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Abstract
The distance correlation as a measure of dependence between collections of random vari-

ables was introduced by Székely, Rizzo, and Bakirov (2007) and Székely and Rizzo (2009).
Unlike the classical Pearson correlation coefficient, the distance correlation is zero only in
the case of independence. Moreover, the distance correlation applies to random vectors of
any dimension, rather than to two-dimensional variables only, and it is now known to be ca-
pable of detecting nonlinear associations that are not detectable by the Pearson correlation
coefficient. We apply the distance correlation to analyze high-dimensional, large-sample as-
trophysical databases on galaxy clusters, and we identify new associations and correlations
between numerous astrophysical variables. For certain pairs of variables, we find that it is
also possible to estimate the corresponding Pearson correlation coefficients from the distance
correlation measures, with high accuracy. Indeed, the distance correlation has a clear ten-
dency to resolve some high-dimensional data into highly concentrated “horseshoe” graphs,
which make it easier to identify patterns in the data. For comparison we also compute the
Maximal Information Coefficient (MIC score) and we conclude that Distance Correlation is
more general and more powerful than the Pearson and MIC measures of dependence.

Key Words: Association, large astrophysical data sets, distance correlation, mutual
information, Pearson correlation coefficient

1. Introduction

The Pearson correlation coefficient is the classical measure of (mainly linear) depen-
dence between two variables (Pearson 1895). Because of its deficiency in detecting
nonlinear relationships and the coefficient can easily be zero for dependent variables,
Székely, Rizzo and Bakirov (2007) introduced a new measure named Distance cor-
relation and recently Reshef et al. (2011) proposed a new measure of association
between variables based on Shannon’s mutual information (Shannon and Weaver
1949), the Maximal Information Coefficient (MIC).

1.1 Measures to detect associations between variables

To understand the measures of association between variables it is necessary to refer
to the concept of statistical independence. Events (or measurements) are termed
probabilistically independent if information about some does not change the prob-
abilities of the others. By convention, any measure of association between two
variables must be zero if the variables are independent. Those are also known
as measures of dependence. There are other requirements of a good measure of
dependence, including symmetry (Rényi 1959), and since Galton’s correlation coef-
ficient (1886) the statisticians have been defining suitable measures, including rank
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correlation (Spearman 1904, Kendall 1938), maximal linear correlation after trans-
forming both variables (Hirschfeld 1935), the distance correlation (Székely, Rizzo
and Bakirov 2007), and the curve-based methods reviewed in (Delicado 2009).

The following conditions form a set for a symmetric, nonparametric measure of
dependence δ(X,Y ) for two continuously distributed random variables X and Y
(Schweizer and Wolff 1981):

1. δ(X,Y ) is defined for any X and Y , neither of them being constant with
probability 1

2. δ(X,Y ) = δ(Y,X)

3. 0 ≤ δ(X,Y ) ≤ 1

4. δ(X,Y ) = 0 if X and X and Y are independent

5. δ(X,Y ) = 1 if and only if each of X, Y is a strictly monotone function of the
other

6. If f and g are strictly monotone on Range X and Range Y , respectively, then
δ(f(X), g(Y )) = δ(X,Y )

7. If the joint distribution of X and Y is bivariate normal, with correlation
coefficient r, then δ(X,Y ) is a strictly increasing function φ of |r|

8. If (X,Y ) and (Xn, Yn), n = 1, 2, . . . , are pairs of random variables with joint
distributions J and Jn, respectively, and if the sequence Jn converges weakly
to J , then limn→∞ δ(Xn, Yn) = δ(X,Y )

Rényi’s (1959) original postulates differ from the above in that: (1) They were
not restricted to continuously distributed random variables; (2) Condition 5 was
“δ(X,Y ) = 1 if either X = f(Y ) or Y = g(X) for some Borel–measurable functions
f and g”; (3) Condition 6 was “If f and g are Borel–measurable, one–one mappings
of the real line into itself then δ(f(X), g(Y )) = δ(X,Y )”; (4) In condition 7, δ(X,Y )
was required to be equal to |r|; (5) Condition 8 was not included.

