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Abstract 

 
Direct measures of teacher effectiveneww such as average class test score or student 
evaluation score are subject to potential measurement biases induced by the teacher or 
school. As a supplement, a bias-free indirect measure of teacher effectiveness would be 
highly desirable. Value-added models (VAM) based on random coefficient regression 
modeling of student test scores provide an indirect measure of the teacher’s effect for a 
given course (or subject) and grade by treating the teacher effect specific to the student as 
random. The effect varies in general with the subject, student characteristics, teacher 
characteristics and school policies. It is averaged to obtain an indirect measure of 
teacher’s overall effect. However, there are several issues such as lack of a standard 
student population resulting in the parameter of interest being confounded with student, 
teacher, and school covariates, conceptual problems in interpreting student’s gain in score 
as a causal effect due to nonrandom assignment, bias in test scores, and instability due to 
small sample size for estimation because of limited class size. We propose an alternative 
“teacher effectiveness index” (TEI)  based on a new construct of latent teacher 
effectiveness (which may represent several behavioral characteristics) introduced 
explicitly in the model as a latent trait or unobserved random covariate (with mean 0 and 
variance 1) which is not dependent on student, teacher, and school level observed 
covariates. It is shown that TEI can overcome several limitations of the existing VAM 
measures. The teacher effect under a new VAM formulation turns out to be a product of 
TEI and a covariate-specific component which is a function of characteristics of school, 
teacher, and students taught by the teacher. The first (TEI) component is free from the 
subject and grade taught by the teacher and can be estimated more precisely because data 
from all students taught by the teacher in the same year regardless of grade and subject 
can be combined. The resulting stable estimate can be used to compare TEI across 
subjects, grades and schools. Moreover, the second component, being free from random 
effects, can then be estimated quite precisely although perhaps with limited utility as it 
remains subject to biases due to assignment and measurement error as in the case of the 
conventional VAM estimate.   
 
Key Words: Common Factor or Latent Trait; Teacher-Induced and School-Induced 
Test Score Biases; Unobserved Covariates; Value Added Models 
 

1. Introduction 
 
The problem of improving the teaching force in America’s public schools has moved to 
the forefront of federal, state, and local policy in recent years. The federal government’s 
‘Race to the Top’ education plan has established financial incentives to state and local 
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educational authorities to base teacher performance evaluations in part on their students’ 
test scores, typically using some measure of student gains from one year to the next to 
estimate the effect of the teacher.  This has led to revisiting a long-standing research 
problem of measuring the effects or value-added (in student’s gain in score) due to 
various factors such as the teacher, the school and the student. The goal is to isolate the 
effect of the teacher factor on students’ performance from the effect of the school factor 
as well as from the effect of the student factor for a given course subject in a given grade 
or year. The teacher factor drives teacher effectiveness in educating students, while the 
school factor (school policies) drives school effectiveness in motivating and allocating 
appropriate resources to both teachers and students, and the student factor drives student 
effectiveness in learning. These factors of teacher, school, and student act as covariates 
and affect student performance outcome measures such as standardized test scores in 
various subjects. The value-added analyses seek to extract from test scores an overall 
teacher’s value-added effect that can be used for identifying high- and low-performing 
teachers. For a review of value-added effects of schools and teachers, see Braun, 
Chudowsky, and Koenig (2010), Braun and Wainer (2007, Ch 27), and McCaffrey et al. 
(2004) among others. 
 
Considerable progress has been made in the last twenty years or so on measuring value-
added effects of teachers by extracting them from student test scores; see the special issue 
of Journal of Educational and Behavioral Statistics (2004). However, there still remains 
controversy among researchers about how to define and measure value-added effects. 
The main reason for this controversy is that the value-added modeling (VAM) philosophy 
holds schools and teachers accountable for student learning. However, due to nonrandom 
assignment of teachers to schools (reflecting local labor markets, linkages between 
teacher preparation programs and districts, and district rules affecting how teachers are 
assigned to schools) and, within schools, the students to teachers (usually reflecting the 
school administration’s beliefs about the most appropriate matches between teachers and 
students), an estimated teacher effect on value-added is subject to selection or assignment 
bias. For this reason, it is difficult to give a causal interpretation of value-added effects of 
teachers without making strong assumptions about ignorability of the above two levels of 
assignment; see the important discussion by Raudenbush (2004). 
 
The purpose of VAM measures is to provide indirect measures of teacher effectiveness as 
a supplement to direct measures such as principals’ classroom observations, average class 
test score or pass rate, or average teacher evaluation score by students. The direct 
measures may not be adequate by themselves because of potential biases; see e.g., 
Barlevy and Neal (2009). These biases include teacher-induced measurement bias due to 
their disingenuous behavior in terms of the possibility of teaching to the test and/or 
diluted versions of the course content taught for favorable evaluation, and school-induced 
selection bias due to nonrandom assignment of teachers to schools and students to 
teachers. In view of these biases it is quite possible that a teacher might be basically 
effective but has a poor relative performance measure simply due to the disingenuous 
behavior of other teachers (e.g., teaching to the test) or less favorable assignment to a 
class consisting of largely low performing or less motivated students. As a supplement to 
the direct measure, it would therefore be desirable to have an indirect measure of teacher 
effectiveness that is not subject to the kinds of bias mentioned above.  
 
There exists literature on VAM that attempts to measure the teacher’s effect on a student 
test score in a given subject and grade by treating the teacher effect specific to a student 
as a random variable; this is introduced via random regression coefficients in the model 
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for the mean test score under a linear mixed model with test score as the dependent 
variable. VAM uses student’s past score and background variables for student, teacher, 
and school as independent variables or covariates. The teacher effect varies in general 
with the subject, grade, student characteristics, and school policies. It is averaged to 
obtain an indirect measure of the teacher’s overall value-added effect. However, there are 
several issues with this indirect measure under VAM as listed below. 
 
