
Processing Blurred Images With Random Data

Walid Sharabati ∗ Mohamed El-Gebeily †

Abstract
The objective of image deblurring is to reduce the noise generated when the lens is out of focus,

incoming light is bent, or object moves while shutter is open. In this work, we present an abstract
analysis of Euler-Lagrange equations associated with the total variation model based on Tikhonov
regularization with random input data to reconstruct the original image. The optimizer produces
a nonlinear system of elliptic type equations. To this end, we introduce a stochastic smoothing
operator and develop a stochastic version of the Euler-Lagrange equations defined on suitable finite
dimensional deterministic and probability spaces. We incorporate spectral expansion techniques
such as the KL expansion to eliminate the dependency on the random effect.

Key Words: Image deblurring, image reconstruction; stochastic smoothing operator; stochastic
blurring operator; KL expansion; total variation.

1. Introduction

Recording an image that is sharp and clear is sometimes challenging, and it seems that per-
turbations are inevitable. Brain CAT scans, for example, may contain blurry regions, and
ultrasound images may have unclear object. This may be a result of various reasons. In
many cases the the lens is out of focus lens, the incoming light is bent, or the object moves
while shutter is open. The objective of image processing is to reduce the noise generated in
the image and to produce a sharper image with a better representation and understanding
of the scene.

A lot of times the noise is caused by hardware problems such as malfunctioning pixels
in camera sensors, faulty memory locations in hardware or transmission in a noisy channel,
in which the noise is called impulse noise [10]. Adaptive and multistate median filtering
were among the remedial tools used to treat impulse noise [18]. Noise filtering is an impor-
tant aspect in image deblurring, for example [16] implemented matrix decomposition and
spectral analysis techniques to deblur images.

Alvarez et. al. [3], proposed a nonlinear diffusion model with Gaussian smoothing ker-
nel to detect edges, which consists of a diffusion component acting on the exact image to
smooth it out on both sides of an edge; the algorithm is a selective smoothing of the image
with enhanced edges.

The theory we develop in this paper extends the models suggested in [1, 12, 13, 22, 28,
33, 34], taking into account the stochastic behavior of the smoothing operator operating
on the exact image. It is reasonable to believe that the blurriness is dictated by a random
stochastic process, which produces noise. The random effect generates blurry images that
may be treated as random data. This paper presents an abstract analysis of the total vari-
ation model for blurred images with stochastic components embedded in the smoothing
operator operating on the true image.
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In section 4, we discuss the stochastic behavior of the linear blurring operator operating
on the exact image producing a blurry random image. In this regards, we extend the spaces
and subspaces of the deterministic total variation problem to incorporate the probability
space associated with the random effect of the smoothing operator. We define suitable
measurable Banach and Hilbert spaces for the stochastic differential equation problem.

In section 5, we utilized spectral expansion methods such as the KL-expansion to eliminate
the dependency of the true and blurred image on the random effect. This is done by pro-
jecting the probability space onto the space of polynomials. We obtain a semi-discretized
version of the stochastic total variation problem with respect to the probability subspace.

Finally, in section 6, we utilize Lagrange polynomials to transform the semi-discretized
system to a fully-discretized Euler-Lagrange equations, which can be solved using numeri-
cal analysis techniques such as the cell-centered finite difference, finite element method, or
finite volume scheme.

2. Literature Review

Rudin et. al. [28] presented a model that optimizes the total variation of an image subject to
constraints pertaining to the variability of the noise imposed by Lagrange multipliers, the
showed the the solution converges to a steady state, which is the deblurred image.

Acar and Vogel initially suggested a bounded variation method for the ill-posed operator
equation Au = z [1]. They showed that under mild conditions the total variation

T (u) = ||Au− z||2 + αJ(u)

has a unique and stable minimizer with respect to the functional J(u), the blurred data z,
the operator A, and the parameter α. The work in [1] addresses the existence, uniqueness,
convergence and stability of the non-linear integro-differential system of equations, thus
the deterministic minimizer converges and is stable.