Rényi (1959) defined the maximal correlation ρ between a pair of two random
variables (X,Y ) as

sup

{
Cov(f(X), g(Y ))√
V (f(X))V (g(Y ))

}
;V (f(X)) > 0, V (g(Y )) > 0 (1)

where the supremum is taken over all functions of X and Y with finite second
moments. The random variables X and Y are independent if and only if ρ = 0.

An explicit evaluation of the Rényi maximal correlation is not available for a
general random variable (X,Y ) except in very special cases. For a bivariate normal
distribution with correlation r, the Rényi maximal correlation is |r|, testifying to
the fact that r = 0 implies independence.

A general function for f(X) of X is a linear function a
′
U of U for some vector

a. Similarly for g(Y ) of Y , that is, b
′
V of V for some vector b. It can be shown

that the maximal Rényi correlation in this case is given by ρ =
√
µ1 where

√
µ1 is

the canonical correlation between the two random vectors, U and V (Sethuraman
1990).
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Some of the most frequently used measures of dependence are: (1) Correlation
coefficient which satisfies Postulates 2, 3, and 7; (2) Correlation ratios which satisfies
Postulate 5; and (3) Maximal Correlation which has all the properties.

Actually modern data sets, contain hundreds of thousands or even millions of
variable pairs from which we need to examine all possible associations and examine
the most important.

1.2 Maximal Information Coefficient (MIC) and Maximal Information–
based Nonparametric Exploration (MINE)

Reshef et al. (2011) have introduced a novel statistic to measure dependence which
has two heuristic properties: generality (with sufficient sample size the statistic
captures a wide range of associations, including specific function types as the expo-
nential, periodic, linear, or any other functional relationship), and equitability (the
statistic gives similar scores to equally noisy relationships.)

This statistic has been called Maximal Information Coefficient (MIC) and
gives rise to a larger family of statistics, referred as Maximal Information–based
Nonparametric Exploration (MINE).

The Maximal Information–based Nonparametric Exploration (MINE) is a class
of statistics for identifying and classifying relationships between variables. It en-
compasses several measures to identify and characterize the type of associations in
a data set. MINE also includes: MAS (Maximum Asymmetry Score) which cap-
tures departure from monotonicity; MEV (Maximum Edge Value) which captures
closeness to being a function, and MCN (Minimum Cell Number) which captures
complexity of the association.

To familiarize with the theory behind MIC we need to recall Shannon’s entropy
definition (Shannon and Weaver 1949) and mutual information.

1.2.1 Entropy and Mutual Information

The entropy is a measure of uncertainty, that is, a measure of the amount of infor-
mation required on the average to describe the random variable. Thus, the higher
the entropy, the more uncertain one is about a random variable. This concept was
introduced by Shannon (1949) and it is a straightforward adaptation of the Gibbs
entropy formula. The Shannon entropy H(X) of a discrete random variable X with
possible values (x1, . . . , xn) and probability mass function p(X) is defined as

Hb(X) = −
∑
X∈H

p(x) logb p(x) (2)

where b is referred to the base of the logarithm. In information theory it is common
to assume b = 2 and hence the entropy is expressed in bits. Note that entropy is a
functional of the distribution of X. It does not depend on the actual values taken by
the random variable X, but only on the probabilities. We shall denote expectation
by E. Thus if X ∼ p(x), then the expected value of the random variable g(X) is
written

Epg(X) = Eg(X) =
∑
X∈H

g(x)p(x) (3)

The entropy of X can also be interpreted as the expected value of − log p(X),
where X is drawn according to probability-mass function p(x). Thus,

H(X) = Ep log
1

p(X)
(4)
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This definition of entropy (eq. 4) is related to the definition of entropy in thermo-
dynamics and has the following properties: H(X) ≥ 0, and Hb(X) = Ha(X)(logb a).
We can extend the definition of entropy to a pair of discrete random variables (X,Y )
with a joint distribution p(x, y) as

