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Fréchet Sample Means in Metric Spaces

Cedric E. Ginestet ∗

Abstract
The Fréchet mean generalizes the idea of averaging in spaces where pairwise addition is

not well-defined. In general metric spaces, however, the Fréchet sample mean is not a
consistent estimator of the theoretical Fréchet mean. For non-trivial examples, sequences of
Fréchet sample mean sets may fail to converge in a set-analytical sense. Hence, it becomes
necessary to consider other types of convergence. We show that a specific type of almost
sure (a.s.) convergence for the Fréchet sample mean introduced by Ziezold (1977) is, in
fact, equivalent to the consideration of the Kuratowski outer limit of a sequence of Fréchet
sample means. Equipped with this outer limit, we prove different laws of large numbers for
random variables taking values in separable (pseudo-)metric space with a bounded metric.
In this setting, we describe strong laws of large numbers for the Fréchet sample mean.
In particular, we demonstrate that all subsequences of Fréchet sample means converge to
a subset of the theoretical mean. This result allows us to show that the Fréchet sample
mean is metric squared error (MSE) consistent under the condition that their Kuratowski
outer limits are non-empty. Convergence in probability and convergence in law of these
sample estimators are also derived and the implications between these different modes of
convergence are studied.

Key Words: Barycenter, Centroid, Consistency, Estimation theory, Equicontinuity,
Fréchet mean, Graph-valued random variable, Karcher Mean, Point function

1. Introduction

All statistics are summaries. The epitome of these summaries is the sample mean,
and its theoretical analog, the expected value. In an inspired monograph, Fréchet
(1948) generalized this concept to any abstract metric space. He showed that the
sole requirement for the definition of a mean element is the specification of a metric
on the space of interest. Once this metric has been chosen and a probability measure
has been defined on that metric space, the Fréchet mean is simply the element that
minimizes the sum of the squared distances from all the elements in that space.
The Fréchet mean generalizes other notions of means in abstract spaces, such as
the centroid in Euclidean geometry, the barycenter or center of mass in physics, the
Procrustean mean in shape spaces (Le, 1998), and the Karcher mean on Riemannian
manifolds (Karcher, 1977). The sample version of the Fréchet mean can naturally be
expressed using cumulative addition instead of the expectation, thereby producing
a convex combination operator on metric spaces with both negative and positive
Alexandrov curvature (Ginestet et al., 2012).

The object of this paper is to characterize the asymptotic behavior of the Fréchet
sample mean in separable metric spaces with a bounded metric. We are here espe-
cially interested in metric spaces of simple graphs. Separability is a relatively mild
topological assumption likely to be satisfied in most applications. The bounded-
ness of the metric, however, is a more stringent condition. Nonetheless, there is a
range of modern statistical applications for which the metric of interest is likely to
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be bounded. In bioinformatics, the use of the Hamming (1950) distance on finite
alphabets, such as stretches of DNA for instance, naturally gives rise to such as-
sumptions (He et al., 2004). Similarly, the comparison of families of networks with
a given number of nodes, as commonly done in neuroscience (Ginestet et al., 2011)
may similarly generate bounded metric spaces; albeit the combinatorial nature of
these metrics may lead to bounds that increase factorially with the number of nodes
in these networks.

The asymptotic properties of the Fréchet sample mean have been studied by
several authors. Ziezold (1977) proved a strong law of large numbers for Fréchet
sample means defined in separable pseudo-metric spaces, where the metric is not
assumed to satisfy the coincidence axiom. This a.s. convergence result has also
been demonstrated for compact metric spaces by Sverdrup-Thygeson (1981). The
perspectives adopted by these two authors are very different in nature. Given
the fact that Sverdrup-Thygeson (1981) does not cite the work of Ziezold (1977),
and because the work of the latter was published in a conference proceedings, it
is probable that Sverdrup-Thygeson (1981) was not cognisant of Ziezold’s proof
technique.

