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An Asymmetrically Modified Boxplot for Exploratory Data Analysis
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Abstract

The boxplot, formalized by John Tukey, is a simple and effective graphical tool in many fields
and disciplines. This paper highlights the origins and progression of the boxplot that is now widely
used as an industry standard as well as its inherent limitations in outlier detection when dealing
with asymmetric data. This background is necessary in understanding the ultimate aim of the paper,
which is to present a new modification to the boxplot, the Ratio-Skewed boxplot, for use with
any univariate data set, symmetric or skewed, regardless of the sample size. By incorporating an
additional term to account for underlying skewness observed within the quartiles, the proposed
methodology adjusts the boxplot fences in order to improve the effectiveness of the detection of
outliers. Further, this additional term is shown to be highly related to the nonparametric measure
of skewness known as Bowley’s Coefficient. Through simulation studies this modification of the
boxplot is shown to be simple and effective, as well as very consistent in outlier detection for several
known distributions.
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1. Introduction

The boxplot, first introduced in 1952 by Mary Eleanor Spear and later formalized by John
Tukey, has grown into common use as a quick and effective graphical tool in many fields
and disciplines that rely on the analysis of data. This paper highlights the origins and
progression of the boxplot that is now widely used as an industry standard as well as its
inherent limitations in outlier detection when dealing with asymmetric data. This back-
ground is necessary in understanding the ultimate aim of the paper, which is to present a
new modification to the boxplot, the Ratio-Skewed boxplot, for use with any univariate data
set, symmetric or skewed, regardless of sample size. This modification accounts for under-
lying skewness within the sample data and extends or retracts the fences of the boxplot
accordingly in order to improve its ability to detect outliers. Further, the proposed modi-
fication is shown to have a close relation to Bowley’s Coefficient for skewness. Through
simulation testing the Ratio-Skewed boxplot is shown to be simple yet effective as well as
very consistent in outlier detection for several known distributions.

2. Background

The essential features of what we now know as the boxplot were first introduced by Mary
Eleanor Spear [13] sixty years ago. Though only briefly discussed, the book shows potential
variations of what was then introduced as the range bar chart. The final modification clearly
shows an early version of the boxplot later popularized by Tukey, complete with box and
whiskers highlighting the points of the five number summary.
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Twenty years later, John Tukey [14] introduced a modified version of the range bar
chart, known then as the schematic plot, that could highlight potential outliers in the sample
data. In this early incarnation of the now widely used boxplot, the distribution of sample
data was defined as being within the “hinges”, the interquartile range, within the “sides”, the
inner fences, and being within the “corners”, the outer fences. The “sides” were determined
as being one interquartile range length beyond each quartile with the “corners” being two
interquartile range lengths beyond each quartile. Thus, the boxplot as we know it was
born as the schematic plot, with the box representing the interquartile range, dashed lines
on either side leading to the most extreme values within the “sides”, with points beyond
the sides, but within the corners, plotted individually as being “outside”, and extreme data
points beyond the corners plotted separately as being “detached”. In this early version of the
boxplot, Tukey essentially used k = 1.0 as the inner fence constant to highlight potential
outliers and k = 2.0 as the outer fence constant to highlight extreme outliers. Through
repetition and experience, Tukey had altered and finalized these constants to k = 1.5 and
k = 3.0 for the inner and outer fence constants, respectively, by the time he released his
book, Exploratory Data Analysis [15].