Vogel and Oman [34], later introduced a total variation model based on Tikhonov regular-
ization [30] with additive noise for ill-posed inverse problems to reconstruct noisy, blurred
images, also in [13]. Chang et. al. [12] used Gaussian additive white noise.

z = Ku+ ε, (1)

where z is the blurred data, K is the smoothing operator also known as the linear blurring
operator, u is the true image to be recovered, and ε is the additive Gaussian white noise.
Other resources in the literature propose image deblurring models and algorithms with mul-
tiplicative noise [26].

For the additive noise model in equation 1, let x be a point in the domain D of x, the
smoothing operator K operating on the true image u is defined by

(Ku)(x) =

∫
D
k(x, y) · u(y)dy, x ∈ D,

where D ⊂ R2 is a bounded open domain.
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The total variation with Tikhonov regularization (objective functional) is given by

T (u) =
1

2
‖Ku− z‖2 + α

∫
D

√
|∇u|2 + β2dx, α, β > 0, x ∈ D,

or equivalently,

min
u

∫
D

√
|∇u|2 + β2 subject to ‖Ku− z‖2 = σ2,

where ‖·‖ denotes the norm in L2 (D) and, for a function u ∈ L2 (D)
(
⊂ L1 (D)

)
.

Because the Euclidean norm is not differentiable at zero and to avoid issues with differ-
entiability, Acar and Vogel [1] considered a modified version of the functional to be mini-
mized to derive the Euler-Lagrange nonlinear integro-differential equations of elliptic type.
They also established the well-posedness of this optimization problem as well as existence,
uniqueness and stability with respect to the perturbations in α and β.

Therefore, the Euler-Lagrange equations associated with the functional are

g(u)
def.
= K∗(Ku− z) + αL(u)u = 0, x ∈ D

∂u
∂n = 0, x ∈ ∂D.

(2)

where, K∗ is the operator adjoint and

L(u)w = −∇ ·

 1√
|∇u|2 + β2

∇w

 .

Finally, the system associated with equation 2 is then

[K∗K + αL(u)]u = b = f(u),

which may be discretized and solved using the cell-centered finite difference (CCFD)
scheme. There are several techniques to solve the discretized system, these include poly-
nomial preconditioner, product preconditioner [34], cosine preconditioner [11] and primal-
dual [4, 15].

3. Working Spaces and Assumptions

For a function u ∈ L1 (D), denote by ∇u the distributional gradient of u and set∫
D
|∇u| = sup

{∫
D
u divϕ dx : ϕ ∈ C1

0 (D)2 , |ϕ|∞ ≤ 1

}
.

The space of functions of bounded variation, BV (D) is defined as

BV (D) =

{
u ∈ L1 (D) :

∫
D
|∇u| <∞

}
.

It is a Banach space under the norm

|u|BV (D) = |u|L1(D) +

∫
D
|∇u| .
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It is customary (see [5]) to work with the weak∗ topology on BV (D) defined by

un
w∗→ u

iff un
L1(D)→ u and

∫
D ϕ∇un →

∫
D ϕ∇un for all ϕ ∈ C0 (D)2 .

The stochastic space L∞P (Ω;L2(D)) is defined by

L∞P (Ω;L2(D)) :=

{
v : Ω→ L2(D) : v is measurable and P– ess sup

ω∈Ω
|v(·, ω)|L2(D) < +∞

}
.

It is also a Banach space under the norm

|v|L∞P (Ω;L2(D)) = P– ess sup
ω∈Ω

|v(ω, ·)|L2(D) .

We consider a random smoothing integral operator K : L2 (D) → L∞P (Ω;BV (D)) de-
fined by

Ku(x, ω) =

∫
D
k(x, y, ω)u(y)dy, (x, ω) ∈ D × Ω,

where the kernel k : D×D×Ω→ R is assumed to have enough properties so that the op-
erator K is continuous and does not annihilate constants; i.e. K (1) 6= 0. This assumption
will be sufficient to guarantee coercivity of a certain energy functional later on.