The properties of sample Fréchet means on Riemannian manifolds have been
particularly well-studied (Bhattacharya and Patrangenaru, 2002, 2005). When the
Fréchet mean is assumed to be unique, the theorem of Sverdrup-Thygeson (1981)
has been generalized by Bhattacharya and Patrangenaru (2003) for proper metric
spaces. Recall that a metric space is proper, if and only if every bounded closed
subsets of that space is compact. By the Hopf-Rinow theorem, every complete and
connected Riemannian manifold is a proper metric space. Thus, Bhattacharya
and Patrangenaru (2003) have weakened the compactness assumption made by
Sverdrup-Thygeson (1981), and their strong law of large numbers apply to man-
ifolds, under some very mild conditions. Recently, Kendall and Le (2011) have
further generalized these results with a weak law of large numbers and a central
limit theorem for sequences of Fréchet sample means based on non-iid random vari-
ables taking values on a Riemannian manifold. Here, we consider sequences of
random variables taking values in separable pseudo-metric spaces with a bounded
metric. Using boundedness, we provide a different proof of the strong consistency
of the Fréchet sample mean from the one of Ziezold (1977).

Importantly, we also clarify previous results on the asymptotic consistency of the
Fréchet sample mean, by showing that the modes of convergence studied by Ziezold
(1977) and Sverdrup-Thygeson (1981) are, in fact, equivalent to the consideration of
the Kuratowski outer limit of a sequence of Fréchet sample means. One of the core
difficulties with the consideration of the asymptotic properties of Fréchet sample
means is that such functions can be multivalued. That is, when the Fréchet sample
mean is not unique, we obtain a random variable that is a set-valued function, which
takes values in the power set of X , or more precisely in the Borel σ-algebra of X .
It then becomes necessary to consider the convergence of multivalued functions.
To this end, we resort to the tools of set-valued analysis, as described by Aubin
and Frankowska (2009). This difficulty leads us to consider different ‘types’ of
convergence, depending on whether we require the Fréchet sample mean to converge,
or are simply interested in evaluating the asymptotic behavior of the outer limit
of that sequence (see Molchanov, 2005, for an introduction to set-valued random
variables).

The main innovation in this paper is our formal set-valued perspective. Note
that our approach differs from the one of Bhattacharya and Bhattacharya (2012),
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Figure 1. A sample of graphs, Gi = (V,E), over five vertices, denoted by Gi ∈ G5.

since we have allowed the metric spaces of interest to be non-compact, and not
necessarily equipped with a manifold structure. In particular, we identify the key
role played by the Kuratowski outer limit when studying sequences of Fréchet sample
means. This paper therefore constitutes an extension of the work of Ziezold (1977)
and Sverdrup-Thygeson (1981) to Fréchet means of all orders, and to restricted
Fréchet means. Moreover, we have emphasized the importance of point functions
and of the Glivenko-Cantelli lemma.

This paper is organized as follows. Firstly, we motivate this work with a coun-
terintuitive example of a graph-valued mean set that includes its sample as a proper
subset. This justifies our emphasis on set-valued convergence throughout the rest of
the paper. In section 3, we then introduce and study different types of a.s. conver-
gence for sequences of Fréchet sample mean sets, and show through counterexamples
why the Kuratowski outer limit is adequate for this purpose. In section 4, we prove
the strong consistency of the Fréchet sample mean sets in bounded metric spaces.

2. Motivating Example: Graph Means

We are here especially interested in spaces of simple graphs, Gi := (V,E) with
i = 1, . . . , n, which have a fixed number of vertices, Nv := |V (Gi)|, but their edge
set, E(Gi) may vary. A graph is said to be simple, when it does not contain multiple
edges, loops or weighted edges. Throughout this paper, we will assume that there
exists a probability measure on the space of all such simple graphs. A sample of
three such simple graphs for Nv = 7 is given in figure 1.