H(X,Y ) = −
∑
X∈X

∑
Y ∈Y

p(x, y) log p(x, y) (5)

= −E log p(X,Y )

We also need to define the conditional entropy of a random variable given another
as the expected value of the entropies of the conditional distributions, averaged over
the conditioning random variable. If (X,Y ) ∼ p(x, y), then the conditional entropy
H(Y |X) is

H(Y |X) =
∑
x∈X

p(x)H(Y |X = x)

= −
∑
x∈X

p(x)
∑
y∈Y

p(y|x) log p(y|x)

= −
∑
x∈X

∑
y∈Y

p(x, y) log p(y|x) (6)

= −Ep(x,y) log p(Y |X)

The Mutual Information is a measure of the amount of information that one
random variable contains about another random variable. In other words, it is the
reduction in the uncertainty of one random variable due to the knowledge of the
other. This quantity turns out to be a new measure of dependence and was first
proposed by Linfoot (1957).

Consider two random variables X and Y with a joint probability mass func-
tion p(x, y) and marginal probability mass functions p(x) and p(y). The mutual
information I(X;Y ) is the relative entropy between the joint distribution and the
product distribution of the marginals p(x) p(y),

I(X;Y ) = −
∑
X∈X

∑
Y ∈Y

p(x, y) log p(x, y)p(x)p(y) (7)

= Ep(x,y)
p(X,Y )

p(X)p(Y )

The entropy and mutual information are related through the expression,

I(X;Y ) =
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)

=
∑
x,y

p(x, y) log
p(x|y)

p(x)

= −
∑
x,y

p(x, y) log p(x) +
∑
x,y

p(x, y) log p(x|y) (8)

= −
∑
x,y

p(x) log p(x)−
[
−
∑
x,y

p(x, y) log p(x|y)
]

= H(X)−H(X|Y )

Thus the mutual information I(X;Y ) is the reduction in the uncertainty of
X due to the knowledge of Y . By symmetry of eq.8, it follows that I(X;Y ) =
H(Y )−H(Y |X). Thus X says as much about Y as Y says about X. More details
about information theory can be found in Cover and Thomas (1991).
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1.2.2 Maximal Information Coefficient (MIC)

We consider a partition of the data set D into a grid G of ordered pairs {(xi, yi), i =
1, 2, . . . , n}, such that there are x bins (of variable size) covering x and y bins
covering y (of variable size). The probability mass function of a particular grid
cell is proportional to the number of data points falling inside that cell and so, for
a given (x, y), there will be a maximal mutual information. We can construct a
characteristic matrix M(D) whose elements obtained as

M(D)x,y =
max(I(X;Y ))

log min{x, y}
(9)

are the highest normalized mutual information achieved by any of the corresponding
grids. The MIC is defined to be the maximum value in M, such that, xy < C:

MIC(D) = max
xy<C

{M(D)x,y}, (10)

where C is a function of the sample size and represents the maximal grid size
considered. Reshef et al. (2011) found empirically a satisfactory limit for C, that
is, C(n) = n0.6

The behaviour of the MIC statistic is that it tends to 1 for all never–constant
noiseless functional relationships and to 0 for statistically independent variables.

Its statistical significance can be determined from comparison of a real value
against a set of values from α−1 surrogate dats sets where α is the probability of false
rejection. Since MIC is a rank–order statistic, the uncorrected p-value depends only
on the score and on the sample size of the relationship under consideration. Pre–
computed uncorrected p-values are available for different sample sizes at MINE’s
website http://www.exploredata.net/Downloads/P-Value-Tables.