Our aim is to find a u that minimizes the energy

E (u) =
1

2

∫
D
|z −Ku|2 dx+ λ

∫
D
φ (|∇u|) dx, (3)

where z ∈ L∞P (Ω;BV (D)) is a given blurred and noised image, λ > 0 is a parameter and
φ : R+ → R+ is assumed to satisfy the following hypotheses:

1. φ is strictly convex

2. φ (0) = 0, lims→∞ φ (s) =∞

3. There exist two constants c > 0, b > 0 such that

cs− b ≤ φ (s) ≤ cs+ b ∀s ∈ R+.

According to (3) and the assumptions on φ, it is natural to seek a solution u in V, where

V =
{
u ∈ L2(D) : ∇u ∈ L1 (D)

}
.

However, this space is not reflexive and we cannot assert compactness of minimizing se-
quences that are bounded in V . Instead, we observe that sequences that are bounded in V
are also bounded in BV (D) and therefore, they are compact for the weak∗ topology on
BV (D) defined above. The following theorem [5] states the relaxed energy to be com-
puted.

Theorem 1. The relaxed functional of (3) for the weak∗ topology on BV (D) is defined by

E (u) =
1

2

∫
D
|z −Ku|2 dx+ λ

∫
D
φ (|∇u|) dx

+λc

∫
Su

(
u+ − u−

)
dH1 + λc

∫
D−Su

|Cu| ,
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4. The Stochastic Behavior of u(x)

4.1 Lp-Spaces and Measure Theory

Let X : Ω→ Rn be a random variable and 1 ≤ p <∞. Define the Lp−norm of X , ‖X‖p
as follows

‖X‖p = ‖X‖Lp(P) =

[∫
Ω
|X(ω)|p · dP (ω)

] 1
p

.

The Lp−space associated with the Lp−norm is defined by

Lp(P) = Lp(Ω) = {X : Ω→ Rn; ‖X‖p <∞}.

Lp−space is a Banach space, i.e. complete normed linear space. If p = 2 the space
L2(P) = L2

P is a Hilbert space, i.e. complete inner product space.

4.2 Measure Spaces of The Smoothing Operator (Ku) With Random Effect

Consider the relation z = Ku defined on a domain D×D ⊂ R2, with the random smooth-
ing operator K(x, ω) : D ×D × Ω → R, where x = (x1, x2) ∈ D ×D, ω ∈ Ω. In this
sense, the data z = z(x, ω) and true image u = u(x, ω) are random. u(x, ω) is thought of
as stochastic variables even though u is deterministic.

Let the triplet (Ω,F , P ) be a complete probability space, consisting of the sample space Ω,
σ−algebra of events F , and probability measure P : F → [0, 1].

Let B(D × D) denote a Banach space of functions v : D × D → R. We define the
stochastic Banach space by

LqP (Ω;B(D ×D)) :={
v : Ω→ B(D ×D)| v is measurable and

∫
Ω
‖v(ω, ·)‖qB(D×D)dP (ω) < +∞

}
for 1 ≤ q <∞. Also,

L∞P (Ω;B(D ×D)) :={
v : Ω→ B(D ×D)| v is measurable and P − ess sup

ω∈Ω
‖v(ω, ·)‖2B(D×D) < +∞

}
,

where ess sup is the essential supremum that is almost everywhere (a.e.) except on a set of
measure 0. In particular, we are interested in the stochastic Banach valued functions with
finite second moment, namely, L2

P (Ω;B(D × D)); i.e. finite mean and variance. In this
regard, (Ku)(x, ω) is assumed to be square integrable with respect to P .

V = {v : v(·, ω) ∈ L2(D ×D) a.e. ω ∈ Ω},

with v(·, ·) being a measurable function.

Define the subspace V ⊂ V as follows

V = L2
p(Ω;L2(D ×D)) =

{
v ∈ V : E

(
‖v‖2L2(D×D)

)
<∞

}
⊂ V.
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Then,
‖v‖V = E

(
‖v‖2

) 1
2 .

We assume the true solution u(·, ω) ∈ B(D × D) a.s. ∀ω ∈ Ω. Moreover, we claim that
the stochastic solution u is unique and bounded in L2

P (Ω;B(D ×D)).

