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Abstract 
This paper derives a standard normal based power method polynomial transformation for 
Monte Carlo simulation studies, approximating distributions, and fitting distributions to 
data based on the method of percentiles. The proposed method is used primarily when (i) 
conventional estimators such as skew and kurtosis are unknown or (ii) data are 
unavailable but percentiles are known (e.g., standardized test score reports). The 
proposed transformation also has the advantage that solutions to polynomial coefficients 
are available in simple closed form and thus obviates numerical equation solving. The 
Monte Carlo results presented in this study indicate that the estimators based on the 
method of percentiles are substantially superior to their corresponding conventional 
product-moment estimators in terms of relative bias. 
 
Key Words: Monte Carlo, power method, pseudo-random numbers, simulation, method 
of percentiles 

 
1. Introduction 

 
Robust approaches, particularly bootstrap methods, are gaining popularity for their ability 
to produce accurate inferences in distributions with virtually any distributional shape.  
One problem that arises in the application of the traditional bootstrap approach is when 
individual observations from which to resample are not available.  In these situations the 
researcher may be restricted to the use of descriptive distributional statistics commonly 
released to the public, such as means, standard deviations, and percentiles.   
 
When descriptive statistics are available, parametric bootstrap alternatives may be 
applied (see for example, Culpepper, 2013; Tong & Bentler, 2013).  However, the 
parametric bootstrap must still address issues with the non-normality of the distribution.  
Typically, such approaches rely on knowledge of the skewness and kurtosis of the 
distribution (see for example, Headrick, 2011), which may not be included in public 
reports.   One way of getting around this problem is to use a parametric approach based 
on percentiles rather than moments.  Percentiles may be more commonly included in 
public reports than measures of skew or kurtosis.  Indeed, Karian and Dudewitz (1999) 
introduced a percentile method for the Generalized Lambda Distribution (GLD), which 
can be used in a parametric bootstrap approach.   Two problems remain with the GLD 
percentiles approach, however.  First, closed-form solutions are not available, thus 
requiring computationally-intensive numerical solutions (Karian & Dudewitz, 1999).  
Second, “depending on the precise values of [a skew function] and [a kurtosis function], 
as many as four solutions may exist in just one region” (Karian & Dudewitz, 2011, 
p.180). 
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Thus, it is advantageous to have a parametric bootstrap method based on percentiles for 
the purpose of simulating or modeling nonnormal distributions.  Further, such a method 
would be most useful if it included unique, closed-form solutions. 
 
In view of the above, the present aim is to introduce a power method transformation for 
non-normal distributions using the method of percentiles.  Specifically, the method is 
based on the median, inter-decile range, left-right tail-weight ratio (a skew function), and 
the tail weight factor (a kurtosis function) (Karian & Dudewicz, 2011, pp. 172-173).  
Solutions are obtained in closed-form, and when solutions exist, those solutions are 
unique. 
 
The rest of the paper is outlined as follows.  In Section 2, a summary of the power 
method transformation for conventional moments is provided.  In Section 3, the method 
of percentiles is introduced, and the equations are developed for a power method 
transformation through the method of percentiles.  In Section 4, the boundary conditions 
on the percentile-based power method are derived.  In Section 5, a Monte Carlo 
simulation investigating the ability of the percentile-based power method to model 
various non-normal distributions is used to compare the results of the proposed method to 
power method results achieved using conventional moments.  In Section 6, a brief 
conclusion is provided.   
 

2. Preliminaries for the Power Method Transformations 
 
2.1 General Considerations 
The power method (PM) polynomial transformation based on conventional moments or 
the proposed method of percentiles considered herein can be generally expressed as 
(Headrick, 2010, pp. 12–13) 
 

 

 
(2.1) 

where  is a standard normal random variable with probability density function (pdf) and 
cumulative distribution function (cdf) 
 

2 exp 2⁄ , 

 
(2.2) 

Φ , ∞ ∞. 
 
