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Abstract 
The purpose of this study is to utilize data mining to discern hidden patterns in the joint biomechanics and 

electromyography (EMG) data of individuals at risk for Anterior Cruciate Ligament (ACL) injury. While 

it is important to know which biomechanical factors contribute to movement, it is also critical to 

determine how they function differently in individuals at high and low risk for ACL injury.  In this study 

a large dataset of experimental kinetic and EMG data was used to determine relationships among these 

biomechanical variables and ACL injury risk.  We assess this relationship using functional data analysis 

techniques that utilize statistical methods, such as principal component analysis (PCA), to isolate such 

relationships.  The end goal is to use the resulting models to identify individuals at high risk for ACL 

injury. 
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1. Introduction 
 

Statistical analysis and data mining techniques may provide one avenue to identify available 

neuromuscular countermeasures to reduce an athlete’s risk of ACL injury. In general, researchers have the 

capacity to collect and calculate a significant amount of data from a cadre of measurement devices and 

computational modeling tools. Yet, not every piece of data is meaningful or essential to answering a given 

research question [1]. The key is to extract or “mine” the relevant features within these large, multivariate 

datasets [1]. Traditionally, researchers in the ACL injury prevention field record discrete measurements, 

such as mean knee flexion angle at impact and knee flexion range of motion following impact [2, 3]. Peak 

abduction knee angle and knee abduction moments within the impact phase (20-30%) of stance [4] are 

also analyzed to make clinical assessments of human movement. However, additional information can be 

gained by analyzing biomechanical waveforms, such as joint motion and muscle activations over time, to 

capture the variability in muscle recruitment strategies and/or human movement performance. Thus, 

principal component analysis (PCA) and wavelet analysis will be employed to detect movement 

abnormalities in large biomechanical datasets. 

 

Principal component analysis (PCA) is a valuable tool in detecting variability in human movement [1, 5, 

6]. PCA is a statistical technique that reduces large, high-dimensional datasets to a smaller subset of 

orthogonal vectors called principal components. From these components it is possible to detect the 

dominant features and sources of variability within the waveform data. It has been successful in clinical 

applications to 1) aid the identification of differences in lifting kinematics and kinetics between healthy 

individuals and populations with lower back pain, 2) distinguish between the frontal plane kinetics of 

male and female subjects during unanticipated cutting maneuvers, and 3) assess the success of two total 

hip arthroplasty surgical approaches in restoring the normal gait patterns post-surgery [7-9]. The success 

of PCA in the aforementioned clinical applications provides precedent for its use in identifying specific 

muscle recruitment strategies distinct to populations classified as low and high risk of ACL injury. 
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Wavelet analysis can also be used to detect anomalies in time series. This approach involves reducing the 

original waveform into wavelets, shortened versions of the original waveform to identify and analyze 

patterns and/or abnormalities in the data [10]. With respect to the human body, wavelets have been used 

to analyze brain activity, heart rhythms, the onset of seizures, myocardial infarctions and to detect hidden 

features and/or elements within the genetic code. However, its application in human movement is lesser 

known [11-13]. This study will use this technique to analyze muscle activity derived from 

electromyography (EMG) data with the aim of detecting abnormalities associated with at-risk individuals. 

 
Wavelet analysis is a preferred method of time series analysis over alternative techniques; such as, 

Fourier analysis and autoregressive integrated moving average (ARIMA) models, because wavelets 

preserve both the spatial and temporal components of the original signal, whereas in the case of the 

Fourier analysis only the frequency component is retained [10]. There are a multitude of wavelet analysis 

techniques that can be applied; however, this study will use one of the simplest [14]. The Haar wavelet is 

a discrete waveform transform that divides the signal into a trend and fluctuation. Each of these signals is 

half the length of the original signal thus resulting in multiple cycles of calculating trends and fluctuations 

that can be analyzed to detect abnormalities hidden in these various sub-signals. While the temporal plots 

of the trend and fluctuation data will be examined to identify abnormalities, an additional technique -

Order Recurrence Plots (ORPs) - will be used as a method for visually observing the anomalies in the data 

captured by the Haar wavelet analysis. ORPs are used to analyze dynamic systems where the focus is to 

distinguish between ordered patterns or chaos in the data or to determine the point of transition between 

ordered and chaotic behavior [15]. Utilizing ORPs in combination with Haar wavelets will allow us to 

further determine if there are any patterns in the Haar trend and difference data that can be associated with 

injury risk. In this study, Haar wavelet analysis and ORPs will be used to explore EMG data for muscle 

activity abnormalities in the six muscles surrounding the knee. 