For a given ω, the smoothing operator is a random variable, namely,

K(x, ·) ∈ L2
p(Ω) ∀ x ∈ D ×D,

that has finite mean and covariance. Hence,

E [K(x, ·)] =

∫
Ω
K(x, ω) dP (ω) <∞ ∈ L2(D ×D).

and
Cov[K(x, ·),K(y, ·)] <∞ ∈ L2(D ×D).

In addition, for a given x ∈ D×D, the smoothing operator represents a path or realization,
namely,

K(·, ω) ∈ L2
p(D ×D) ∀ ω ∈ Ω.

Ultimately,

[Ku] (x, ω) =

∫
D×D

K(x, y, ω) · u(y) dy, ∈ L2(Ω×D ×D).

E[Ku(x)] =

∫
Ω

[Ku](x) dP (ω) =

∫
Ω

∫
D×D

k(x, y, ω) · u(y) dy dP (ω),

where k(x, y, ω) = k(ω) · (x− y).

Next, we investigate the total variation minimizer with stochastic terms and derive the
Euler-Lagrange integro system of equations associated with the stochastic total variation.

4.3 Total Variation With Random Effect

Let
T (u(x, ω)) =

1

2
‖(Ku)(x, ω)− z(x, ω)‖2 ,

be the total variation associated with z(x, ω) = (Ku)(x, ω).

Define F (ξ) = T (u+ ξv) and take ∂T
∂ξ = 0 when ξ = 0.

F (ξ) = T (u+ ξv) =
1

2
‖K(u+ ξv)− z‖2 =

1

2
‖Ku+ ξKv − z‖2

Thus,

F (ξ) =
1

2
〈Ku,Ku〉+ ξ 〈Ku,Kv〉+

1

2
ξ2 〈Kv,Kv〉 − 〈Ku, z〉 − ξ 〈Kv, z〉

Therefore,
∂T

∂ξ
= 〈Ku,Kv〉+ ξ 〈Kv,Kv〉 − 〈Kv, z〉
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= 〈Ku,Kv〉+ ξ 〈Kv,Kv〉 − 〈Kv, z〉

Finally,
∂T

∂ξ

∣∣∣∣
ξ=0

= 〈Ku,Kv〉 − 〈Kv, z〉 = 0

But,
〈Ku,Kv〉 − 〈Kv, z〉 = 〈K∗Ku, v〉 − 〈K∗z, v〉

= 〈K∗Ku−K∗z, v〉 = 〈K∗(Ku− z), v〉

⇒ 〈K∗(Ku− z), v〉 = 0

Therefore, the Euler-Lagrange equations with stochastic terms produces the following sys-
tem of equations

K∗((Ku)(x, ω)− z(x, ω)) = 0, x ∈ D ×D, ω ∈ Ω
∂u
∂n = 0, x ∈ ∂(D ×D).

(4)

Note that the system does not contain the differential component that is present in the
additive models in [1, 12, 13, 22, 28, 33, 34]. In the following section, we discretize the
system in equation 4 with respect to the D ×D space and Ω space.

5. Approximation of (Ku) (x, ω)

In order to solve z = Ku numerically, we transform the random operator (Ku)(x, ω) to
a deterministic form. Such methods include spectral expansion of the random smoothing
operator to separate the stochastic dependence on ω ∈ Ω.

Ku(x, ω) = z(x, ω) (5)

5.1 Karhunen-Loève Expansion

We now introduce Karhunen-Loève expansion for the stochastic integro equation 1. The
random smoothing operator (Ku)(x, ω) with a continuous covariance function cov[(Ku)(x, ·)]
can be represented in terms of an infinite sum of random variables of a Karunen-Loève ex-
pansion, originally in [20] and later in [6, 7, 8, 24].

Recall,

(Ku)(x, ω) =

∫
D×D

k(x, y, ω) · u(y) dy,

where k : BV (D ×D)→ L∞(D ×D × Ω), i.e. k ∈ L∞(D ×D × Ω).