First, the underlying teacher effect parameter being estimated by this indirect measure 
may not be particularly meaningful in practice. The reason for this is that a standard 
population of students representing different background and school characteristics that 
could be assigned to the teacher is needed over which the parameter can be defined as the 
average effect on student test scores for a given subject and grade taught by the teacher. 
However, this is not possible due to practical limitations in teacher and student 
assignment. Moreover, it is difficult in general to estimate this parameter with precision 
because of class sizes not being large enough. In addition, the parameter definition is 
confounded in general with the observed covariates used in the model for student, 
teacher, and school corresponding to a given subject and grade; thus making it difficult to 
use this measure for comparison across teachers from different schools, subjects, and 
grades. Second, due to nonrandom assignment of students to teachers, and teachers to 
students, there is also the conceptual problem in interpreting a student’s gain in score as a 
causal effect of the teacher. Third, even if we can assume that given the covariates, the 
assignment mechanism of students to teachers, and teachers to students is ignorable (i.e., 
not subject to selection bias) for VAMs, all the estimated fixed parameters in the VAM 
mean function and variance components are affected by the presence of potential 
measurement bias in the dependent variable as mentioned earlier which implies that the 
VAM indirect measure of teacher effect is also susceptible to measurement bias like the 
direct measure.  
 
In light of the above concerns, we propose a “Teacher Effectiveness Index,” or TEI, 
based on a new construct of latent teacher effectiveness. This measure is an index as it 
may represent several indicators or behavioral characteristics of the teacher. It is 
introduced explicitly in a new VAM formulation as an unobserved random covariate 
standardized with mean 0 and variance 1. The proposed index uses the framework of 
common factor or latent trait models (also a special case of linear mixed models; see 
Skrondal and Rabe-Hesketh, 2004, pp.66) to capture the unobserved heterogeneity; and it 
turns out that the teacher effect measure is now obtained as a product of the proposed TEI 
measure and an adjustment factor depending on the observed characteristics of student, 
teacher, and school.  We observe that the new indirect measure or index by definition is 
not subject to measurement biases in location and scale of the dependent variable because 
of pre-specified values of mean and variance. It is also not subject to problems in causal 
interpretation of gain in score because it is designed to measure the teacher effectiveness 
construct and not the value-added effect.  Moreover, since it is not specific to a given 
subject and grade, it can be estimated more reliably by using test scores of all students in 
different subjects and grades taught by the same teacher in a given year. In addition, since 
by construction it is free from observed characteristics of student, teacher, and school, it 
is suitable for comparison across teachers within and between schools. Thus, the 
proposed TEI measure may be of considerable interest independently of teacher’s value 
added effect and can serve as an effective supplement to the direct measure.  
 
The organization of this paper is as follows. A simple version of the current VAM 
formulation based on random coefficient regression models with a single covariate is first 
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reviewed in Section 2 followed by the proposed new formulation in terms of latent trait 
or common factor models in Section 3. Further comparison of the two formulations is 
considered in Section 4 followed by their generalizations to complex models with 
multiple covariates at student, teacher, and school levels in Section 5. Finally, summary 
and remarks are presented in Section 6. 
 

2. Review of Current VAM Formulation using Simple Models with a Single 
Covariate 

 
Let 𝑦𝑖𝑗𝑘(𝑔)

(𝑎)  denote the standard test score for student i in grade g under teacher j in school 
k for subject ‘a’ which we will also denote simply by 𝑦𝑖𝑗𝑘 after dropping the superscript 
‘a’ and subscript g whenever it is clear from the context. Let 𝑦𝑖𝑗′𝑘′(𝑔′)

(𝑎)  denote the test 
score for the same subject at the end of previous grade 𝑔′ under possibly a different 
teacher 𝑗′ and a different school 𝑘′ which will also be denoted by 𝑥𝑖𝑗𝑘 and that student’s 
grade for the same subject in the previous year-end (i.e., Spring time) is available as a 
pre-test score. We will assume for simplicity that this is the only covariate available. Note 
that use of the prior score 𝑦𝑖𝑗′𝑘′�𝑔′�

(𝑎)  as a covariate is commonly done for longitudinal 
data; see Diggle, Liang, and Zeger (1996). Now a linear regression model incorporating 
teacher and school factor effects to capture the extra variability due to these factors 
(besides heterogeneity captured by the observed covariates) can be defined by including 
fixed teacher-specific (u-factor) and school-specific (v-factor) effects in the regression 
coefficients of intercept and slope as follows. 
 
                 𝑦𝑖𝑗𝑘 = (𝛾0 + 𝑢0𝑗𝑘 + 𝑣0𝑘) + (𝛾1 + 𝑢1𝑗𝑘 + 𝑣1𝑘)𝑥𝑖𝑗𝑘 + 𝜀𝑖𝑗𝑘   (1) 
  =(𝛾0 + 𝛾1𝑥𝑖𝑗𝑘) + (𝑢0𝑗𝑘 + 𝑢1𝑗𝑘𝑥𝑖𝑗𝑘)  + (𝑣0𝑘 + 𝑣1𝑘  𝑥𝑖𝑗𝑘) + 𝜀𝑖𝑗𝑘 
 
where 𝜀𝑖𝑗𝑘~𝑖𝑖𝑑𝑁(0,𝜎𝜀2) , and for parameter identifiability, the constraints  ∑ 𝑢0𝑗𝑘𝑗 = 0 =  
∑ 𝑢0𝑗𝑘𝑗 , and ∑ 𝑣0𝑘𝑘 = 0 = ∑ 𝑣1𝑘𝑘  are imposed. The parameters  𝛾0 and  𝛾1 are the usual 
fixed regression parameters of intercept and slope. With many teachers and schools and 
small class sizes in general, the number of regression parameters in model (1) is too many 
for the purpose of precise estimation. A common way out is to introduce extra 
information by making   u- and v- parameters (or effects) random (see Skrondal and 
Rabe-Hesketh, 2004, pp.50) with prior distributions given by 
 

               �𝑢0𝑗𝑘𝑢1𝑗𝑘
�~𝑖𝑖𝑑𝑁 ��00�, �𝜑00𝜑01

𝜑01
𝜑11

�� ,  �𝑣0𝑘𝑣1𝑘
�~𝑖𝑖𝑑𝑁 ��00�, �𝜓00

𝜓01

𝜓01
𝜓11

��,                   (2) 
 
 where  𝜑 − and 𝜓 −parameters are variance-covariances of random effects u and v 
which are assumed to be independent of each other. The resulting model is a random 
coefficient regression (rcr) model which can also be expressed as a multi-level model 
(Raudenbush and Bryk, 2002, p.85) in terms of new 𝛼 − and 𝛽 − random parameters as 
defined below: 
 