 

PCA will also be used in conjunction with this wavelet analysis to detect unique features that earmark at- 

risk individuals prone to ACL injuries. First, PCA will be used to correlate changes in knee kinematics 

and kinetics to muscle function via EMG data during a single-leg jump landing task (Figure 1). Next, 

wavelet analysis will be used to extract hidden patterns in EMG data and map them to the PCA result. It is 

our view that such an approach can be quite fruitful. 

 
Figure 1. (a) Subject performing the experimental single-leg jump landing protocol in the laboratory. (b) Simulation 

of single-leg jump landing task using a model with 37 degrees-of-freedom and driven by 92 muscle-tendon actuators. 
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2. Methodology 

2.1 Analytical Techniques 
2.1.1. Principal Component Analysis 

PCA was used to identify waveform variability from the joint kinetic data for all subjects during the weight 

acceptance (WA) phase of single-leg jump landing. To perform the analysis, matrices were created where 

the time during the WA phase of landing consists of 101 data points contained in seven kinetic variable 

columns (n = 7). Two trials were conducted for each of seven subjects. Thus the total experimental sample 

space was represented by seven matrices that included the sagittal, frontal and transverse plane hip, knee 

and ankle kinetics for the 14 trials that the subjects performed.  

 

PCA is a multistep process. For each variable of interest in the study, the first step involved subtracting the 

mean from each observation. Next, the covariance matrix was used to calculate the eigenvalue-eigenvector 

pairs that represented the principal components (PC) loadings and principal components (PCs), 

respectively.  The PCs were placed in order from highest to lowest based on their associated loadings.  PC 

1 was the PC with the largest associated loading that accounted for the greatest percentage of variance in 

the data.  The set of PCs that explained at least 90% of the variance were used for further analysis.  The 

90% criteria was used instead of the Cattell and Kaiser criteria, since the latter usually over or under 

estimates component levels needed to appropriately explain waveform variance [16].  From the PC 

loadings and PCs, PC scores are generated that represent the data in the new rotated space [16].  For this 

study the variable of interest was the knee abduction moment.  This variable was selected because the 

elevated knee abduction moment during landing has been found to increase ACL strain in cadaveric knee 

models [17] and predicts ACL injury rates [18]. The PC loadings for the knee abduction moment will be 

utilized to determine a relationship between joint biomechanics waveform variability and muscle activation 

and to identify differences in muscle activation strategies used by subjects at varying risk of ACL injury 

during the single-leg jump landing. All of the aforementioned analyses were performed using Matlab for 

Windows (Matlab R2012a, The Math Works, Natick, Massachusetts, USA).  

 

2.1.2. Wavelet Analysis 

Fourteen EMG data trials were collected from the pool of athletes for the analysis. EMG waveforms for 

six of the muscles that cross the knee - the vastus medialis, vastus lateralis, medial and lateral hamstrings 

and medial and lateral gastrocnemii - were analyzed during the WA phase of landing. Haar wavelet 

analysis was performed on each waveform individually calculating the trend and fluctuation signals. The 

trend signal is the average of successive data points from the (a) original waveform  divided by square  

root of two (Eq. 1) [14]. 

                                                                      (1) 

 

The fluctuation (d) is the difference between successive data points again multiplied by the square root of 

two (Eq.2) [14]. 

 

                                   (2) 

 

Four reductions of the data yield four trends (a1-a4) and four fluctuation (d1-d4) wavelets for each muscle 

waveform. This analysis was conducted in Matlab (Matlab 7.8, The Math Works, Inc., Natick 

Massachusetts, USA). 

 

ORPs were created for the unfiltered EMG data, the Haar trends (a1-a4) and fluctuations (d1-d4) data. 