1.3 Distance Covariance (dCov) and Distance Correlation (dCor)

Let be X and Y two random vectors in Rp and Rq respectively, where p and q
are positive integers. The characteristic functions of X and Y are denoted by
fX and fY , respectively, and the joint characteristic function of X and Y is de-
noted by fX,Y . Distance covariance (V) can be applied to measure the distance
‖fX,Y (t, s) − fX(t)fY (s)‖2 between the joint characteristic function and the prod-
uct of the marginal characteristic functions, and to test the hypothesis of indepen-
dence H0 : fX,Y = fXfY against H1 : fX,Y 6= fXfY . Thus, the distance covariance
between two random vectors with finite first moments is the nonnegative number
V(X,Y ) defined by

V2(X,Y ) = ‖fX,Y (t, s)− fX(t)fY (s)‖2

=
1

cpcq

∫
Rp+q

|fX,Y (t, s)− fX(t)fY (s)|2

|t|1+pp |s|1+qq

dtds (11)

Similarly, distance variance (dVar) is defined as the square root of

V2(X,X) = V2(X)‖fX,X(t, s)− fX(t)fX(s)‖2 (12)

It is clear that V(X,Y ) ≥ 0 and V(X,Y ) = 0 if and only if X and Y are
independent.
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Distance correlation is a new measure of dependence between random vectors
introduced by Székely, Rizzo and Bakirov (2007). For all distributions with finite
first moments, distance correlation R generalizes the idea of correlation in the sense
that R(X,Y ) is defined for X and Y in arbitrary dimension, and R(X,Y ) = 0
characterizes independence of X and Y.

Distance correlation satisfies 0 ≤ R ≤ 1, and R = 0 only if X and Y are
independent.

The distance dependence statistics are defined as follows. For an observed ran-
dom sample (X,Y) = {(Xk, Yk) : k = 1, 2, . . . , n} from the joint distribution of
random vectors X in Rp and Y in Rq, define

akl = ‖Xk −Xl‖p, āk· =
1

n

n∑
l=1

akl, ā·l =
1

n

n∑
k=1

akl (13)

ā·· =
1

n2

n∑
k,l=1

akl, Akl = akl − āk· − ā·l + ā·· (14)

Similarly,

bkl = ‖Yk − Yl‖q, b̄k· =
1

n

n∑
l=1

bkl, b̄·l =
1

n

n∑
k=1

bkl (15)

b̄·· =
1

n2

n∑
k,l=1

bkl, Bkl = bkl − b̄k· − b̄·l + b̄·· (16)

for k, l = 1, 2, . . . , n, where the subscript “·” denotes that the mean is computed for
the index that it replaces.

The empirical (that is, obtained from the data) distance covariance Vn(X,Y) is
the nonnegative number defined by

V2n(X,Y) =
1

n2

n∑
k,l=1

AklBkl (17)

Similarly, Vn(X) is the nonnegative number defined by

V2n(X) = V2n(X,X) =
1

n2

n∑
k,l=1

A2
kl (18)

The empirical distance correlation Rn(X,Y) of two random variables is the
square-root of

R2(X,Y ) =


V2(X,Y )√
V2(X)V2(Y )

,V2(X)V2(Y ) > 0

0 ,V2(X)V2(Y ) = 0
(19)

The asymptotic distribution of nV2n is a quadratic form of centered Gaussian
random variables, with coefficients that depend on the distributions of X and Y . If
we use that statistic to test independence, we shall implement it as a permutation
test.
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2. Application of the Distance Correlation (dCor) and Maximal
Information Coefficient (MIC) to an astronomical large data set

We choose the well–known catalog named COMBO–17 for our computations about
the relationships among variables. In Figure 1 we show one of the COMBO-17 fields
to illustrate the type of objects we are interested in.

2.1 Description of the COMBO–17 data set

The COMBO–17 project (“Classifying Objects by Medium–Band Observations in
17 Filters”) was mainly carried out to study the evolution of galaxies and their
associated dark matter haloes at z . 1 as well as the evolution of quasars at
1 . z . 5. In order to obtain large samples of objects (∼ 50000 galaxies and . 1000
quasars) with precise photometric redshifts, four fields with a total area of 1�◦ were
observed with a 17–band filter set covering the range of λobs ∼ 350− 930nm. In
practice, such a filter set provides a redshift accuracy of σz,gal ≈ 0.03, σz,QSO . 0.1,
smoothing the true redshift distribution of the sample only slightly and allowing
the derivation of luminosity functions.