Level 1: 𝑦𝑖𝑗𝑘 = 𝛼0𝑗𝑘 + 𝛼1𝑗𝑘𝑥𝑖𝑗𝑘 + 𝜀𝑖𝑗𝑘                 (3a) 
 

Level 2: 𝛼0𝑗𝑘 = 𝛽0𝑘 + 𝑢0𝑗𝑘  
    𝛼1𝑗𝑘 = 𝛽1𝑘 + 𝑢1𝑗𝑘            (3b) 
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Level 3: 𝛽0𝑘 = 𝛾0 + 𝑣0𝑘  
    𝛽1𝑘 = 𝛾1 + 𝑣1𝑘      (3c) 
 
where the four  original u- and v- random parameters are related to the new random 
parameters via equations   𝑢0𝑗𝑘 = 𝛼0𝑗𝑘 − 𝛽0𝑘, 𝑢1𝑗𝑘 = 𝛼1𝑗𝑘 − 𝛽1𝑘, 𝑣0𝑘 = 𝛽0𝑘 − 𝛾0, and 
𝑣1𝑘 = 𝛽1𝑘 − 𝛾1.  
 
For students taught by the teacher j in school k, the VAM teacher effect under the above 
rcr model is defined as  
 

𝜔𝑗𝑘,𝑡𝑒𝑎𝑐ℎ𝑒𝑟
𝑟𝑐𝑟.𝑣𝑎𝑚 = ∑ (𝑢0𝑗𝑘 + 𝑢1𝑗𝑘𝑥𝑖𝑗𝑘)𝑖 𝑚𝑗𝑘⁄  ,   (4a) 

 
and the VAM school effect for all students and teachers in school k can also be defined 
similarly although it is the teacher effect that is of primary interest, as   
 
                              𝜔𝑘,𝑠𝑐ℎ𝑜𝑜𝑙

𝑟𝑐𝑟.𝑣𝑎𝑚 = ∑ (𝑣0𝑘 + 𝑣1𝑘𝑥𝑖𝑗𝑘)𝑖𝑗 𝑚𝑘⁄    (4b). 
 

where 𝑚𝑗𝑘 is the class size, and 𝑚𝑘 is the school size. Besides depending on fixed 
covariates, the above measure depends on unobserved covariates or random effects which 
in general are specific to student, teacher, and school as well as grade and subject. It 
follows from Appendix I that although random effects can be estimated using best linear 
unbiased prediction (BLUP) theory, their mean square error (MSE) is typically not small 
because of many parameters and not enough observations per parameter. The fixed first 
order parameters (𝛾) and second order parameters (variance and covariance components) 
can be estimated consistently using maximum likelihood or restricted maximum 
likelihood although the latter is usually preferable in practice. Main limitations of VAM 
based on rcr models are listed below. 
 
 (i) There is a conceptual problem in the teacher effect parameter definition under 
VAM because of lack of a standard class; the measure depends on the assignment (or 
sorting) of students to teachers and teachers to schools. As a result, it is difficult to 
employ such a measure to compare teachers across subjects within the same school or 
across schools within the same subject. 
 (ii) The nonrandom assignment of students to teachers and teachers to schools 
makes it difficult to draw any causal inference about teacher’s effect on student’s gain in 
score.  
 (iii) It is subject to measurement biases (teacher-or school-induced) as mentioned 
in the Introduction. The location bias only affects the fixed model intercept but the scale 
bias in the y-variable affects other regression coefficients and random effect variances. 
Also any measurement bias in the x-variable (in particular the previous test score) affects 
all random effects appearing in intercepts and slopes. 
 (iv)There is instability in VAM estimates due to small class size per teacher 
which may vary considerably over years. 
 
As explained in the next Section, the proposed VAM formulation using latent traits or 
common factors (Skrondal and Rabe-Hesketh, 2004, pp. 9, 66) as unobserved covariates 
for teacher ability or effectiveness provides an alternative way of capturing heterogeneity 
in the data. It is shown that the new measure of teacher effectiveness index (TEI) under 
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the proposed VAM formulation termed Behavioral Latent Status Index (blsi) can 
overcome several limitations of the current VAM formulation. 
 

3. Proposed VAM Formulation using Latent Traits 
 
The proposed VAM formulation starts with introducing explicitly in the model a 
hypothetical construct (or latent trait) of teacher ability or effectiveness and another 
construct of school effectiveness as primary parameters of interest. Unlike the teacher 
effect under VAM, it is not a function of student, teacher, and school-specific observed 
covariates. Instead, we define ability or effectiveness index as an unknown function of 
unobserved covariates such as indicators or behavioral characteristics of teacher in terms 
of advance preparation, attitude in interaction with students, and providing inspiration 
and encouragement; and school in terms of providing constructive policies for learning 
and teaching. In principle, there could also be a latent trait for each student representing 
behavioral characteristics such as diligence in homework, discipline, and eagerness to 
learn; see Section 5 for a general formulation. The new constructs are termed behavioral 
latent status indices (BLSI) because they are single measures (or indices) for teachers and 
schools to be interpreted as composite functions of unobserved behavioral characteristics.  
 
The blsi model for VAM can now be defined. Let  𝜃𝑗𝑘 and  𝜂𝑘 denote respectively 
standardized teacher and school effectiveness indices (TEI and SEI for short) with 
independent standard normal distributions; i.e.,  
 

 𝜃𝑗𝑘~𝑖𝑖𝑑𝑁(0,1) ,  𝜂𝑘~𝑖𝑖𝑑𝑁(0,1)    (5) 
 
Then the blsi model is given by  
 

𝑦𝑖𝑗𝑘 = 𝛾0 + 𝛾1𝑥𝑖𝑗𝑘 + 𝜏0 𝜃𝑗𝑘 + 𝜏1𝑥𝑖𝑗𝑘𝜃𝑗𝑘  + 𝜆0 𝜂𝑘 + 𝜆1𝑥𝑖𝑗𝑘  𝜂𝑘 + 𝜀𝑖𝑗𝑘      (6) 
  
where 𝜏0 > 0 and 𝜆0 > 0 are scale adjustment coefficients for standardizing TEI 𝜃𝑗𝑘 and  
SEI 𝜂𝑘 respectively;i.e., they are square roots of the corresponding variances and can be 
interpreted as effects of unobserved covariates –TEI and SEI. The coefficients 𝜏1 and 𝜆1, 
on the other hand, are not scale adjustments because  𝜃𝑗𝑘 and   𝜂𝑘 are already scaled by 
𝜏0 > 0 and 𝜆0 > 0, but are interaction effects between observed and unobserved 
covariates. Equivalently, 𝜏1 𝜏0⁄  can be interpreted as the regression coefficient for the 
interaction between 𝜏0 𝜃𝑗𝑘 and 𝑥𝑖𝑗𝑘 , and similar interpretation for  𝜆1 𝜆0⁄ . 
 