Within a decade, the boxplot had become a widely used tool for EDA and had been
implemented into several statistical software packages. However, while Tukey had settled
on inner and outer fence constants of k = 1.5 and k = 3.0, respectively, these were not uni-
versally accepted and many software packages were using different constants to construct
boxplots in the software as well as slightly differing definitions in finding the quartiles. The
inner and outer fence constants differed considerably from k = 1.0 and 1.5 to k = 1.0 and
2.0, k= 1.5 and 3.0, and even k = 2.0 for the inner fences. While an inner fence using
k = 1.0 flags potential outliers at a very high rate, in 50% of Gaussian samples, an inner
fence using k = 2.0 only does so in approximately 10% of samples, while an inner fence
using k = 1.5 flags potential outliers in 25% of samples [7]. The question of which fence
constants to use in boxplot construction seemed to be more of an arbitrary selection than
one based on mathematical or statistical considerations, relying on the type of data and
needs of the analysis. This may be best summarized as an idea that it is more important not
to miss any potential outlier than to avoid casting doubt on a good observation [8]. The aim
of Frigge, Hoaglin, and Iglewicz in 1989 was to bring the differing fence constant selection
and methods of boxplot construction into a standardized definition used across statistical
software platforms, now universally using Tukeys fence constants of k = 1.5 and 3.0 as the
default values. While these constants are now the standard in the construction of boxplots,
their properties have continued to receive little formal appraisal [3].

3. Fairly Symmetric Assumptions and the Fence Constant

While the boxplot is extremely useful for quickly and efficiently visualizing distributions
of sample data and highlighting potential outliers, its usefulness can be hindered by an
underlying assumption of symmetry in the data. For data that are fairly symmetrically
distributed, a boxplot based detection method works very well. When applying Tukeys
boxplot to the standard Normal distribution, the inner fences are located at approximately
42.7, leaving an area of 0.0035 in each tail of the distribution. So, for a Gaussian sam-
ple, we would expect that only 0.7% of the data would be flagged as potential outliers.
While there is no formal distinct definition of an outlier, this seems to be an appropriate
representation of the idea of extreme value detection. For instance, another rule of thumb
for outlier detection is the three-sigma rule, which states that outliers are values that are
more extreme than three standard deviations away from the mean of a distribution. When
applying this rule to the standard Normal distribution, we have an area of 0.00135 in each
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tail, with the expectation that 0.27% of data in a Gaussian sample should be considered as
extreme values compared to the characteristics of the distribution. Had the three-sigma rule
been used in Tukeys formulation of boxplot outlier rules, the necessary constant to align
the boxplots inner fences at these points would have resulted in a constant of k = 1.723903.
Although not formally stated, Tukey may have had this idea in mind when finalizing the
fence constants, possibly settling on k = 1.5 for intuitive reasons. In his book Exploratory
Data Analysis, Tukey asserts that everything illustrated in the book can be done with pencil
and paper and the only tools the illustrator used were a pen and a straightedge. He also
maintains that absolute precision and extended decimal places are not entirely necessary in
the book while addressing rounding, cutting, and decimal points at the very beginning of
the first chapter. It is entirely possible that he was aware of the resulting three-sigma con-
stant of k = 1.723903, but chose k = 1.5 not only to pull the fences in slightly, adjusting for
sampling error witnessed through repetition and experience, but also for its inherent ease
of use in calculation, ultimately given by

f=q—1510R and  f}=q3+1.5I0R,

with IQR denoting the interquartile range, and ¢; and g3 denoting the first and third quar-
tiles, respectively.

3.1 A Possible Formal Justification of 1.5

Fairly recently, a justification of the use of k = 1.5 as the inner fence constant was presented
by Dumbgen and Riedwyl [6]. They present the idea that, presumably, everyone would
suspect a data set to contain outliers or be highly skewed if the sample mean falls outside
of the interval set by the interquartile range. Defining the five number summary as in Table
1 below,

Table 1: Five Number Summary

Minimum First Quartile Median Third Quartile Maximum
q0 q1 q2 q3 q4

the authors begin with a proof that the sample mean will always fall between

qQo+q1+q2+g3 and q1t+q92+q93+qa
4 4 ’

and subsequently set bounds for the fences defined by

qOJréIlICIer%ZqI and 611+6121Q3+614§q3

By rearranging these inequalities, the lower and upper fences are defined, respectively, as
1" =q—I0R—(q2—q1)  and U =aq3 +10R+ (43— q2)-

It is noted that if the median is in the center of the box, i.e. the data are symmetric, then
these fences coincide with those of Tukey with a fence constant of k = 1.5.
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4. Skewed Distribution Failure