For a given realization ω ∈ Ω, we define the self-adjoint integral operator (transforma-
tion) K : L2(D ×D)→ L2(D ×D) by

K[v(·)] =

∫
D×D

cov[k(x, ·)] · v(x) dx, ∀v ∈ L2(D ×D),
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which produces a set of eigenvalues {λn}∞n=1 associated with orthonormal eigenvectors
{vn}∞n=1 according the relation

K[v(·)] · vn = λn · vn.

The ordered eigenvalues of the integral operator decay in magnitude, i.e. λ1 ≥ λ2 ≥ · · · ≥
0 [24].

Moreover, we need a set of uncorrelated identically distributed random variables Yn
i.i.d.∼

N(0, 1) defined by

Yn(ω) =
1√
λn

∫
D×D

[K(x, ω)− E[K](x)] · vn(x)dx, n = 1, 2, · · · .

This transformation centers the random smoothing operator K(x, ω) so that E[Yi] = 0 and
E[Yi · Yj ] = δij , ∀i, j = 1, 2, 3, · · · , where δij is the Kronecker’s delta.

K(x, ω) can be expressed in terms of the KL-expansion to separate its dependence on
x ∈ D ×D and ω ∈ Ω

K(x, ω) := E[K](x) +
∞∑
n=1

√
λk · vn(x) · Yn(ω). (6)

We require the infinite series in 6 be finite and convergent. The convergence is in the L2

sense because the smoothing operator K(x, ω) is a second-order random field with finite
mean and variance; i.e. K(x, ·) ∈ L2

P(Ω) ∀x ∈ D ×D.

Next, we work on the discretization ofK(x, ω) to obtain the truncated KL-seriesKN (x, ω)
of the stochastic operator K(x, ω). To serve this purpose, define KN (x, ω) as follows

K(x, ω) ≈ KN (x, ω) = E[K](x) +
N∑
n=1

√
λn · vn(x) · Yn(ω), ∀N ∈ N.

But, Mercer’s theorem states that

lim
N→∞

{
sup
D×D

E
[
(K −KN )2

]}
= lim

N→∞

{
sup
D

[ ∞∑
n=N+1

λn · v2
n

]}
= 0.

Due to the fact that the eigenvalues and eigenvectors decay the coefficients of the truncated
KL-expansion have different weights [14]. These coefficients can be described by a finite
set N of random variables. Consider the random field uN : D × D × Ω → R, uN ∈
L2
P (Ω;B(D)), such that

(KuN ) (x, ω) = zN (x, ω), a.e. in D ×D. (7)

The stochastic solution uN (x, ω) of 7 can be expressed in terms of

uN (x, ω) = uN (x, Y1(ω), Y2(ω), · · · , YN (ω))

using Doob-Dynkin’s lemma [9, 25, 27], which is an approximation of the exact solution
u(x, ω).

Assume the random smoothing operator (Ku)(~x, ω) : D × D × Ω → R is a second
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order stochastic field, i.e. the second moment E
[
(Ku)2

]
< ∞ is finite and (Ku)(x, ·) ∈

L2
P(Ω) ∀ x ∈ D × D. This means that the first moment is also finite. Thus, the mean

function is given by

E[(Ku)(x)] =

∫
Ω

(Ku)(x, ω)dP(ω) <∞ ∈ L2(D ×D).

And the covariance function is given by

Cov[(Ku)(x1, x2)] = Cov [(Ku)(x1, ·), (Ku)(x2, ·)]

=

∫ ∫
{(Ku)(x1, ω)− E[(Ku)(x1)]} {(Ku)(x2, ω)− E[(Ku)(x2)]} dP(ω) <∞,

which means that Cov[(Ku)(x1, x2)] ∈ L2(D ×D).

Suppose the stochastic smoothing operator K is a second-order random field, then KL
expansion converges in the L2 sense. Furthermore, by Mercer’s Theorem the convergence
will be uniform if the domain D × D is bounded and the covariance of K is continuous
over the domain D ×D.