The blsi model can also be expressed as a multi-level model as follows; 
 
    Level 1: 𝑦𝑖𝑗𝑘 = 𝛼0𝑗𝑘 + 𝛼1𝑗𝑘𝑥𝑖𝑗𝑘 + 𝜀𝑖𝑗𝑘                            (7a) 

Level 2: 𝛼0𝑗𝑘 = 𝛽0𝑘 + 𝜏0 𝜃𝑗𝑘        (7b) 
  𝛼1𝑗𝑘 = 𝛽1𝑘 + 𝜏1 𝜃𝑗𝑘 
Level 3: 𝛽0𝑘 = 𝛾0 + 𝜆0 𝜂𝑘                (7c) 

    𝛽1𝑘 = 𝛾1 + 𝜆1 𝜂𝑘 
 

where  �𝜏0𝜃𝑗𝑘𝜏1 𝜃𝑗𝑘
�~𝑖𝑖𝑑𝑁 ��00�, � 𝜏02

𝜏0𝜏1
𝜏0𝜏1
𝜏12
�� , �𝜆0 𝜂𝑘

𝜆1 𝜂𝑘
�~𝑖𝑖𝑑𝑁 ��00�, � 𝜆02

𝜆0𝜆1
𝜆0𝜆1
𝜆12
��            (8) 
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Observe that unlike the covariance structure (2) of rcr models, it follows from (8) that 
under blsi models, the correlation between random errors in the intercept and slope for 
level 2 is one because of the common latent factor 𝜃𝑗𝑘 and similarly for errors at level 3. 
This happens naturally by definition of the common factor or latent trait because given all 
the key covariates (only one in our simple example) are included in the model, the only 
covariates left out are the unobserved TEI  𝜃𝑗𝑘 at level 2 and SEI  𝜂𝑘 at level 3. Therefore 
the corresponding correlations between random errors should be one as expected.  
 
The blsi-vam teacher effect for all students under teacher jk  is given by 
 

𝜔𝑗𝑘,𝑇𝐸𝐼
𝑏𝑙𝑠𝑖.𝑣𝑎𝑚 =  𝜃𝑗𝑘 ∑ (𝜏0 + 𝜏1𝑥𝑖𝑗𝑘)𝑖 𝑚𝑗𝑘⁄                            (9a) 

 
and the blsi-vam school effect for all students and teachers under school k is given by  
 

𝜔𝑘,𝑆𝐸𝐼
𝑏𝑙𝑠𝑖.𝑣𝑎𝑚 =  𝜂𝑘 ∑ (𝜆0 + 𝜆1𝑥𝑖𝑗𝑘)𝑖𝑗 𝑚𝑘⁄ .              (9b) 

 
The blsi-vam measures of teacher and school effects are products of two separate 
components. For example, for the teacher effect, it is a product of TEI and an adjustment 
factor depending on observed covariates and fixed parameters.  Thus, unlike rcr models, 
the adjustment factor is free from random effects and can be estimated consistently 
although it is still subject to bias as in conventional rcr-vam measures. However, the 
estimate of the first component can be made very stable by pooling test score data over 
all subjects and grades taught by the same teacher in the same year rather than just one 
subject and one grade. Moreover, using a time series model such as state space, TEI can 
be connected over years and therefore even more efficient estimates of TEI can be 
obtained.  
 
Although the new blsi-vam measure of teacher effect can be estimated more precisely 
than the conventional rcr-vam measure, it also suffers from measurement and assignment 
biases like rcr-vam does due to the presence of the second component in (9a). However, 
the first component (or TEI) itself provides a new evaluation measure for comparing 
teachers with respect to their teaching ability and not their value-added effect on gain in 
score.  TEI, by definition, is free from nonrandom assignment bias and does not require a 
standard student class for its definition in order to be comparable across teachers and 
schools. The problem of causal interpretation of teacher’s effect on student’s gain in 
score also does not arise because TEI is not designed to measure value-added effect. It 
simply measures the latent teaching ability and therefore provides a fair means to 
compare teachers in terms of their ability or effectiveness. TEI is also free from 
measurement scale bias in test scores (e.g., teach-to-test) because this bias only affects 
the second component in (9a) or the adjustment factor.  In addition, it is free from bias in 
the covariate (such as the previous test score) because it is standardized and so any bias 
present will only affect the scale adjustment factors. Finally, as mentioned earlier, the 
TEI estimate can be made more precise by combining test score data over subjects and 
grades in a given year and over years through longitudinal models.    
 

4. Further Comparison of blsi-vam and rcr-vam Formulations 
 
It is observed that both formulations assume that the postulated model is correct. It would 
be of interest to see what happens if the model assumed is not correct due to missing 
covariates.  In this case, rcr-vam does not measure the teacher effect as desired because 
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the missing covariate affects random intercepts and slopes. For example, consider a 
second covariate 𝑧𝑖𝑗𝑘 and assume for simplicity that the model has only teacher factor 
and no school factor effects. That is, the rcr-vam model is given by  
 
𝑦𝑖𝑗𝑘 = (𝛾0 + 𝛾1𝑥𝑖𝑗𝑘 + 𝛾2𝑧𝑖𝑗𝑘 + 𝛾3𝑥𝑖𝑗𝑘𝑧𝑖𝑗𝑘) +  
  (𝑢0𝑗𝑘 + 𝑢1𝑗𝑘𝑥𝑖𝑗𝑘 + 𝑢2𝑗𝑘𝑧𝑖𝑗𝑘   + 𝑢3𝑗𝑘𝑥𝑖𝑗𝑘𝑧𝑖𝑗𝑘) + 𝜀𝑖𝑗𝑘.  (10) 
 
Now suppose the missing covariate is 𝑧𝑖𝑗𝑘 and let 𝜇𝑖𝑗𝑘(𝑧) denote the conditional mean 
𝐸(𝑧𝑖𝑗𝑘|𝑥𝑖𝑗𝑘) and �̃�𝑖𝑗𝑘 denotes the deviation 𝑧𝑖𝑗𝑘 − 𝜇𝑖𝑗𝑘(𝑧); i.e., the centered covariate. 
Then, the revised rcr model (10) in the presence of the missing covariate is equivalently 
given by 
 