The above modification of the boxplot does seem to present a justification for the use of 1.5
as the fence constant for symmetric data, however its characteristics stem from an inherent
failure in Tukeys boxplot to accurately flag outliers in data that are asymmetric. While
Tukeys boxplot is an extremely useful tool for quickly visualizing distributions of one or
several univariate samples, the outlier detection rules are only effective for data that are
at least fairly symmetric. When applied to asymmetric, highly skewed data, the rate of
flagged outliers tends to increase beyond acceptable bounds. For instance, while only 0.7%
of the area under the standard Normal distribution falls beyond the established fences, the
same boxplot applied to a Chi-squared distribution, with one degree of freedom, results in
a lower fence at x = —1.73 that extends beyond the range of the distribution and an upper
fence at x = 3.156 that leaves 7.57% of the distribution beyond the upper fence. So, for data
from highly skewed distributions, a traditional boxplot flags an alarmingly high number of
potential outliers, most of which should be expected to occur naturally in a highly skewed
distribution.

Much research has been dedicated in recent years to modifying the boxplot to account
for data from skewed distribution, with the earliest notable contribution from Kimber in
1990. Kimber introduced a modification to account for skewness by using the upper and
lower parts of the interquartile range by splitting the interquartile range at the median. Data
from a right-skewed distribution should naturally have right-skewed quartiles respective to
the median, such that (g3 — ¢2) is larger than (g,q)), with the opposite holding true for
left-skewed distributions. It is this reasoning that led to Kimber’s modified fences,

f=qa—-c2(@—q)] and  ff=g+c2(g3— )],

with ¢ generally taken to be ¢ = 1.5 [11]. By splitting the interquartile range, these fences
are created by adjusting for asymmetry observed within the interquartile range to account
for overall skewness in the data. Also, if the data are symmetric, these fences are iden-
tical to those obtained from Tukey’s boxplot. While this modification does increase the
performance of outlier detection for skewed distributions, the increase is only slight. Ap-
plying Kimber’s boxplot to the same Chi-squared distribution, with one degree of freedom,
as above, the lower fence is located at x = —0.959, still slightly below the range of the
distribution, and the upper fence is located at x = 3.928, leaving 4.75% of the distribution
beyond the upper fence. A slight improvement, yet still seemingly unacceptable, Kimber’s
idea of splitting the interquartile range has been a basis for much of the ensuing research
on the subject, including Dumbgen and Riedwyl’s modification highlighted earlier.

Further research into refining the boxplot for use with skewed distributions, many using
Kimber’s ideas as a basis or comparison, seem to overcomplicate the issue by introducing
complex formulas for the fences, with or without added dependent variables, and making
assumptions on the underlying distribution. Barnett and Cohen introduced two new modi-
fications to the formulations of the fences, labeled as the Weibull fences and the Lognormal
fences [1]. Both of these modifications rely on an assumption of the underlying distribution
of the data. Since they were meant to be used with a very specific type of data, lifetime data,
the distribution assumption is justified for their purposes. In general, however, assumptions
on the underlying distribution of the sample data are rarely justified. The comparison of
these modifications used on the lifetime data showed each to perform better than both the
Tukey and Kimber methods. The Weibull fences are more complicated computationally,
but the Lognormal actually performed better, despite the simplicity of calculation of the
fences as follows,

LN

L 2612( N

q1\2 q3\2
613) o v qQ(Ql)
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While this modification of the boxplot performs well with the lifetime data, when used with
typical skewed or symmetric data, these formulations may overextend the upper fence while
underestimating the lower fence by a vast margin and are unlikely to highlight potential
outliers of any kind.

Another recent modification of the boxplot for skewed data seems to perform fairly
well by making use of a recently introduced robust measure of skewness known as the
medcouple [4]. The subsequent adjusted boxplot includes the dependent variable MC, the
medcouple, in the formulations of the fences, with additional differences in these formula-
tions depending on whether MC > 0 or MC < 0 [10]. This modification, along with many
others that include, among other things, using variable fence constants [5], sequential fence
constants [12], and empirical distributions all attempt to create boxplots that may be more
effectively used with asymmetric data. While such ideas are progressive and enlightening,
they many times seem to push Tukeys original intentions for the simple use of EDA as the
foundation or preliminary first step before confirmatory data analysis into complexity.