(2.3) 

Setting 4 (or 6) in (2.1) gives the third-order Fleishman (1978) (or fifth-order 
Headrick, 2002) class of PM distributions. The shape of  in (2.1) is contingent on the 
values of the coefficients , which are determined by conventional moment matching 
techniques or through the method of percentiles described in the subsequent section. 
 
In order for (2.1) to produce a valid pdf requires that the PM transformation be a strictly 
monotone increasing function. This requirement implies that an inverse function exists 
( . As such, the cdf associated with (2.1) can be expressed as 
 

Φ .  
 
(2.4) 

Differentiating (2.4) with respect to  will yield the PM pdf as 
 

 

 
(2.5) 
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where 0. Equations (2.4) and (2.5) are the general forms of the cdf and pdf for 
both power methods discussed herein – conventional moment and percentiles. 
 
Presented in the next subsection is a review of the conventional moment based family of 
PM distributions.  
 
2.1 The Conventional Moment Based Fleishman Third-order Power Method 
The coefficients  for (2.1) that determine the shape of a third-order Fleishman (1978) 
PM are computed using a moment-matching that involves the conventional measures of 
the mean ( ), variance ( ), skew ( ), and kurtosis ( ). Specifically, the  are 
determined by simultaneously solving the following system of equations (e.g. Headrick, 
2010, Eqs. 2.18–2.21, p. 15) 
 

0  
 

 
(2.6) 

1 2 6 15  
 

(2.7) 

8 6 72 270  
 

(2.8) 

3 60 60 60 936 630 4500
3780 10395 3. 

(2.9) 

for specified values of  and  and where  and  are standardized to zero and one, 
respectively. 
 
In general, a standardized non-normal third-order conventional moment based PM 
distribution will have a valid pdf iff 0 1, 0 0.258199, and 3
0 (Headrick, 2010, pp. 16-21). Figure 1 gives examples of valid PM pdfs with their 
corresponding conventional parameters of skew and kurtosis and coefficients.  
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Figure 1: Four power method (PM) pdfs with conventional and percentile-based 
parameters of skew ( ), kurtosis ( ), left-right tail-weight ratio ( ), and tail-weight 
factor ( ), and their corresponding polynomial coefficients.  Selected percentiles of each 
distribution are also shown. 
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3. The Percentile Based Power Method 
 
The percentiles ( ) associated with a conventional moment based PM pdf can be 
obtained by making use of the PM cdf in (2.4). As such, we can define the following 
location, scale, and shape parameters as in Karian and Dudewicz (2011, pp. 172-173) 
 
 

.  
 

 
(3.1) 

. .  (3.2) 
 

. .

. .
 

 

(3.3) 

. .  

 

(3.4) 

where (3.1)–(3.4) are the (i) median, (ii) inter-decile range, (iii) left-right tail-weight ratio 
and (iv) tail-weight factor, respectively. The parameters in (3.1)–(3.4) are defined to have 
the restrictions 
 
∞ ∞,   0,   0,   0 1 

 

 
(3.5) 

where a symmetric distribution implies that 1. 
 
The derivation of a percentile based system of PM pdfs begins by substituting the 
standard normal distribution percentiles ( ) into polynomials of the form in (2.1) and 
using (3.1)–(3.4) gives 
 

.  
 

(3.6) 

. .  
 

(3.7) 

. .

. .
 

 

(3.8) 

. .  

 

(3.9) 

where . 0 , . 1.281⋯ ,  . 0.6744⋯  from the standard normal 
distribution. Note from symmetry that . 	 .  and . . . The explicit 
forms of (3.6)–(3.9) are 
 

 
 

 
(3.10) 

2 . 2 .  (3.11) 
 

1
2 .

. 2 .
 

 

(3.12) 
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2 . 2 .

2 . 2 .
 

 

 
(3.13) 

Simultaneously solving for the coefficients in (3.10)–(3.13) gives the convenient closed-
form expressions 
 

 
 

 
(3.14) 

. .

2 . . 2 . .
 

 

(3.15) 
 

1
2 1 .

 

 

(3.16) 
 

. .

2 . . 2 . .
 

