions of one-way main effect by adding the marginal means of this 

dimension, and update the m-way table by subtracting the marginal means of 

this dimension. Such process is repeated for other main effects. 

(d-3) Select two dimensions in the m-way table, then update corresponding search 

directions of two-way interaction effect by adding the marginal means of the 

two-dimensional table, and update the m-way table by subtracting the marginal 

means of the two-dimensional table. Such process is repeated for other two-

way interaction 

(d-4) Similar to (d-2) or (d-3), update the search directions from three-way to (m-1)-

way interaction effects. 

(d-5) Check whether the search directions converge: if the maximum absolute 

marginal means is less than a tolerance level. If the criterion is met, then go to 

the step (e), otherwise go back to step (d-2). 

(e) Similar to the step (e) in the two-way interaction detection, update the parameters 

from one-way main effects to (m-1)-way interaction effects. 

(f) Compute the log-likelihood value with the updated mean of the target which is 

computed with the updated parameters. 

(g) Check whether the parameters converge: the absolute difference of log-likelihood 

values in two successive iterations is less than a specified tolerance level. If the 

criterion is not met, go back to (c), otherwise stop and output the final log-likelihood 

value. 
 

5. Conclusion 
 

This paper discussed two-factor interaction effect detection based on log-likelihood ratio 

test in the generalized linear models. To overcome the drawback of traditional method 

that needs many data pass to compute log-likelihood value for reduced model, we 

proposed a method called recursive marginal mean accumulation and extended it to m-
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way interaction detection situation. Since the proposed method is based on basic statistics 

which can be computed in a single data pass, it is very efficient to detect interaction 

effect in large and distributed data source.  
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