The ORPs were constructed using the following threshold relationship (3)[15].  
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Whenever the difference between the two signals  falls within the boundary defined by (ε) 

is assigned a value of one. However, if this difference lies outside of the boundary, it is assigned a value 

of 0 via Equation 4 [15]. In ORPs, the ones are represented by the color black and zeroes are in red. The 

ORPs were assessed visually to determine if they were symmetric along the main diagonal line.  This was 

used to indicate whether similar muscles produced analogous jump landing movement. The symmetry 

observed in the plots will be quantified using the kendall tau rank correlation that measures the correlation 

between datasets (Equation 5) [19]. This analysis was also conducted in Matlab (Matlab 7.8, The Math 

Works, Inc., Natick Massachusetts, USA). 

 

 
 

pairs 

2.2 Experimental Protocol 
Thirty-four Western Australian Amateur Football players were recruited to complete a single-leg jump 

landing protocol. Joint kinematics and ground reaction force (GRF) measurements were obtained from the 

experimental motion capture data collected during the protocol. For the single-leg jump landing protocol, 

subjects were instructed to jump from their preferred leg, and while in flight, an Australian football was 

randomly swung medially or laterally to the subjects approach direction [20]. The height of the ball was 

approximately 90% of each subject’s maximal vertical jump height.  After the subject had successfully 

grabbed the football in flight, they were instructed to contact the force platform with the same right leg 

from which they jumped. The single-leg jump landing trial where the Australian football was swung 

laterally or away from their stance leg was used for further analysis. Seven athletes (age 20.7 ± 1.8 years; 

mass 87.9 ± 5.1kg; height 1.87 ± 0.1m) were randomly selected from the cohort, which has been 

described previously [21].  All of the experimental procedures were approved by the University of 

Western Australia Human Research Ethics Committee and all subjects provided their informed written 

consent prior to data collection.   

 

During the single-leg jump landing task, experimental kinematic marker trajectories, GRF, and surface 

electromyography (sEMG) data were collected from each subject.  Three-dimensional, full-body 

kinematics were recorded using a12-camera, 250 Hz VICON MX motion capture system (VICON Peak, 

Oxford Metrics Ltd., UK) [22, 23]. The GRF data were synchronously recorded at 2,000 Hz using an 

AMTI (Advanced Mechanical Technology Inc., Watertown, MA) 1.2 x 1.2m force platform. Both the 

kinematic and GRF data were low-pass filtered at 20 Hz using a zero phase-shift 4
th
-order Butterworth 
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digital filter in Workstation (ViconPeak, Oxford Metrics Ltd., UK). Additionally, sEMG data were 

collected at 2,000 Hz for six muscles: vastus medialis, vastus lateralis, medial and lateral gastrocnemius 

and medial and lateral hamstrings.  

 

Multiple three-dimensional 14-segment, 37 degree-of-freedom (DoF), 92 muscle-tendon actuated subject-

specific models were created in OpenSim 1.9.1 to generate simulations of the subjects performing single-

leg jump landings (Fig. 1) [24]. Each simulation was generated using a three-step process. First, the 

model’s segment lengths and mass were scaled to each subject. Second, joint kinematics were calculated 

from experimental kinematic marker data using inverse kinematics (IK). Third, residual reduction analysis 

(RRA) was used to create dynamically consistent simulations with the experimentally recorded ground 

reaction forces [22]. These dynamically consistent simulations were analyzed during the weight-

acceptance (WA) phase of single-leg jump landing. The WA phase of landing was analyzed since this is 

the period when knee abduction and internal rotation moments acting on the knee are the highest and it is 

assumed that the ligament is at the greatest risk of injury [22, 23].  
 

3. Results 

3.1 Principal Component Analysis  
In the study, principal components analyses were conducted on the muscle moment measurement data 

captured for two experimental trials – Trial A and Trial B – for each of the fourteen participants. Principal 

component loadings for the knee abduction moment indicated that Trial B was a strong source of 

variability (loading = 0.40) whereas Trial A was a smaller value (loading = 0.05) given that Trial B fell 

above the 0.25 PC loading cutoff line (Figure 2). Furthermore, Trial B was a strong source for variability 

(loading = -0.42) and again Trial A was a smaller source of variability (Loading = -0.04) for knee internal 

rotation moment, while all subject trials showed similar loadings for knee flexion moment.  

 

 
Figure 2. Principal component loadings for lower extremity joint biomechanics during single-leg jump landing task. 