5. A New Approach for Skewed Distributions

The idea of splitting the interquartile range introduced by Kimber is very important in ad-
justing the boxplot for use with skewed distributions. Since any inherent skewness in dis-
tribution will be at least somewhat visible throughout the data, a skewed distribution will
result in differing values for the lower and upper parts of the interquartile range. Specifi-
cally, let these interquartile splits be denoted as

SIQR. = (g2 — q1) and  SIQRy = (q3 — q2).

For a symmetric distribution, the values of SIQR;, the lower semi-interquartile range, and
SIQRy, the upper semi-interquartile range, will be equal. However for a positively, or right-
skewed distribution, SIQRy will typically be greater than SIQR;, and for a negatively,
or left-skewed distribution, SIQR; will similarly be greater than SIQRy. While Kimber
suggested replacing the IQR with 2(SIQR; ) in creating the lower fence, and 2(SIQRy) in
creating the upper fence, this adjustment only slightly accounts for the inherent skewness
in the use of boxplots.

The skewness observed within the interquartile range should not be seen as absolute,
but relative. For a highly right-skewed distribution, SIQRy; will be significantly larger in
relation to SIQR;,, with the opposite holding true for left-skewed distributions. In this sense,
for a right-skewed distribution, the distance or value of SIQRy would be less of a measure
of skewness than the ratio of SIQRy to SIQR;.. So, using Tukey’s original definition of the
fences, with Kimber’s idea as a foundation, we can utilize these ratios to more accurately
adjust the upper and lower fences to account for underlying skewness in the data, resulting
in the fences being defined as

SIOR.
SIORy

SIQRU)
SIQR.’"

7S =g, — 1.510R( ) and  f5%=q3+1.5I0R(
Not only does this modification more accurately account for skewness than previous meth-
ods, but, like Kimber’s modification, as well as Dumbgen and Riedwyl’s modification,
when the distribution is symmetric, these fences become identical to those intended by
Tukey as both of these proposed ratio multipliers equal one.

As an example, a random sample from the Chi-squared distribution, with one degree of
freedom, n = 99, was created. The plots in Figure 1 illustrate the differences in fence cre-
ation and the detection of potential outliers among the Tukey, Kimber, and Ratio-Skewed
boxplots. Tukey’s version flags an extraordinary number of outliers just beyond the upper
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Figure 1: Comparison using positively skewed sample data, n = 99

fence, which in this Chi-squared distribution should by no means be considered outliers.
Kimber’s adjustment moves the upper fence farther out to account for skew, yet still leaves
a number of data points collectively just outside the upper fence. The Ratio-Skewed mod-
ification moves the upper fence even farther due to the relative skew witnessed within the
interquartile range, leaving just one extreme data point as a potential outlier. With a sample
of n =99, it seems that leaving one data point as a potential outlier could reasonably be
expected regardless of the underlying and often unknown distribution of the sample.
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6. Simulation Study

In order to compare the effectiveness of the proposed Ratio-Skewed modification against
that of both the traditional Tukey method and Kimber’s method, a simulation study was
performed. Using randomly generated data from various known distributions, with vary-
ing levels of asymmetry, 1000 simulations were run for each sample size n, within each
distribution. The results, seen in Table 2 represent the mean proportion of data points
flagged as a potential outlier using the three methods. As n increases, this percentage es-
sentially approaches the probability of a Type I error for each respective distribution. For
the symmetric or fairly symmetric distributions, the three methods behave very similarly.
While Tukeys method seems to perform slightly better in general for these distributions,
the difference in the three is negligible. For the more skewed distributions, the difference
in the three methods is easily seen, with the Ratio-Skewed approach outperforming both
the Tukey and the Kimber methods. The most striking result however is that, regardless
of the shape of the underlying distribution, the Ratio-Skewed method results in an almost
constant percentage of data points flagged as outliers for similarly sized samples of n. As n
increases, these percentages of potential outliers approach values at or near the 0.01 to 0.02
mark throughout, a percentage that may be expected in any distribution, not too extreme,
nor too forgiving.