Statistically, one may be interested in computing the mean graph for this type
of random variables. Such a mean quantity can be defined as the Fréchet mean of
that variable with respect to some distance function on the space of interest. A
standard distance function on spaces of graphs is the Hamming distance, which is
defined as follows for any two graphs G = (V,E) and G′ = (V,E′) with Nv vertices,

dH(G,G′) :=
∑
i<j

I{eij 6= e′ij}.

We denote by GNv the space of all simple graphs with Nv vertices. Given a graph-
valued random variable on GNv , the mean value for a sample of n realizations is
then given by the element in GNv , which minimizes the squared distances to all
the graphs in the sample considered. For general graph-valued random variables,
however, such a mean element needs not be unique.

In figure 2, we consider a sample of n = 2 graphs S1 and S2 with Nv = 4 vertices.
Using the Hamming distance, the Fréchet mean graphs are the following elements
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(a) Sample of simple graphs, S, with n = 2.

S1 S2

(b) Fréchet Mean, Θ, for this sample.

Θ1 Θ2 Θ3 Θ4

Figure 2. The sample of graphs in (a) is here a proper subset of the graph mean in (b),
such that S ⊂ Θ, where the Fréchet mean, Θ is computed with respect to the Hamming
distance on the space of all simple graphs with Nv = 4 vertices.

of G4,

Θ := argmin
G′∈G4

n∑
l=1

∑
i<j

I{e(l)ij 6= e′ij}.

One can easily verify that the Fréchet mean is given by a set of four different simple
graphs, as shown in figure 2. Hence, in this setting, we obtain the paradoxical result
that the sample is a proper subset of the mean. This is somewhat counterintuitive,
since we generally expect an average value to summarize information, and therefore
to be more ‘concentrated’ than the sample values on which the mean is based.

Observe that the Hamming distance is here a bounded metric. In the sequel,
we will consider the more general case of random variables taking values in separa-
ble metric spaces with bounded metrics, which encompasses graph-valued random
variables, as a special case. Other popular choices of distance functions include the
graph edit distance (Gao et al., 2010), and maximum common subgraph distance
(Bunke, 1997).

3. Sequences of Fréchet Sample Means

3.1 Empirical and Theoretical Fréchet Means

A separable space X is endowed with a metric d : X × X 7→ R+. This produces
a metric space, (X , d), with elements x. Let a probability space be denoted by
(Ω,F ,P), and define a random variable, X, on that space, which takes values in
(X ,B). Here, B is the Borel σ-algebra generated by the topology, τ on X , induced
by d. The triple (Ω,F ,P) is assumed to be complete, in the sense that every subset of
every null set is measurable. This is particularly convenient for constructing product
spaces based on Ω that remain well-behaved. In addition, we define µ(B) := (P ◦
X−1)(B), for every B ∈ B. Naturally, X is here assumed to be (F ,B)-measurable.
Such a random variable will be termed an abstract-valued random variable, which
will be contrasted with the more standard real-valued random variables.

In this setting, we compute the most ‘central ’ element. This is the element that
has the smallest expected distance to all other elements in X . This approach allows
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us to define the following moments (Fréchet, 1948),

Θr := arginf
x′∈X

∫
X

d(x, x′)rdµ(x), and σr := inf
x′∈X

∫
X

d(x, x′)rdµ(x), (1)

for every 0 < r <∞, and where Θr ⊆ X . Observe that we are using the superscript
r on the Fréchet variance as a simple marker of the order of the exponentiated
metric. Thus, in general, it will not be true that (σr)1/r simplifies to σ1.