𝑦𝑖𝑗𝑘 = (𝛾0 + 𝛾2𝜇𝑖𝑗𝑘(𝑧)) + �𝛾1 + 𝛾3𝜇𝑖𝑗𝑘(𝑧)�𝑥𝑖𝑗𝑘 + (𝑢0𝑗𝑘 + 𝛾2�̃�𝑖𝑗𝑘) 
     +�𝑢1𝑗𝑘 + 𝛾3�̃�𝑖𝑗𝑘�𝑥𝑖𝑗𝑘  + 𝜀�̃�𝑗𝑘,                 (11) 
where 𝜀�̃�𝑗𝑘 = 𝑢2𝑗𝑘𝑧𝑖𝑗𝑘 + 𝑢3𝑗𝑘𝑥𝑖𝑗𝑘𝑧𝑖𝑗𝑘 + 𝜀𝑖𝑗𝑘. 
 
It easily follows that the rcr-vam measure (4a) does not measure the teacher value-added 
effect because of contamination of random intercept and slope effects of the teacher 
factor by the missing random covariate �̃�𝑖𝑗𝑘. 
 
Interestingly, the proposed blsi-vam model also does not measure TEI-the new parameter 
of interest without bias because of contamination by the missing random covariate �̃�𝑖𝑗𝑘. 
In particular, 𝜏0𝜃𝑗𝑘 is replaced by 𝜏0𝜃𝑗𝑘 + 𝛾2�̃�𝑖𝑗𝑘 and 𝜏1 𝜃𝑗𝑘 is replaced by 𝜏1𝜃𝑗𝑘 +
𝛾3�̃�𝑖𝑗𝑘, so that the correlation between the two is no longer 1 as was the case in the 
covariance structure given by equation (8). Thus both rcr and blsi formulations require 
that all important covariates are included so that any effect due to unobserved covariates 
is mainly due to teacher and school effects. In practice, a natural question arises as to 
which model to use in a particular application. Suppose we have an adequate model in 
that all important covariates are included and the goal is to extract teaching ability or TEI. 
It follows that such a parameter can be explicitly built in the model as a latent trait and 
then the blsi formulation naturally arises. In practice, model diagnostics can be performed 
to check sensitivity of blsi measures if some covariates are dropped based on their 
relative insignificance or subjective considerations. These diagnostics should be 
performed in addition to usual ones for covariate selection and residual analysis. 
 

5. Generalization to Complex Models with Multiple Covariates 
 
Here we consider more comprehensive models under the blsi-vam approach 
incorporating covariates representing background characteristics of student, teacher, and 
school. For simplicity, we consider modeling of test scores for a single subject (e.g., 
mathematics or reading) in a given grade. Generalizations of the model to include scores 
from multiple subjects and grades can also be made. Here, the proposed model is fit with 
two years of data although the structure allows for longitudinal data over several years. 
Now, for each triplet (i, j, k) corresponding to the ith student, jth teacher, and kth school 
for grade g, let 𝑥𝑖𝑗𝑘(𝑔), 𝑥𝑗𝑘(𝑔), and 𝑥𝑘(𝑔) denote respectively the covariates representing 
background characteristics of student, teacher, and school. Examples of teacher’s 
background variables 𝑥𝑗𝑘(𝑔) are years of experience, length of service, position (FTE), 
race, gender; and student background variables 𝑥𝑖𝑗𝑘(𝑔) are race/ethnicity, gender, family 
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structure, and socio-economic status; and school and school district background variables 
𝑥𝑘(𝑔) are characteristics such as pass rate, poverty rate, SAT average, homeless count, 
staff type count, and average teacher salary by experience for each grade g . Here we 
work with only single covariates representing each of student, teacher, and school 
background variables for simplicity. Also let 𝜁𝑖𝑗𝑘 denote PEI (pupil or student 
effectiveness index) besides  𝜃𝑗𝑘 and 𝜂𝑘 denoting TEI and SEI respectively. The outcome 
variable (i.e., the test scores) 𝑦𝑖𝑗𝑘(𝑔)

(𝑎)  for a given subject is expected to depend on 
unobserved covariates or latent traits (𝜁𝑖𝑗𝑘,  𝜃𝑗𝑘 and 𝜂𝑘), observed covariates (𝑥𝑖𝑗𝑘(𝑔), 
𝑥𝑗𝑘(𝑔), and 𝑥𝑘(𝑔)) for each triplet (i, j, k) and their interactions with observed and 
unobserved covariates, as well as on the previous test score 𝑦𝑖𝑗′𝑘′(𝑔′)

(𝑎) . We also assume for 
simplicity that each class is taught by a single teacher for a given subject. 
 
First consider a model consisting of only TEI  𝜃𝑗𝑘. Later we will introduce SEI 𝜂𝑘 and 
PEI 𝜁𝑖𝑗𝑘 also. The BLSI-vam model with TEI analogous to equation (6) is given by  
 

𝑦𝑖𝑗𝑘(𝑔)
(𝑎) = 𝜈𝑖𝑗𝑘(𝑔)

(𝑎) +  𝜃𝑗𝑘ℎ𝑖𝑗𝑘(𝑔)
(𝑎),𝑇𝐸𝐼 +𝜀𝑖𝑗𝑘(𝑔)

(𝑎)  ,                                     (12a) 

where 𝜈𝑖𝑗𝑘(𝑔)
(𝑎) = 𝛾0(𝑔)

(𝑎) + 𝛾1(𝑔)
(𝑎) 𝑦𝑖𝑗′𝑘′�𝑔′�

(𝑎) + 𝛾2(𝑔)
(𝑎) 𝑥𝑖𝑗𝑘(𝑔) + 𝛾3(𝑔)

(𝑎) 𝑥𝑗𝑘(𝑔) + 𝛾4(𝑔)
(𝑎) 𝑥𝑘(𝑔),  

and ℎ𝑖𝑗𝑘(𝑔)
(𝑎),𝑇𝐸𝐼 = 𝜏0(𝑔)

(𝑎) + 𝜏1(𝑔)
(𝑎) 𝑦𝑖𝑗′𝑘′�𝑔′�

(𝑎) + 𝜏2(𝑔)
(𝑎) 𝑥𝑖𝑗𝑘(𝑔) + 𝜏3(𝑔)

(𝑎) 𝑥𝑗𝑘(𝑔) + 𝜏4(𝑔)
(𝑎) 𝑥𝑘(𝑔). 