 

(3.17) 

 
Estimates of the parameters , , ,  for a PM distribution based on the percentiles 

 in (3.6)–(3.9) for a sample of size  can be determined by finding the  and	 1 
integer values, and their corresponding expected values of the order statistics :  
and : , by making use of the following equation (Headrick & Pant, 2012; 
Johnson, Kotz, & Balakrishnan, 1994) 
 

:
!

1 ! !
Φ 1 Φ  

 

 
(3.18) 

such that 
 

: :  
 

 
(3.19) 

and subsequently solve the equation 
 

: 1 :  
 

 
(3.20) 

for 0 1 . Thus, an estimate of  can then be obtained based on the order 
statistics of a sample as ≅ : 1 : .  
 

4. Boundary Conditions for Percentile Based Power Method Pdfs 
 
The restriction that ′ 0 in (2.5) implies that a set of solved coefficients may not 
necessarily produce a valid pdf. To determine if a third-order polynomial produces a 
valid pdf we first set the quadratic equation  ′ 0 and subsequently solve for  as 

3
3

. 
(4.1) 

A set of solved coefficients will produce a valid pdf if the discriminant 3  in 
(4.1) is negative. That is, the complex solutions for  must have non-zero imaginary 
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parts. As such, setting 3  will yield the point where the discriminant vanishes 
and thus real-valued solutions exist to the equation ′ 0. 
 
Standardizing the inter-decile range in (3.2) to the unit normal distribution ( 2 . ) 
and solving for  gives 
 

1

.
. 

 

(4.2) 

Substituting the right-hand side of (4.2) into (3.3) and (3.4) and setting 3 , 
yields 
 

1 3 1 ∓ 2√3 1 .⁄

1 3 1
 

 

(4.3) 

.

.

.

.

.

.
. 

 

 
(4.4.) 

Inspection of (4.3) indicates that for real values of  to exist then we must have ∈
0,1  and thus from (4.2) ∈ 0, 1 .⁄ . Using (4.3) and (4.4) the graphs of the region 

for valid third-order power method pdfs is given in Figure 2 along with the minimum and 
maximum values of  and . In summary, a valid standardized non-normal third-order 
pdf will have the properties of (i) 0 1, (ii) 0 0.608875, and (iii) 
3 0. 
 

 
Figure 2: Boundary region for valid third-order percentiles power method pdfs in the 
left-right tail-weight ratio ( ) and tail-weight factor ( ) plane.  Valid pdfs exist in the 
region inside the boundary, and a reference line at 1  indicates symmetric 
distributions.  The lower and upper bounds of   are 0.072 and 13.928, respectively.  
The lower and upper bounds of   for symmetric distributions are 0.146 and 0.526, 
respectively. 
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5. The Simulation and Monte Carlo Study 
 
To evaluate the proposed percentiles power method, comparisons among the proposed 
percentiles and conventional product-moment based procedures are subsequently 
described.  Specifically, the distributions in Figure 1 are used as a basis for a comparison. 
 
In terms of the simulation, a Fortran algorithm was written for each method to generate 
25,000 independent sample estimates for the specified parameters of: (i) conventional 
skew ( ) and kurtosis ( ) and (ii) left-right tail-weight ratio  and tail-weight factor 

. All estimates were based on sample sizes of 25 and 750. The formulae 
used for computing estimates of ,  were based on Fisher’s -statistics i.e. the formulae 
currently used by most commercial software packages such as SAS, SPSS, Minitab, and 
so on, for computing indices of skew and kurtosis (where , 0  for the standard 
normal distribution). The formulae used for computing estimates of ,  were (3.3)-(3.4). 
 
Bias-corrected accelerated bootstrapped median estimates, confidence intervals (C.I.s), 
and standard errors were subsequently obtained for the estimates associated with the 
parameters ( , , , ) using 10,000 resamples via the commercial software package 
Spotfire S  (TIBCO Software, 2008). If a parameter (P) was outside its associated 
bootstrap C.I., then an index of relative bias (RB) was computed for the estimate (E) as: 
RB E P P⁄ 100. Where a bootstrap C.I. contained the value of the parameter, 
the small amount of associated bias was considered negligible and thus was not reported. 
The results of the simulation are reported in Tables 1-4.  
 