The dotted red line represents the PC loading cutoff value of 0.25. Trials that fall above the line are designated at 

strong sources of variability while trials that fall below the line are designated as smaller sources of variability. The 

labels A and B represent trials that will be used for the subsequent analyses. 
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3.2 Wavelet Analysis 
The preliminary Haar wavelet analysis of the vastus medialis EMG data for the individuals of Trials A 

and B revealed an interesting pattern. With Trial A (Figure 3) a significant spike precedes a smaller one 

while the converse holds for Trial B (Figure 4).  Such cyclical patterns were also observed in the other 

muscles; however, none occurred for both subjects. 

 

 
Figure 3. Comparison of unfiltered EMG data (a) and the first (b) and second (c) trends of Haar wavelet 

transformed EMG analyzed during the weight-acceptance phase of single-leg jump landing for Trial A. 

 

 
Figure 4. Comparison of unfiltered EMG data (a) and the first (b) and second (c) trends of Haar wavelet 

transformed EMG analyzed during the weight-acceptance phase of single-leg jump landing for Trial B. 

 

Analysis of the companion ORPs likewise confirmed the presence of these cyclical patterns in the data as 

indicated by repeating checkerboards (Figures 3-4). The larger the structure and/or pattern the more 

ordered the data. However, the appearance of smaller more grain like patterns and structures indicate that 

the data are more chaotic. The vastus medialis and medial hamstring displayed a more ordered pattern 

than the vastus lateralis, lateral hamstring and gastrocnemii muscles for Trial A when plotted against 

themselves. All six muscles displayed similar, moderate-sized patterns for Trial B also when plotted 

against themselves. Yet, the plots for each muscle plotted against itself was symmetric about the diagonal 
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(bottom left corner to top right corner) to represent that the two signals exhibited the same pattern, which 

is expected when plotting a signal against itself. 

 

The ORPs for Trial A and B provide a within muscle group analysis. Such plots of the medial and lateral 

quadriceps (vasti muscles), hamstrings and gastrocnemii muscles reveal that although functional similar 

muscles within the muscles groups do perform exactly the same, there are some asymmetries in the ORPs 

for both trials (Figures 5-6).   

 

The kendall tau rank correlation was used to quantify this relationship between muscles noted in the 

ORPs (Tables 1 and 2). The kendall tau rank correlation verified the symmetric relationship when 

analyzing the muscles against themselves recording a value of 1 (perfect agreement between two 

datasets). The medial and lateral gastrocnemii muscles had the largest kendall tau value for the within 

muscle analysis at 0.35 revealing that those muscles were moderately correlated for Trial B, while the 

medial and lateral vasti also displayed a weaker, positive correlation of 0.28. However, the medial and 

hamstring muscles were weakly negatively correlated at -0.16. For Trial A, the quadriceps, hamstrings 

and gastrocnemii muscle groups were all negative, weakly correlated at -0.20, -0.19 and -0.15, 

respectively.  

 

 
Figure 5. Order recurrence plots of the Haar 1 transform of the medial and lateral vasti, hamstring and gastrocnemii 

muscles for Trial A. The first two rows of ORPs are plots of the individual muscles plotted against themselves with 

the third row of the medial and lateral vasti, hamstring and gastrocnemii plotted against each other. The dotted green 

lines are utilized to assess the symmetry within the plot to evaluate the synchronization between two signals. 
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Figure 6. Order recurrence plots of the Haar 1 transform of the medial and lateral vasti, hamstring and gastrocnemii 

muscles for Trial B. The first two rows of ORPs are plots of the individual muscles plotted against themselves with 

the third row of the medial and lateral vasti, hamstring and gastrocnemii plotted against each other. The dotted green 

lines are utilized to assess the symmetry within the plot to evaluate the synchronization between two signals. 

Table 1: Kendall tau rank correlation coefficients between the Haar 1 transform of the medial and lateral vasti, 

hamstrings and gastrocnemii muscle groups for Trial A. 

Haar 1 Trend Vastus 

Medialis 

Vastus 

Lateralis 

Medial 

Hamstring 

Lateral 

Hamstring 

Medial 

Gastrocnemius 

Lateral 

Gastrocnemius 

Vastus 

Medialis 1.00 -0.20 0.23 -0.22 0.17 0.20 

Vastus 

Lateralis -0.20 1.00 -0.32 0.25 0.10 -0.20 

Medial 

Hamstring 0.23 -0.32 1.00 -0.19 0.13 0.16 

Lateral 

Hamstring -0.22 0.25 -0.19 1.00 0.11 -0.15 

Medial 

Gastrocnemius 0.17 0.10 0.13 0.11 1.00 -0.15 

Lateral 

Gastrocnemius 0.20 -0.20 0.16 -0.15 -0.15 1.00 
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Table 2: Kendall tau rank correlation coefficients between the Haar 1 transform of the medial and lateral vasti, 

hamstrings and gastrocnemii muscle groups for Trial B. 