All objects in the catalogue are found in the Chandra Deep Field South, based
upon images obtained in 2003 with the Wide Field Imager on the ground–based
2.2–m MPG/ESO telescope located at the European Southern Observatory (ESO)
on La Silla, Chile. This camera covers an area of more than 0.5◦ × 0.5◦, which
is larger than the field initially observed from space by the Great Observatories
Origins Deep Survey (GOODS).

The foremost data analysis goal of the COMBO–17 approach is to convert the
photometric observations into a very low–resolution spectrum that allows simul-
taneously a reliable spectral classification of stars, galaxies of different types and
QSOs as well as an accurate redshift (or SED) estimation for the latter two. The
full survey catalogue contains 63501 astronomical objects with classifications and
redshifts on 1.5�◦ of area. It also includes restframe luminosities in Johnson, SDSS,
and Bessell passbands and estimated errors.

The catalogue can be used to analyze aspects of galaxy evolution (Wolf et al.
2003a; 2003b, Bell et al. 2004), the evolution of faint AGN from redshift 5 to 1 (Wolf
et al. 2003b), weak lensing studies (see for example Gray et al. 2002, Kleinheinrich
et al. 2003).

The data set is available at the COMBO website (http://www.mpia.de/COMBO/
combo_index.html). It lists identifiers, positions, magnitudes, morphologies, clas-
sification and redshift information. A detailed description of the column entries
in both published FITS and ASCII versions of the catalogue and further explana-
tions are given in (Wolf et al. 2004) and also at (http://www.mpia.de/COMBO/cat_
legend.html).

2.2 Application of the MINE and dCor statistics

From the set of variables listed in Table 3 of Wolf’s original paper (Wolf et al.
2004) we select 33 variables (5 contain general information, 3 correspond to the
classification results, 3 are the total restframe luminosities and 22 are observed
seeing–adaptive aperture fluxes in runs D, E, and F). We are not considering the
estimated errors in the variables, we only include positive values for the fluxes and
we neglect any missing information in the set of variables. In Table 1 we summarize
the variables and their meanings chosen for our analysis.
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Figure 1: Cluster field Abell 901/902 (Taken from COMBO–17 website).

Table 1: Set of variables and their description considered in
our analysis based on the COMBO17 catalog.

General information about the object

Variable Meaning

Rmag total R-band magnitude
mu max central surface brightness
MajAxis major axis
MinAxis minor axis
PA position angle

Classification results

Variable Meaning

MC z mean redshift in distribution
MC z2 alternative redshift if distribution is bimodal
MC z ml peak redshift in distribution
dl luminosity distance of MC z

Total object restframe luminosities

Variable Meaning

BjMag Mabs,gal in Johnson B (z ≈ [0, 1.1])
rsMag Mabs,gal in SDSS r (z ≈ [0, 0.5])
S280Mag Mabs,gal in 280/40 (z ≈ [0.25, 1.3])

Observed seeing-adaptive aperture fluxes

Variable Meaning

W420F E photon flux in filter 420 in run E
W462F E photon flux in filter 462 in run E
W485F D photon flux in filter 485 in run D
W518F E photon flux in filter 518 in run E
W571F D photon flux in filter 571 in run D
W571F E photon flux in filter 571 in run E
W604F E photon flux in filter 604 in run E
W646F D photon flux in filter 646 in run D
W696F E photon flux in filter 696 in run E
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W753F E photon flux in filter 753 in run E
W815F E photon flux in filter 815 in run E
W856F D photon flux in filter 856 in run D
W914F D photon flux in filter 914 in run D
W914F E photon flux in filter 914 in run E
UF F photon flux in filter U in run F
BF D photon flux in filter B in run D
BF F photon flux in filter B in run F
VF D photon flux in filter V in run D
RF D photon flux in filter R in run D
RF E photon flux in filter R in run E
RF F photon flux in filter R in run F

The final study includes 15,352 galaxies over a redshift range from 0 to 2. The
data were subdivided by galaxy type (1 to 4) based on their magnitudes as defined
by Wolf et al. (2003a). The complete set of galaxies is summarized in Table 2.