 
Introducing SEI 𝜂𝑘, we obtain an enlarged model as 
 

𝑦𝑖𝑗𝑘(𝑔)
(𝑎) = 𝜈𝑖𝑗𝑘(𝑔)

(𝑎) +  𝜃𝑗𝑘ℎ𝑖𝑗𝑘(𝑔)
(𝑎),𝑇𝐸𝐼 + 𝜂𝑘ℎ𝑖𝑗𝑘(𝑔)

(𝑎),𝑆𝐸𝐼+𝜀𝑖𝑗𝑘(𝑔)
(𝑎)  ,                 (12b) 

where ℎ𝑖𝑗𝑘(𝑔)
(𝑎),𝑆𝐸𝐼 =  𝜆0(𝑔)

(𝑎) + 𝜆1(𝑔)
(𝑎) 𝑦𝑖𝑗′𝑘′�𝑔′�

(𝑎) + 𝜆2(𝑔)
(𝑎) 𝑥𝑖𝑗𝑘(𝑔) + 𝜆3(𝑔)

(𝑎) 𝑥𝑗𝑘(𝑔) + 𝜆4(𝑔)
(𝑎) 𝑥𝑘(𝑔) 

 
Finally, if we also introduce PEI 𝜁𝑖𝑗𝑘, we get a further enlarged model as 
 
𝑦𝑖𝑗𝑘(𝑔)

(𝑎) = 𝜈𝑖𝑗𝑘(𝑔)
(𝑎) +  𝜃𝑗𝑘ℎ𝑖𝑗𝑘(𝑔)

(𝑎),𝑇𝐸𝐼 + 𝜂𝑘ℎ𝑖𝑗𝑘(𝑔)
(𝑎),𝑆𝐸𝐼  + 𝜁𝑖𝑗𝑘ℎ𝑖𝑗𝑘(𝑔)

(𝑎),𝑃𝐸𝐼 + 𝜀𝑖𝑗𝑘(𝑔)
(𝑎)   ,                 (12c) 

where ℎ𝑖𝑗𝑘(𝑔)
(𝑎),𝑃𝐸𝐼 = 𝜎0(𝑔)

(𝑎) + 𝜎1(𝑔)
(𝑎) 𝑦𝑖𝑗′𝑘′�𝑔′�

(𝑎) + 𝜎2(𝑔)
(𝑎) 𝑥𝑖𝑗𝑘(𝑔) + 𝜎3(𝑔)

(𝑎) 𝑥𝑗𝑘(𝑔) + 𝜎4(𝑔)
(𝑎) 𝑥𝑘(𝑔),  

 
and where 𝛾’s in 𝜈𝑖𝑗𝑘(𝑔)

(𝑎)  are regression coefficients different from those in (6), the 
dimension being the number of observed covariates 𝑥’s, the random factors 𝜁𝑖𝑗𝑘,  𝜃𝑗𝑘 and 
𝜂𝑘, as before, are independent of each other with mean 0 and variance 1, and the model 
errors 𝜀𝑖𝑗𝑘(𝑔)

(𝑎) ’s are independent with mean 0 and constant variance 𝜎𝜀2 for a given g. 
Observe that the model allows for effects of unobserved covariates (BLSI’s) 𝜁𝑖𝑗𝑘,  𝜃𝑗𝑘 and 
𝜂𝑘  on the outcome variable 𝑦𝑖𝑗𝑘(𝑔)

(𝑎)  to vary with the covariates 𝑥’s as captured by the 
𝜎, 𝜆, 𝜏 −coeffcients. Similarly, the 𝛾 −coefficients capture the varying effects of observed 
covariates x’s on the outcome variable.  Using suitable priors and hyperpriors, a 
hierarchical Bayes approach can be easily used to estimate all parameters –fixed and 
random. However, estimates of all random effects lack precision in general, the estimate 
of the factor PEI (𝜁𝑖𝑗𝑘) will be especially unreliable since there is in general only one 
observation or test score per student for a given subject and grade. Incidentally, if we 
were to extend the model to data with several subjects and past years, there would be 
more observations per student for estimation of 𝜁𝑖𝑗𝑘. In this longitudinal set-up, we could 
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still assume that conditional on the previous score 𝑦𝑖𝑗′𝑘′�𝑔′�
(𝑎) ,   𝜀𝑖𝑗𝑘(𝑔)

(𝑎) ’s are uncorrelated 
across years (i.e., across grades g), but the unobserved covariates or random effects 𝜁𝑖𝑗𝑘, 
 𝜃𝑗𝑘 and 𝜂𝑘 are expected to be dependent over years. Modeling dependence of these 
effects over years could be done, for example, using state space models and estimation by 
Kalman filtering. However, for the modeling problem considered here with two 
successive years of data, PEI cannot be estimated well but, in fact, it could be dropped as 
discussed below.  
  
In practice, the factor PEI is typically not of direct interest and could be subsumed within 
the model error. However, with this modified model error 𝛿𝑖𝑗𝑘(𝑔)

(𝑎) (denoting 𝜁𝑖𝑗𝑘ℎ𝑖𝑗𝑘(𝑔)
(𝑎),𝑃𝐸𝐼 + 

𝜀𝑖𝑗𝑘(𝑔)
(𝑎) ), the new model errors in (12c) will no longer be independent of 𝑦𝑖𝑗′𝑘′�𝑔′�

(𝑎)  due to 
correlation between covariates 𝜁𝑖𝑗𝑘 for the same student for two successive years. This 
implies that bias in estimation of parameters might arise due to correlation between the 
covariate 𝑦𝑖𝑗′𝑘′�𝑔′�

(𝑎)  and the new model error 𝛿𝑖𝑗𝑘(𝑔)
(𝑎)  which would require more complex 

estimation strategies. This problem in estimation can be avoided under the assumption of 
a Markovian dependence (likely to hold in practice) between 𝜁𝑖𝑗𝑘’s over years. In 
addition, the 𝜎 −parameters representing interactions of the student latent trait or SEI 
with observed covariates are expected to be very small in the presence of teacher and 
school latent traits, and therefore variance of the new model error 𝛿𝑖𝑗𝑘(𝑔)

(𝑎)  could still be 
assumed to be approximately constant. 
  