4011



JSM 2013 - Section on Statistical Graphics

Table 2: Mean Proportion of Data Points Flagged as Outliers

Distribution n Tukey Kimber | Ratio-Skewed
Normal(0,1) 10 0.0423 0.0581 | 0.0685
20 0.0238 0.0332 | 0.0452
30 0.0169 0.0259 | 0.0353
50 0.0137 0.0182 | 0.0251
100  0.0104 0.0132 | 0.0176
500  0.0075 0.0079 | 0.0087
1000 0.0073 0.0076 | 0.0081
Chi-Squared(1) | 10 0.0819 0.0673 | 0.0542
20 0.0809 0.0609 | 0.0389
30 0.0809 0.0584 | 0.0347
50 0.0782 0.0546 | 0.0284
100  0.0767 0.0497 | 0.0211
500 0.0764 0.0484 | 0.0171
1000 0.0753 0.0476 | 0.0165
Chi-Squared(20) | 10 0.0400 0.0548 | 0.0651
20 0.0260 0.0341 | 0.0438
30 0.0241 0.0284 | 0.0367
50 0.0187 0.0200 | 0.0241
100  0.0159 0.0150 | 0.0168
500 0.0144 0.0116 | 0.0097
1000 0.0140 0.0111 | 0.0090
Gamma(0.5,0.1) | 10 0.0823 0.0696 | 0.0567
20 0.0775 0.0598 | 0.0392
30 0.0800 0.0569 | 0.0321
50 0.0789 0.0534 | 0.0275
100  0.0761 0.0490 | 0.0203
500 0.0753 0.0474 | 0.0167
1000 0.0757 0.0477 | 0.0165
F(90,10) 10 0.0665 0.0715 | 0.0743
20 0.0583 0.0522 | 0.0515
30 0.0552 0.0485 | 0.0449
50 0.0542 0.0445 | 0.0374
100 0.0531 0.0416 | 0.0316
500  0.0521 0.0395 | 0.0267
1000 0.0516 0.0394 | 0.0268

7. The Ratio as a Measure of Skewness and Bowley’s Coefficient

The introduction of the ratios of the /QR splits into Tukey’s original boxplot formulation
have so far been shown to be a simple and effective method to adjust the fences accordingly
due to the underlying skewness in the data. In fact these lower and upper ratios, defined as

_ SIQR;,
~ SIQRy

_ SIQRy
~ SIQR;’

L an U

respectively, can be shown to be measures of skewness themselves, centered around a value

of 1. For a perfectly symmetric distribution, these two splits will be equal, leading to the
ratio multipliers in the proposed boxplot formulation being equal to one, which then leaves
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Tukey’s original formulas for the fences. Likewise, differences in the splits will increase or
decrease the ratios slightly above or below one, extending or retracting the fences in order
to control unnecessary flagging of outliers, or false positives.

7.1 The Sum of the Ratios

In simulations it was seen that the sum of these upper and lower ratio multipliers, Ry + Ry,
always had a minimum value of 2. For a perfectly symmetric underlying distribution, each
of the ratios would be equal to one, so the sum of the upper and lower ratios would equal
2. However, deviations from symmetry inflate this value, especially noticed in skewed un-
derlying distributions, and it seems that the sum of these two ratios can be a nonparametric
measure of skewness in the data. In fact, this sum reduces down to a measure that will
always be greater than or equal to 2. Defining the upper ratio as Ry and the lower ratio as
R;, the sum of these ratios can be shown to reduce to the following,

_ (IOR)?
Ru R = oRy) 10k >

It should be noted that if the data are perfectly symmetric, then IQRy = IQR; = %,
leading to a minimum value of this sum, which is a value of 2. As these IQR splits begin
to differ, this sum increases to values greater than 2. Keeping in mind that IQRy + QR
always equals I/QR, if one of these semi-interquartile ranges increases, the other decreases,
leading to larger overall values for this sum of the ratios. Thus, the higher the value of this

sum, the more skewness is being observed in the data.