Table 2: Galaxy Analysis Scheme
hhhhhhhhhhhhhhhhhColor-Magnitude

Redshift
0 ≤ z < 0.5 0.5 ≤ z < 1 1 ≤ z < 2 Total

B − r > 1.25, m280 −B ≥ 1.1 38 50 16 104
B − r > 1.25, m280 −B < 1.1 45 19 4 68
0.95 < B − r ≤ 1.25 328 277 109 714
B − r ≤ 0.95 3254 9284 1928 14466

Total 3665 9630 2057 15352

We apply MINE statistics to each group of galaxies according to their (1)
redshifts and (2) galaxy type (Figure 2). For the set of 33 variables, there are(
33
2

)
= 528 possible pairs to compute. The MINE application, which computes MIC

and other statistics from the MINE family, can be downloaded from the website
http://www.exploredata.net/ for use in both Java and R statistical language.
The input parameters for MINE are summarized in Table 3. For each computed
pair, we obtain the MIC (Maximal Information Coefficient) that represents the
strength of a relationship.

We compute dCor for each pair of variables using the energy package in R (Rizzo
and Székely 2013).

3. Results and Discussion

The results of this first statistical study of the COMBO-17 galaxies are displayed
in Figures 3–5 for the four galaxy types and three redshift groups shown in Table
2. Figure 2 shows the galaxy types based on their m280 − B and B − r colors.
The magnitude ranges were derived from the galaxy-type cutoffs seen in Figure 2
of Wolf’s paper (2003a); these ranges are associated with the Kinney et al. (1996)
galaxy classification template of galaxy types.

The application of MINE statistics to the 528 pairs of variables based on the list
of 33 variables in Table 1 revealed horseshoe patterns in the data. These patterns
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Figure 2: Galaxy types based on their m280 −B and B − r colors for 0 ≤ z < 0.5
(left), 0.5 ≤ z < 1 (middle),and 1 ≤ z < 2 (right): Type 1 (red), Type 2 (purple),
Type 3 (dark green), and Type 4 (blue).

can be seen in Figures 3–5, which show the Pearson correlation coefficient versus
the MIC score for galaxies of all types, over three redshift ranges from z = 0 to
2. In these graphs, a low MIC score corresponds to a weak relationship between a
given pair of variables, while a high MIC score corresponds to a strong relationship
between variables. The horseshoe patterns are due to the negative values that
the Pearson correlation coefficient can take which indicates the direction of such
an association, while MIC scores just provides the strength of it. In that sense,
Pearson provides more information about a (linear) relationship.

Even though the figure clearly shows that the horseshoe pattern persists across
the galaxy types, it exhibits more variability (dispersion) as the sample size in-
creases. Thus, the accuracy to the exact value of the Pearson correlation coefficient
and to the MIC score is better for large sample sizes (Type 4 galaxies with redshifts
0 < z < 2).

Moreover, the MIC scores show lower values about 0.17 to 0.20 for pairs compar-
ing observational variables like the position angle, the minor and major axes with
some photon fluxes. In fact, those pairs also have a low Pearson correlation coeffi-
cient (in some cases it is negative). That probably means statistical independence
between some fluxes and the localization of the galaxy.

Although the distance correlation measure can be applied to variables of any
dimension (Székely et al. 2007), we compared the Pearson coefficient with the dis-
tance correlation coefficient for the same set of 528 pairs of variables as done for the
MIC score. The results displayed in the low panels of Figures 3–5 reveal the much
more distinctive relation between the Pearson and Distance Correlation measures.
In other words, the distance correlation provides a more accurate measure of de-
pendence (because of less variability) than the MIC score for this very large sample
of 15,352 galaxies. Here again, a low distance correlation coefficient suggests near-
independence between a given pair of variables, while a high coefficient represents
a strong relationship between variables.