Based on our assumptions, it is naturally to believe that the random data zN (x, ω) and
the parameters in the random smoothing operator KN (x, ω) are independent, i.e. uncorre-
lated.

We next define Γn = Yn(Ω), and assume Yn(ω) is bounded and Γn = [−1, 1]. We are
excluding the situation when Yn(ω) is unbounded that includes Gaussian and exponential
distributions. Moreover, let ΓN =

∏N
n=1 Γn = Γ1 × Γ2 × · · ·Γn−1 × Γn+1 · · · × ΓN . As-

sume the random variables {Yk}nk=1 have joint probability density function f : ΓN → R,
with f ∈ L∞

(
ΓN
)
. This means that now we are approximating uN (x, y) ∀y ∈ ΓN and

x ∈ D ×D.

uN (x, y) = uN (x, Y1(ω), Y2(ω), · · · , YN (ω)) represents a finite set of random variables
of the random fields, and the semi-discretized version of the stochastic model is now deter-
ministic in ω and finitely dimensional in ω as well. The stochastic total variation problem
is has become an N−dimensional deterministic in ω.

The truncated equation in problem 7 can written as

(KuN ) (x, y) = zN (x, y), a.e. in D ×D. (8)

Equation 8 is extended a.e. in ΓN with respect to the measure ρ(y)dy, alternatively, one
may use the Lebesgue measure.

6. Discretizing (KuN )(x, y) in x

It is time to discretize the semi-discretized uN (x, y) in x to obtain uN,h(x, y).

6.1 Generating Suitable Finite Dimensional Subspace

In order to proceed with the discretization process, we need to have adequate deterministic
and probabilistic subspaces. Let Vh ⊂ V = L2

p(L
2(D × D)) be the finite deterministic
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subspace of dimension Nh. Likewise, let WP

(
ΓN
)
⊂ W

(
ΓN
)

= L2
ρ

(
ΓN
)

be the fi-
nite probabilistic subspace of polynomials with maximum degree of P . The dimension of
WP

(
ΓN
)

is Np =
∏N
n=1(pn + 1), where

Wpn(Γn) = span
(
ykn, k = 0, · · · , pn

)
, n = 1, · · · , N.

and WP

(
ΓN
)

= Wp1(Γ1)×Wp2(Γ2)× · · · ×WpN (ΓN ).

For the set of abscissas yk ∈ ΓN the semi discretized approximation (KuN )(x, y) ad-
mits the solution (KuN,h)(yk) ∈ Vh(D ×D) in the finite subspace Vh.

We project equation 8 onto the subspace Vh(D × D) for all y ∈ ΓN to obtain the semi-
discrete approximation (KuN,h)(yk), where uN,h : ΓN → Vh(D ×D). Thus,

(KuN,h) (x, y) = zN,h(x, y), ∀x ∈ Vh(D ×D) a.e. for y ∈ ΓN . (9)

6.2 Lagrange Polynomials

To obtain the fully discrete version of equation 9, namely, uN,h,k ∈ L2
(
ΓN ;Vh(D ×D)

)
,

we implement Lagrange polynomials to interpolate the sample points. The solution is then

uN,h,k(·, y) =
∑
i

uN,h(·, yi) · Lki (y), (10)

where Lki is the bases of Lagrange polynomials of degree = k.

We now discuss the mechanism to choose the interpolation nodes for the Lagrange poly-
nomial. There are several methods in the literature that address this issue. Such methods
include Newton-Cotes, Gaussian and Clenshaw-Curtis [2, 17, 19, 23, 24, 29, 31, 32].
These techniques are the building blocks for discretization. Newton-Cotes formula re-
lies on equally spaced knots, while the number of knots increases indefinitely the method
becomes unreliable. However, Gauss quadrature optimizes the degree of the polynomial
by selectively choosing the interpolation knots and weights. Gauss quadrature converges
faster than Newton-Cotes as the number of nodes increases. In this paper, we implement
the Gauss quadrature formulas to construct the interpolation using the full tensor product
in the space of polynomials.