These are commonly referred to as the Fréchet mean and variance when r = 2.
For other choices of r, we will refer to these different Fréchet moments as Fréchet
moments of order r. Note that if the infimum of E[d(x, x′)r] exists, then it is unique.
However, the argument of the infimum may not necessarily exist and may not be
unique. If such an argument does not exist, then Θr = ∅. When the minimizer is not
unique, the ensemble of minimizers is sometimes referred to as the Fréchet mean set.
In particular, observe that if Θ is not a singleton, σ2 = E[d(X, θ)2] for any θ ∈ Θ, will
not, in general, be equivalent to E[d(X,Θ)2], where the distance between an element
x and a non-empty subset A of X is defined as d(x,A) := inf{d(x, y) : y ∈ A}, with
d(x,∅) = ∞. In this paper, Fréchet mean and Fréchet mean set will be used
interchangeably. Observe that when X is a Hilbert space, endowed with the inner
product metric, then there exists a unique global minimizer and Θ is therefore a
singleton.

Analogously, for a given sequence of abstract-valued random variables Xi : Ω 7→
X , for every i = 1, . . . , n, one may define the following Fréchet sample moments of
the rth order

Θ̂r
n := arginf

x′∈X

1

n

n∑
i=1

d(Xi, x
′)r and σ̂rn := inf

x′∈X

1

n

n∑
i=1

d(Xi, x
′)r. (2)

Observe that, even for the sample versions of the Fréchet moments, these infima
meed not be attained, and therefore these quantities may be empty for each n.
When there is no ambiguity as to the order of Θ̂r

n, we will simply refer to this
quantity as Θ̂n, and similarly for Θ. In the sequel, an element of Θ and an element
of Θ̂n will be respectively denoted by θ and θ̂n. Our interest will mainly lie in
considering Fréchet moments of the second order, albeit some examples will also be
studied where r = 1. It is easy to see that the Fréchet mean and Fréchet sample
mean are closed subsets of X , if X is Polish.

Lemma 1. For any space (X , d), Θr and the Θ̂r
n’s are closed in X , for every r ≥ 1.

Proof. Clearly, if Θr = ∅, then cl(Θr) = Θr and similarly for the Θ̂r
n’s. Now, fix

r = 1, and consider the Fréchet mean set Θ ⊆ X . Recall that the boundary of Θ
is defined as ∂(Θ) :=

{
x ∈ X : d(Θ, x) = d(ΘC , x) = 0

}
, where ΘC := X \ Θ. We

proceed by contradiction. Assume that θ0 ∈ ∂(Θ) and θ0 /∈ Θ, then it follows that
there exists θ ∈ Θ, such that by the triangle inequality, d(θ0, X) ≤ d(θ0, θ)+d(θ,X),
for every X ∈ X . Taking the expectation, this gives

E[d(θ0, X)] ≤ d(θ0, θ) + E[d(θ,X)] = inf
x′∈X

E[d(X,x′)],

since d(θ0,Θ) = 0, and using the definition of Θ in equation (1). Thus, θ0 is optimal
with respect to the infimum over X . However, we have assumed that θ0 /∈ Θ, which
leads to a contradiction, and therefore ∂(Θ) ⊆ Θ.
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Next, consider the case of r > 1. Through a classical result on metric spaces
(see, for instance Fréchet, 1948, p.229), we have(

E[d(θ0, X)r]
)1/r

≤
(
E[d(θ0, θ)

r]
)1/r

+
(
E[d(θ,X)r]

)1/r
,

for every r > 1, and the result immediately follows, using the same argument. The
proof is identical for the Θ̂r

n’s.

3.2 Convergence of Fréchet Sample Mean Sets

In this section, we study and compare different modes of convergence for set-valued
random variables. In particular, note that our chosen modes of convergence differ
from the ones used by Bhattacharya and Bhattacharya (2012), since we are not
here assuming the compactness of the underlying metric space X . Moreover, the
target Fréchet mean set is also allowed to be empty, thereby making it difficult to
implement the methods of Bhattacharya and Bhattacharya (2012).