Finally, we find an interesting relationship between Distance Correlation mea-
sures and MIC scores for the COMBO-17 dataset. Figure 6 shows the case for
galaxies with low redshift.

Although Reshef et al. (2011) proposed MIC scores as an alternative to classical
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Table 3: Input parameters for MINE statistics

Mandatory Description Default
value

infile File (csv format) containing the data –

style Tells MINE which variable pairs to analyze allPairs
adjacentPairs
masterVariable
onePair
pairsBetween

Optional M

cv
A floating point number indicating which % of
the records need to have data in them for both
variables

0

exp The exponent in C(n) = nβ 0.6

c
Determines by what factor clumps may
outnumber columns when the algorithm starts
to partition

15

notify
Number of variable pairs to analyze before
printing a status message

100

gc
Number of pairs to analyze before forcing a
Java garbage collection

Integer.MAX VALUE

correlation measures, some criticisms of the MIC approach have been made recently
by Gorfine et al. (2012), Simon and Tibshirani (2012), and Kinney and Atwal
(2013). They noted that MIC scores sometimes are less powerful than the Pearson
correlation coefficient for the linear case; when sample sizes are small (such as 50);
for functional relationships at identical noise levels; and also that the power of
the MIC procedure varies dramatically between the various relationships, i.e., MIC
tends to have a strong preference for certain types of functions.

4. Conclusions

The rate of scientific discovery in astronomy is tied to the amount of data available,
which has grown enormously due to modern detectors and computational resources.
The new challenge is to analyze these huge amounts of data to find significant
relationships – linear, non-linear, functional, structural – between pairs, triplets,
and groups of properties or variables, that characterize an astronomical object.

In recent years, a number of approaches to extract and identify such relationships
or associations have been derived, for example, Székely et al. (2007), Ball and
Brunner (2010). We have focused in this paper on two novel techniques: Distance
Correlation (dCor) and Maximal Information Coefficient (MIC). We applied both
techniques to a well-known survey for galaxy clusters, called the Chandra Deep
Field South COMBO-17 database. This database consists of observations in 17
filters of photon fluxes drawn from different astrophysical sources: stars, galaxies,
and quasars. We only considered galaxies in the database, and these were classified
by redshift and galaxy type, and subsequently we studied bivariate associations
between the underlying astrophysical variables.
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Figure 3: Comparison between Pearson correlation coefficient (ρ) versus MIC score
and dCor for galaxies with redshifts 0 ≤ z < 0.5 and the color types described in
Table 2.

Figure 4: Comparison between Pearson correlation coefficient (ρ) versus MIC score
and dCor for galaxies with redshifts 0.5 ≤ z < 1 and the color types described in
Table 2.
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Figure 5: Comparison between Pearson correlation coefficient (ρ) versus MIC score
and dCor for galaxies with redshifts 1 ≤ z < 2 and the color types described in Table
2.

Figure 6: Distance correlation (dCor) versus MIC score for galaxies with redshifts
0 ≤ z < 0.5 and the color types described in Table 2.
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To illustrate some of our results, we provide in the upper rows of Figures 3-5
graphs of Pearson correlations (ρ) vs. MIC scores for four galaxy types and three
redshift ranges. In the lower rows of Figures 3-5, we provide plots of Pearson
correlations (ρ) vs. distance correlations (dCor) for the same types of galaxies.
The galaxies themselves are classified according to their redshift, z. Galaxies in
Type 1 tend to be of spiral shape; Type 3 galaxies tend to be of elliptical shape;
and Type 2 galaxies tend to be in-between spiral and elliptical in shape. We have
found that distance correlation provides a more accurate measure of dependence
between variables, and this has helped us to confirm some obvious astrophysical
relationships.
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