Dist Parameter Estimate 95% Bootstrap C.I. Standard Error Relative Bias % 
1 0 -0.0223 -0.0497,0.0045 0.013660 -- 

 25 4.4560 4.4011,4.5261 0.030200 -82.18 
2 3 1.5750 1.5579,1.5911 0.008122 -47.50 

 21 3.6960 3.6452,3.7525 0.027010 -82.40 
3 2 1.2780 1.2677,1.2893 0.005561 -36.10 
 7 1.5230 1.4849,1.5662 0.020430 -78.24 

4 0 0.0034 -0.0038,0.0103 0.003626 -- 
 0 -0.1786 -0.1906,-0.1678 0.005579 -- 

 

Dist Parameter Estimate 95% Bootstrap C.I. Standard Error Relative Bias % 
1 0 2.562 2.5383,  2.5823 0.01117 -26.5 

 25 22.15 21.6873,  22.6698 0.24850 -81.5 
2 3 2.180 2.1668,  2.1944 0.00697 -12.3 

 21 13.36 13.0936,  13.6467 0.14100 -49.7 
3 2 -0.0051 -0.0265,  0.0163 0.01100 ----- 
 7 18.57 18.2203,  18.9412 0.18330 -53.4 

4 0 1.54 1.5246,  1.5539 0.00743 -15.8 
 0 12.91 12.6537,  13.1903 0.13610 -45.0 

 
 

Table 1: 	Skew ( ) and Kurtosis ( ) results for the Conventional PM. Sample size of  
25. 

 

Table 2: 		Skew ( ) and Kurtosis ( ) results for the Conventional PM. Sample size of  
750. 
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Dist Parameter Estimate 95% Bootstrap C.I. Standard Error Relative Bias % 
1 1.0000 1.0050 0.9942, 1.0154 0.005348 -- 

 0.3105 0.3208 0.3191, 0.3227 0.000947 -- 
2 0.3430 0.3466 0.3438, 0.3497 0.001485 1.04 

 0.3868 0.3972 0.3954, 0.3993 0.000983 2.70 
3 0.4361 0.4472 0.4444, 0.4501 0.001464 2.53 
 0.4872 0.4960 0.4943, 0.4980 0.001003 1.80 

4 1.0000 0.9978 0.9912, 1.0045 0.003380 -- 
 0.5263 0.5294 0.5279, 0.5310 0.000801 -- 

 

Dist Parameter Estimate 95% Bootstrap C.I. Standard Error Relative Bias % 
1 1.0000 1.0000 0.9978, 1.0020 0.001062 -- 

 0.3105 0.3108 0.3105, 0.3112 0.000171 0.11 
2 0.3430 0.3432 0.3426, 0.3438 0.000308 -- 

 0.3868 0.3873 0.3869, 0.3877 0.000203 0.14 
3 0.4361 0.4359 0.4353, 0.4364 0.000287 -- 
 0.4872 0.4874 0.4870, 0.4877 0.000189 -- 

4 1.0000 1.0000 0.9991, 1.0014 0.000539 -- 
 0.5263 0.5264 0.5261, 0.5267 0.000159 -- 

 
6. Conclusion 

 
One of the primary advantages that the percentiles power method has over conventional 
moment based estimators is that they can be applied in situations in which raw data and 
higher order (third, fourth) moments are unavailable. Inspection of the simulation results 
in Tables 1-4 verifies that the percentiles power method results are superior to 
conventional moment based estimators.  In every instance the percent relative bias was 
substantially smaller or negligible for the percentiles power method estimator as 
compared to the conventional moment based estimator.  In summary, the proposed 
percentiles power method is an attractive alternative to the traditional conventional-
moment based power method.   In particular, the percentiles power method has distinct 
advantages when heavy- tailed distributions are of concern. 
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