For the Fréchet sample mean and its theoretical analogue, a.s. convergence could
be defined in (X , d) using sequences of random sets as follows,

P
[{
ω ∈ Ω : Θ̂n(ω)→ Θ

}]
= 1, (3)

where observe that Θ is here treated as a fixed subset of X . The event in equation
(3) will have probability one if the sequence of random sets, denoted Θ̂n, converges
a.s. in a set-theoretical sense such that

liminf
n→∞

Θ̂n(ω) = limsup
n→∞

Θ̂n(ω) = Θ, (4)

for almost every ω ∈ Ω, and where liminf Sn :=
⋃∞
n=1

⋂∞
m=n Sn, and limsupSn :=⋂∞

n=1

⋃∞
m=n Sn denote the standard inner and outer limits of a sequence of subsets

of X . For most purposes, however, this type of convergence is too strong. In
fact, this criterion does not hold for Fréchet sample means defined with respect to
general abstract-valued random variables. There are many non-trivial examples of
sequences of Fréchet sample means that diverge. Consider the following example
adapted from the three-dimensional case described by Sverdrup-Thygeson (1981).

Example 1. Let the interval, X := [−1, 1] ⊂ R, and equip this set with the usual
Manhattan distance, defined as d(x, y) := |x − y| for every x, y ∈ X . Additionally,
let the random variable X, which takes values in X , and which satisfies the following
P [X = −1] = P [X = 1] = 1/2. This construction is illustrated in panel (a) of figure
3. The theoretical Fréchet mean of order r = 1 can be readily found as

Θ1 = arginf
x′∈X

∑
x∈{−1,1}

d(x, x′)P[x] = X ,

since the energy function satisfies E(x′) :=
∑
d(x, x′)P[x] = 1 for every x′ ∈ X .

Here, the Fréchet mean defined with respect to the Manhattan distance coincides
with the median of the real-valued random variable X (Feldman and Tucker, 1966).

For the empirical Fréchet mean, Θ̂1
n, first compute Sn :=

∑n
i=1Xi. Clearly, the

Sn’s are integer-valued. Observe the correspondence between the values of Sn and
the values taken by the Fréchet sample mean. If the event {Sn = 0} occurs, then
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(a)

X

1

2

−1 0 1

P[X = x]

E[d(X,x′)1]

(b)

X

1

2

−1 0 1

P[X = x]

E[d(X,x′)2]

Figure 3. Metric and measure spaces considered in examples 1 and 2. In both panels,
the closed interval [−1, 1] is equipped with the Manhattan (or taxicab) metric, and two
point masses are specified at −1 and 1. Different Fréchean inferences are conducted by
taking r = 1 and r = 2 in panels (a) and (b), respectively. In the first case, the theoretical
Fréchet mean coincides with the median of X, whereas in panel (b), the theoretical Fréchet
mean coincides with the arithmetic mean. However, the sequence of Fréchet sample means
diverge in both cases, when convergence is evaluated using set-valued liminf and limsup, as
described in equation (4).

it can easily be seen that Θ̂n is equal to X . Similarly, {Sn ≥ 1}, and {Sn ≤ −1}
respectively imply that θ̂n = 1 and θ̂n = −1. Now,

P [{S2n = 0}] =

(
2n

n

)(
1

2

)2n

≈ (nπ)−1/2,

for every n, using Stirling’s approximation. Since P [{Sn = 0}] is null, when n is odd,
it follows that

∑∞
n=1 P [{Sn = 0}] <∞, and therefore by the Borel-Cantelli lemma,

we have P [{Sn = 0} i.o.] = 0, where i.o. means infinitely often. This implies that
P[{ Θ̂n = X} i.o.] = 0, and hence limsup Θ̂n 6= X .