Haar 1 Trend Vastus 

Medialis 

Vastus 

Lateralis 

Medial 

Hamstring 

Lateral 

Hamstring 

Medial 

Gastrocnemius 

Lateral 

Gastrocnemius 

Vastus 

Medialis 1.00 0.28 0.00 0.18 0.06 0.04 

Vastus 

Lateralis 0.28 1.00 0.02 0.26 -0.07 -0.11 

Medial 

Hamstring 0.00 0.02 1.00 -0.16 -0.29 0.31 

Lateral 

Hamstring 0.18 0.26 -0.16 1.00 0.03 -0.09 

Medial 

Gastrocnemius 0.06 -0.07 -0.29 0.03 1.00 0.35 

Lateral 

Gastrocnemius 0.04 -0.11 0.32 -0.09 0.35 1.00 

 

 

4. Discussion 
These results demonstrate that the individuals in Trials A and B exhibited alternate knee abduction 

biomechanics during single-leg jump landing based on their knee abduction moment from the PC loading 

values. Utilizing wavelet analysis to investigate muscle function along with PCA enhances muscle 

function differences during landing. Muscle patterns of Trial A showed minimal correlation between the 

medial and lateral muscles for the quadriceps, hamstring and gastrocnemii muscles. Such patterns in Trial 

B showed a more moderate correlation particularly between the gastrocnemii muscles. A negative value 

for the medial and lateral muscles for Trial A indicated that those muscles were inversely correlated. 

 

Anecdotally, ACL injuries are characterized by a medial collapse of the knee. Hence it is possible that at 

the muscular level there is an imbalance of the medial and lateral muscles that support the knee; such as, 

the quadriceps, hamstrings and gastrocnemii muscles. Equal activation and force production of the medial 

and lateral muscles may be the key to resisting the medial collapse of the knee, maintaining joint stability 

and potentially reducing ACL injury risk. Together the ORPs and kendall tau rank correlation both 

visually and quantitatively, detected the muscle function of individuals during landing. While neither 

individual displayed strong correlation between the medial and lateral quadriceps, hamstrings and 

gastrocnemii muscles, the moderately strong relationships between the gastrocnemii muscles and even the 

quadriceps muscles could indicate a reduced risk of ACL injury for the individual in Trial B based on 

moderate medial and lateral muscle balance and/or symmetry.  

 

The individual in Trial B was identified as the dominant source of variability in the group, which upon 

initial analysis via PCA, indicated that this individual was at an elevated risk of injury compared to the 

other individuals due to their differing knee abduction waveform biomechanics. However, further analysis 

uncovered that this individual actually exhibited moderate medial and lateral muscle symmetry, which 

would suggest reduced ACL injury risk. PCA is a technique that is used to identify the source of 

variability within a dataset; however, it is up to the researcher to determine how to interpret the results. In 

this study, it was easy to quickly classify the individual responsible for Trial B, which was identified as 

the source of variability, as an individual at elevated risk for ACL injury; yet, additional analysis 
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indicated the opposite. While this individual was displaying alternate knee biomechanics, their 

biomechanics were potentially the biomechanics of an individual at low-risk for injury, within a dataset of 

individuals that were at high-risk of injury, which would make their waveform stand out. This highlights 

why researchers need to be careful when interpreting their data and why it is useful to employ multiple 

techniques to validate their interpretations.  

 

Future work will involve analyzing the additional 20 kinematic, kinetics and EMG trials to determine if 

the trends here are evident for all individuals. Additionally, alternate wavelet analysis techniques, 

including Daubechies and Continuous Wavelet Transform (CWT), will be explored to determine if they 

can provide added insight into varying muscle function via EMG waveform analysis. However, the results 

from this study indicate the potential of data mining techniques, such as PCA and wavelet analysis, to 

identify individuals at high risk for ACL injury. 
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