7.2 The Difference of the Ratios

Similar to the case of the sum of the ratios, the difference of these ratios can also be seen
as a measure of skewness. While the sum of these ratios equal 2 in the perfectly symmetric
case, the difference of these ratios will equal O in the perfectly symmetric case and this
difference can be shown to reduce to following formulation,

R R _ 10R(q3+q1 —2q2)
v T (10Ry)(IORy)

An interesting result here arises when recognizing the form of Bowley’s coefficient [2],
in itself a nonparametric measure of skewness defined by B, = BEN=29 o equivalently

341
B. = %1;2612’ centered around 0 and taking values between —1 and 1 to indicate under-

lying left and right skewness, respectively. With this in mind, the previous formulation of
the difference in the ratios can be shown to be equivalent to

Ry —R; = (RU +RL+2)BC

So, the difference in the ratios yields Bowley’s coefficient for skewness multiplied by
a shifted sum of the ratios found earlier. As the sum of the ratios was found in itself to
be a measure of skewness with a minimum value of 2, the first term here is a measure of
skewness with a minimum value of 4. As the Bowley coefficient is known to be centered
at 0, this first term multiplier is affecting the spread of the Bowley coefficient such that,
under normal conditions, the difference of the two ratios is centered at 0 with a spread
of at least 4 times that of Bowley’s coefficient alone. A graphical comparison follows,
using a relatively large sample size of n = 999 for each of 10000 iterations, each random
sample of Uniform(0,1) variables yielded a value for Bowley’s coefficient and a value for
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Figure 2: Comparison of Bowley’s Coefficient and Ratio Difference, n = 999

the difference of the ratios. The results are shown in Figure 2. This difference in the ratios
is inherently more sensitive to deviations from symmetry than Bowley’s coefficient due to
the presence of the sum of the ratios, along with Bowley’s coefficient, embedded within
this difference.

7.3 Redefining the Ratios

Using the previous result from the difference of the ratios, these ratios can then each be
redefined in terms of Bowley’s coefficient,

1B _1+B,
T 1+B, Y7 1-B.

L

Redefining the ratios in this way, the proposed boxplot fences are equivalent to

1+ B,
1-B,

1-B,

d RS — 1.5I0R
118, an v =03+ (0

RS — Q1 — 1.5IQR

This equivalent form of the proposed Ratio-Skewed fences further show that the ratio
multipliers of the /QR splits are indeed incorporating a measure of skewness into the adjust-
ment of the upper and lower fences of the boxplot. For a perfectly symmetric distribution,
the value for Bowley’s Coefficient, B., equals 0, leading to these ratio adjusted multipliers
being equal to 1 and reverting the fence formulation back to Tukey’s intended fences.
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8. Conclusion

In the thirty-five years since Tukey’s Exploratory Data Analysis, the use of the boxplot
as a simple yet effective method of graphical analysis and comparison has become com-
monplace throughout various fields of study involving data. While there are today more
sophisticated methods to graphically explore sets of data, the boxplot remains relevant due
to its simplicity, ease of interpretation, and relative effectiveness. However, it is not without
its limitations, specifically its inability to effectively point out potential outliers in data that
are inherently skewed. This issue has been researched thoroughly for many years, with pos-
sible solutions to the problem becoming ever more complex. Many of these highly complex
solutions have definite applications when dealing with specific types and sizes of data due
to underlying assumptions, but the recent complex approaches to finding a single defini-
tive modification of the boxplot for general use seem to have increasingly lost touch with
Tukeys original intentions of simplicity and ease of interpretation in boxplots and EDA in
general.

The Ratio-Skewed modification presented in this paper is a potential method of creating
boxplots that work effectively regardless of underlying skewness or sample size. Through
simulation and practice this modification has been shown to be quite useful. Not only is
it shown to identify outliers at roughly the same rate throughout varying distributions, but
is also as simple and easy to interpret as the standard boxplot used today. By retaining
the basic structure of Tukey’s boxplot, the addition of the SIQR ratios in order to measure
and adjust for underlying skewness is an enhancement with an apparently useful impact
that can immediately be implemented throughout research and industry, as well as in the
classroom, with ease.
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