By using a similar argument, one can observe that P[{Sn ≤ −1} i.o.] = P[{Sn ≥
1} i.o.] = 1, which implies that P[{ θ̂n = −1} i.o.] = P[{ θ̂n = 1} i.o.] = 1, and
therefore {−1, 1} is the limit superior of the sequence of Fréchet mean sets. By
contrast, there does not exist an N > 0, such that θ̂n = 1, for every n ≥ N . An
identical statement holds for θ̂n = −1, and therefore the limit inferior of Θ̂n is
empty. Thus,

limsup
n→∞

Θ̂n(ω) = {−1, 1} ⊃ liminf
n→∞

Θ̂n(ω) = ∅,

and the sequence of Fréchet sample means diverges, as criterion (4) is not satisfied.

The preceding example highlights two important aspects of the asymptotic be-
havior of the Fréchet sample mean set. Firstly, the Fréchet sample mean will in
general fail to converge in the sense that its outer and inner limits need not be
identical. In such cases, the sequence of Fréchet sample means exhibit an oscilla-
tory property (see Feldman and Tucker, 1966). Secondly, the limit superior of a
sequence of Fréchet sample means may solely represent a subset of the theoretical
Fréchet mean. Taken together, these two problems necessitate (i) the study of the
asymptotic behavior of the outer limit of the Θ̂n’s, and (ii) the consideration of the
convergence of the Fréchet sample mean in terms of set inclusion, as a subset of
the theoretical Fréchet mean. The passage from equations to inclusions is a natural
step in the generalization of singleton-valued analysis to set-valued analysis.

Example 1 leads to the formulation of a weaker type of convergence, which can
be expressed as the probability of the following event,{

ω ∈ Ω : limsup
n→∞

Θ̂n(ω) ⊆ Θ

}
. (5)
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However, we here encounter a slightly different problem than the one highlighted in
our first example. This second issue can be illustrated through another counterex-
ample, which shows that this particular type of a.s. convergence does not agree with
the analogous real-valued a.s. convergence. That is, the reformulation of a given
real-valued random variable into an abstract-valued setting, equipped with the same
topology produces a divergent Fréchet sample mean in terms of equation (5). As a
result, we obtain the somewhat counterintuitive result that the arithmetic sample
mean differs from the corresponding Fréchet sample mean.

Example 2. Consider the same setting described in example 1, where now r = 2
(see panel (b) of figure 3). One can immediately see that the theoretical Fréchet
mean is a singleton set,

Θ2 = arginf
x′∈X

∑
x∈{−1,1}

d(x, x′)2P[x] = 0,

which coincides with the expected value of the real-valued random variable X. For
the Fréchet sample mean, we know from example 1 that P[{Sn = 0} i.o.] = 0 and
therefore the probability of the sequence of empirical Fréchet means including E[X]
infinitely often is null. That is, for r = 2, we have P[{θ̂n = 0} i.o.] = 0. Observe
that the same is true for any other specific sequence of realizations of X. Consider
the case of S3n = nx1 + 2nx2, where x1 = −1 and x2 = 1. For this subsequence,
there exists a unique infimum, which is θ̂n = 1/3. The probability of this event
occurring is as follows,

P [{S3n = nx1 + 2nx2}] =

(
3n

n

)(
1

2

)3n

≈ (1/2)5n,

which was approximated using Stirling’s formulae. Clearly, all possible values of the
Fréchet sample mean of X can be represented as a formulae of the form nx1+αnx2,
for some α ∈ N. Using the Borel-Cantelli lemma, it therefore follows that there does
not exist a point in [−1, 1] that θ̂n will visit infinitely often, and hence limsup Θ̂n =
liminf Θ̂n = ∅. By contrast, the arithmetic sample mean, X̄n := n−1

∑n
i=1Xi

trivially converges to the expected value of X a.s., since for every ε > 0, there
exists an N > 1, for which d(X̄n(ω),E[X]) < ε, for every n ≥ N , for almost
every ω ∈ Ω. Thus, for this example, we reach the counterintuitive conclusion that
X̄n /∈ limsup Θ̂n, for every n.