Consider the Lagrange interpolation on the interval [−1, 1] having nodes
{
yk1 , y

k
2 , · · · , yknk

}
,

where k = 1, 2, 3, · · · . Let N = 1 and define the Lagrange interpolation operation Lk as
follows

Lk(Ku)(y) =

nk∑
i=1

(Ku)
(
yki

)
· lki (y), ∀u1,h,k ∈ L2

(
Γ1;Vh(D ×D)

)
, (11)

where lki ∈Wnk−1

(
Γ1
)

are the Lagrange polynomials with degree nk − 1, n = number of
nodes.

lki =

nk∏
m=1
m 6=i

y − ykm
yki − ykm
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For N > 1, and (nk1 , nk2 , · · · , nkN ) sample points and function values on the grid with a
permutation (k1, k2, · · · , kN ), define the N−dimensional Lagrange interpolation operator
as follows

LNk (Ku)(y) =
(
Lk1 ⊗ Lk2 ⊗ · · · ⊗ LkN

)
(Ku)(y)

=

nk1∑
i1=1

nk2∑
i2=1

· · ·
nkN∑
iN=1

(Ku)
(
yk1i1 , y

k2
i2
, · · · , ykNiN

)
·
(
lk1i1 ⊗ l

k2
i2
⊗ · · · ⊗ lkNiN

)
.

Once we obtain the Lagrange polynomial by interpolating the nodes using the aforemen-
tioned method, we may rewrite equation 9 as follows

(KuN,h,k) (x, y) = zN,h,k(x, y), ∀x ∈ Vh(D ×D) a.e. for y ∈ ΓN . (12)

The system is now fully discretized, which may be solved numerically using proper differ-
ential equation solvers.

Conclusion

In many situations, it is difficult not to avoid the noise generated in the image for various
reasons. The purpose of image processing is to reduce the perturbations and noise produced
when there are instrumental or atmospheric problems and to produce a sharper image that
better represents of the actual scene. In this paper, we presented an abstract analysis of
Euler-Lagrange equations associated with the total variation model with random input data
to restore the exact image. We developed a stochastic smoothing operator operating on the
true image defined on suitable finite dimensional deterministic and probabilistic spaces.
We implemented the KL expansion to eliminate the dependency on the random effect. It is
possible for the noise an impulse noise generated by hardware problems or failures.

In this paper we developed a methodology based on models suggested in [1, 12, 13, 22,
28, 33, 34], that involves a stochastic blurring operator.

We studied the stochastic behavior of the smoothing operator operating on the exact im-
age that results in generating a random blurry image. Moreover, suitable probability and
measure spaces and subspaces were introduced to tackle the stochastic total variation prob-
lem.

KL-expansion was implemented in the system of stochastic total variation to eliminate
the dependency on the random effect, which was performed through projecting the proba-
bility space onto the space of polynomials. And a semi-discretized version of the stochastic
model was obtained with respect to the probability subspace.

Finally, we applied Lagrange polynomials to transform the semi-discretized system to a
fully-discretized Euler-Lagrange equations, which can be solved numerically.
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[4] Aràndiga F., Mulet P., and Renau V., “A fast primal-dual method for generalized total
variation denoising,” International Journal of Applied Mathematics & Information
Sciences, volume 6, number 3, 401-409, 2011.

[5] Aubert G., and Kornprobst P., Mathematical problems in image processing, partial
differential equations and the calculus of variations. , Applied Mathematical Sciences,
147, Springer, 2002.

[6] Babuska I., Tempone R., and Nobile F., “A stochastic collocation method for ellip-
tic partial differential equations with random input data,” Technical report, MOX,
Dipartimento di Matematica, 2005.

[7] Bespalov A., Powell C. E., and Silvester D., “A priori error analysis of stochastic
Galerkin mixed approximations of elliptic PDEs with random data.” Technical Re-
port, Manchester Institute for Mathematical Sciences, EPrint, ISSN 1749-9097, 2011.

[8] Bieri M., Sparse tensor discretizations of elliptic PDEs with random input data, PhD
thesis, Dipl. Math., ETH Zürich, 2009.
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