The blsi-vam measure from the above model (12c) has a more general form than (9) 
because of more covariates, and is given by  

𝜃𝑗𝑘(𝑔),𝑇𝐸𝐼
(𝑎),𝑏𝑙𝑠𝑖−𝑣𝑎𝑚 =  𝜃𝑗𝑘 �

1

𝑚𝑗𝑘(𝑔)
(𝑎) ∑ ℎ𝑖𝑗𝑘(𝑔)

(𝑎),𝑇𝐸𝐼
𝑖 �   (13) 

where the multiplicative factor  𝜃𝑗𝑘 is free from the confounding effects of student, 
teacher, and school covariates and is common for all subjects and grades taught by the 
teacher in  a given year, and 𝑚𝑗𝑘(𝑔)

(𝑎)  is the class size. 
 
Next we consider a few existing rcr-vam measures under complex models such as 
covariate adjustment models due to Rowan et al. (2002) and variable persistence teacher 
effect models due to McCaffrey et al. (2004), and Mariano et al. (2010) which are 
generalizations of the original constant persistence model of Sanders et al. (1997).  The 
model proposed by Rowan et al. also conditions on the prior score as in the BLSI model 
and works with two years of score data although it could also be defined for multiple 
years. However, it considers only student-level covariates and random intercept (not 
slope) consisting of random teacher 𝑢0𝑗𝑘(𝑔)

(𝑎)  and school 𝑣0𝑘(𝑔)
(𝑎)  effects. More specifically, 

the model of Rowan et al. can be written as  
 
    𝑦𝑖𝑗𝑘(𝑔)

(𝑎) = 𝛾0(𝑔)
(𝑎) + 𝛾1(𝑔)

(𝑎) 𝑥𝑖𝑗𝑘(𝑔) + 𝛾2(𝑔)
(𝑎) 𝑦𝑖𝑗′𝑘′�𝑔′�

(𝑎) + 𝑢0𝑗𝑘(𝑔)
(𝑎) + 𝑣0𝑘(𝑔)

(𝑎) + 𝜀𝑖𝑗𝑘(𝑔)
(𝑎)          (14) 

 
where the 𝛾 −parameters are different from those in (12), and the constructs of teacher 
and school effectiveness indices or unobserved covariates   𝜃𝑗𝑘 and 𝜂𝑘 in the BLSI 
approach are replaced by teacher and school random effects. It follows as mentioned 
earlier that the rcr-vam measure of teacher effect (which in this case is simply 𝑢0𝑗𝑘(𝑔)

(𝑎) ) is 
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not suitable for comparison across teachers of different subjects or in different grades 
although it does not depend on observed covariates due to simplified model assumptions.   
 
The variable persistence model of McCaffrey et al. (2004) assumes that the past teacher 
effects continue to persist over years but get dampened (hence the qualifier ‘variable’) 
and does not consider prior test scores as covariates. Because of the persistence 
assumption, it requires all past scores under a longitudinal set-up but only student-level 
covariates are included. More specifically, it can be written as 
 
𝑦𝑖𝑗𝑘(𝑔)

(𝑎) = 𝛾0(𝑔)
(𝑎) + 𝛾1(𝑔)

(𝑎) 𝑥𝑖𝑗𝑘(𝑔) + �𝑢0𝑗𝑘(𝑔)
(𝑎) + 𝜉𝑔𝑔′𝑢0𝑗′𝑘′�𝑔′�

(𝑎) + 𝜉𝑔𝑔′′𝑢0𝑗′′𝑘′′�𝑔′′�
(𝑎) +⋯� 

  + �𝑣0𝑘(𝑔)
(𝑎) + 𝜒𝑔𝑔′𝑣0𝑘′�𝑔′�

(𝑎) + 𝜒𝑔𝑔′′𝑣0𝑘′′�𝑔′′�
(𝑎) + ⋯� + 𝜀𝑖𝑗𝑘(𝑔)

(𝑎)               (15) 
 
where 𝜉𝑔𝑔′ , 𝜉𝑔𝑔′′ , ... represent discount factors for past teacher effects for grades 𝑔′, 𝑔′′, 
.. and similarly 𝜒𝑔𝑔′ , 𝜒𝑔𝑔′′ , … represent discount factors for past school effects for prior 
grades. McCaffrey et al. do mention that teacher and school level covariates could be 
included with random or fixed coefficients. With random coefficients, however, the 
model gets extremely complex. As in the case of Rowan et al., this model also does not 
permit a fair comparison of teachers across different subjects using the rcr-vam measure 
𝑢0𝑗𝑘(𝑔)

(𝑎)  of teacher effect unlike BLSI measures. The above variable persistence model is 
a generalization of the earlier constant persistence model of Sanders et al. (1997), well 
known as  the Tennessee Value-Added Assessment system (TVAAS), which assumes all 
the discount factors as unity and does not include any covariates. A general persistence 
model where a teacher’s effect could vary arbitrarily over years without being connected 
via discount factors is considered by Mariano et al. (2010).  
 
 

6. Summary and Remarks 
 
We quote the words of the famous statistician John Tukey, “All models are wrong, but 
some are useful.” The proposed  blsi-formulation based on latent trait or common factor 
models that directly extracts teacher’s pure ability or effectiveness index (TEI) can be 
viewed in this spirit. It was assumed that the model has a reasonable set of observed 
covariates and that no important covariate is missing so that essentially the main 
unobserved covariates are TEI and SEI, and thus their estimates will not be seriously 
contaminated by missing covariates. As part of model diagnostics, it was suggested that a 
sensitivity analysis could be performed to check the impact on TEI estimates when some 
observed covariates are dropped on purpose.  The proposed TEI measure is free from 
student, teacher and school specific covariates and is common for all subjects and grades 
taught by the teacher in a given year. Thus it can provide a fair means of comparison of 
teaching ability of teachers across different subjects and grades within a school and 
across schools in a given year. However, TEI does not measure the value-added effect on 
student’s gain in score. In fact, the blsi-vam measure of the teacher effect has TEI as one 
of the components but the other component suffers from limitations of measurement and 
assignment biases as the existing rcr-vam measure. Unlike TEI for blsi-models, it seems 
difficult to explicitly build in a value-added parameter in the rcr-model to measure 
teacher’s effect on student’s gain in score because of confounding effects of observed 
covariates specific to student, teacher, and school.  Moreover, it is not possible to obtain 
reliable estimates of teacher’s value-added effect due to small class size. 
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Above considerations suggest the need for a new formulation which departs from 

the conventional VAM formulation. The proposed BLSI approach is an attempt in this 
direction by identifying teachers with teaching ability or effectiveness who will have 
favorable impact on students in the long run over several years rather than identifying 
teachers with tangible effects on student’s gain in test score in a given year. It may be of 
interest to note that the proposed effectiveness indices at different levels in a hierarchy 
(student, teacher, and school) appear to be in line with the framework of multi-level 
hierarchical linear models advocated in an important early paper by Raudenbush and 
Bryk (1988). In reviewing the reconceptualization of school and classroom effects, they 
made the following statement which provides a useful perspective on the proposed BLSI 
approach: “These theoretical perspectives emphasize the hierarchical, multilevel 
character of educational decision-making: decisions made at the school level, for 
example, constrain options available to teachers. Teacher’s decisions, in turn, influence 
how opportunities for learning will be distributed across children….an adequate 
conceptualization for the effects of schooling will include not only a model for how 
schools differentially allocate resources for instructions and opportunities for learning, 
but also a model for how students might differentially respond given the available 
opportunities.”   

 
In practice, both direct measures in terms of average teacher evaluation score by students 
and average class test score and indirect measures of TEI and blsi-vam can be used to 
identify performing teachers. Using TEI estimates for a contemporary group of teachers 
available in the data, we can construct a normative distribution of TEI for a given year. 
Each teacher’s effectiveness in any given year can be ranked in terms of percentiles of 
the normative distribution of TEI.  Performance incentives for teachers can be determined 
in a fair manner based on patterns in the behavior of above ranks over years given that 
the direct measures of their teaching effect are above a minimal threshold. Incidentally, it 
is the relative rank of TEI compared to other teachers and not the absolute value that are 
important for determining performance incentives. Clearly, this is an area that requires 
further investigation. Finally, we note that it is sufficient to have a large sample data on 
schools, teachers, and students to fit BLSI models to obtain efficient estimates. Once the 
model parameters are estimated, TEI for any teacher can be estimated by providing to the 
model predictor input about background variables for the teacher, school, and students 
taught by the teacher along with prior and current test scores. 
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Appendix I (Review of BLUP Estimation and their MSE) 
 
Using the general notation of linear mixed models (Skrondal and Rabe-Hesketh, 2004), 
consider best linear unbiased predictor (BLUP) estimation of a realized value of the 
random effect vector 𝜼𝑞×1 and best linear unbiased estimation (BLUE) of fixed 
parameter 𝜷𝑝×1under the model 
 

𝒚 = 𝑿𝜷 + 𝒁𝜼 + 𝜺 
 
where 𝒚 is the vector of student test scores,  𝑿 and 𝒁 are covariate matrices 
corresponding to observed and unobserved covariates , 𝜷 is a p-vector of fixed regression 
parameters, 𝜼 is a q-vector of random effects with mean 0 and  covariance matrix 𝚪𝜂 , 𝜺 
has mean 0 and covariance matrix V and is independent of 𝜼, and both have typically 
normal distributions although not necessarily required for BLUP estimation.  
 
The BLUP of 𝜼 is given by  

𝜼�𝐵𝐿𝑈𝑃 = �𝚪𝜼−1 + 𝒁′𝑽−1𝒁�−1𝒁′𝑽−1(𝒚 − 𝑿𝜷�𝐵𝐿𝑈𝐸) 
          =  𝚪𝜂𝒁′𝑾−1(𝒚 − 𝑿𝜷�𝐵𝐿𝑈𝐸) 
 
where  𝜷�𝐵𝐿𝑈𝐸 = (𝑿′𝑾−1𝑿)−1𝑿′𝑾−1𝒚 ,  𝑾 = 𝑽 + 𝒁𝚪𝜂𝒁′ . 
 
Moreover, the mean square error (MSE) of estimates about their true values are given by 
 

MSE (𝜷�𝐵𝐿𝑈𝐸 − 𝜷) = (𝑿′𝑾−1𝑿)−1 , and 
 
MSE (𝜼�𝐵𝐿𝑈𝑃 − 𝜼) = �𝚪𝜼−1 + 𝒁′𝑽−1𝒁�−1 +  𝚪𝜂𝒁′𝑾−1𝑿(𝑿′𝑾−1𝑿)−1𝑿′𝑾−1𝒁𝚪𝜂    

  
where the leading or the first term �𝚪𝜼−1 + 𝒁′𝑽−1𝒁�−1 can also be expressed alternatively 
as 

 (𝒁′𝑽−1𝒁)−1�𝚪𝜂 + (𝒁′𝑽−1𝒁)−1�−1𝚪𝜂  or    (𝚪𝜂 − 𝚪𝜂𝒁′𝑾−1𝒁𝚪𝜂).    
 
As expected, it is seen that 𝜷 can be consistently estimated if the total number of 
observations (or the number of rows of 𝑿) is much larger than p (number of 𝜷-parameters 
or the number of columns of 𝑿) or more precisely when the eigenvalues of its MSE 
matrix or  (𝑿′𝑾−1𝑿)−1 can be quite small as measured by the sum of eigenvalues or 
trace of the matrix. However, this will not be the case with 𝜼�𝐵𝐿𝑈𝑃 because the total 
number of observations is not expected to be much larger than q—the number of 𝜼-
parameters or the number of columns of 𝒁; i.e., looking at the leading or the first term of 
its MSE , the eigenvalues of �𝚪𝜼−1 + 𝒁′𝑽−1𝒁�−1 are not expected to be very small. The 
second term in MSE (𝜼�𝐵𝐿𝑈𝑃 − 𝜼) reflects the additional variability due to the estimation 
of 𝜷 and is of much smaller order than the first term. If the rows of  𝒁 could be increased 
by including more observations corresponding to each random effect, then the 
corresponding BLUP estimators would naturally be more stable. The stability of the 
BLUP MSE matrix can be measured by its trace (i.e., the sum of its diagonal elements 
which is the same as the sum of eigenvalues) and the condition number defined as the 
ratio of maximum and minimum eigenvalues.  
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