This paradoxical disagreement between the divergence of the Fréchet sample
mean and the classical convergence of the arithmetic sample mean in such a simple
example requires a strengthening of our definition of the a.s. convergence of Θ̂n. This
particular problem seemed to have been implicitly identified by Ziezold (1977), as
this author proposed the following type of convergence, which specializes the event
presented in equation (5),{

ω ∈ Ω :

∞⋂
n=1

∞⋃
m=n

Θ̂m(ω) ⊆ Θ

}
, (6)

where A indicates the closure of set A in X . For convenience, this particular type
of convergence will be denoted by limsup Θ̂n ⊆ Θ, a.s., where the limsup operator
is here defined with respect to set inclusion on the power set of X . It is easy to see
why definition (6) resolves the issue illustrated in example 2. By taking the closure
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of
⋃∞
m=n Θ̂m, we include all the elements for which there exists a sequence of θ̂n’s

converging to E[X], and therefore for real-valued random variables,

E[X] ∈
∞⋃
m=n

Θ̂m,

for every n, which implies that limsup Θ̂n = {E[X]}, as desired, thereby ensuring
complete agreement between the classical and Fréchet inferential approaches for this
particular example. Note that these issues are neither related to the completeness of
the underlying space of interest, nor associated to the question of the non-emptiness
of Θ.

Since Sverdrup-Thygeson (1981) assumed that X is compact, it follows that Θ
and Θ̂n are non-empty, in this case. The separability of X is not sufficient to ensure
that Θ and the Θ̂n’s are non-empty. Nonetheless, observe that if Θ̂n = ∅, then
the events in equations (5) and (6) are trivially almost certain, since ∅ ⊆ A, for all
A ⊆ X .

3.3 Kuratowski Upper Limit

It can easily be shown that the type of convergence envisaged by Ziezold (1977) is,
in fact, equivalent to the celebrated upper limit introduced by Kuratowski (1966),
which has been adopted as the preferred type of convergence in set-valued analysis
(see Aubin and Frankowska, 2009). The Kuratowski upper limit is defined over a
metric space (X , d), for some sequence of subsets An ⊆ X , as follows

Limsup
n→∞

An :=
{
x ∈ X : liminf

n→∞
d(x,An) = 0

}
=
{
x ∈ X :

{
An ∩Nε(x) 6= ∅

}
i.o., ∀ ε > 0

}
,

(7)

where liminf and Limsup are taken with respect to real numbers and subsets of X ,
respectively, and with Nε(x) := {x′ ∈ X : d(x, x′) < ε}. The second formulation
of Limsup in equation (7) immediately follows from the positivity of the metric.
Also, observe that the Kuratowski upper limit is equivalent to the set of cluster
points of the sequences, xn ∈ An (Aubin and Frankowska, 2009). Clearly, the
Kuratowski upper limit of any sequence of sets is closed, and moreover, it contains
the conventional set-theoretical upper limit, such that for any sequence of random
sets An,

limsup
n→∞

An ⊆ Limsup
n→∞

An.

Importantly, it can be easily shown that the Kuratowski upper limit and the quan-
tity studied by Ziezold (1977) are equivalent, as stated in the following lemma.

Lemma 2. Given a metric space (X , d), for any sequence of sets An ⊆ X ,

limsup
n→∞

An = Limsup
n→∞

An.

Proof. Clearly, limsupAn = ∅, if and only if, LimsupAn = ∅. Thus, assume
that these two outer limits are non-empty, and choose x0 ∈ limsupAn. Then,
x0 ∈

⋃∞
m=N Am for every N and there exists a subsequence xk such that xk ∈ Ank

,
for every k, which satisfies xk → x0. Hence, we have liminf d(x0, An) = 0, and by
definition (7), limsupAn ⊆ LimsupAn.
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Conversely, choose x0 ∈ LimsupAn. Then, there exists a subsequence xk such
that xk ∈ Ank

∩ Nε(x0), for every k and for every ε > 0, which satisfies xk → x0,

as k → ∞. This implies that x0 ∈
⋂∞
N=1

⋃∞
m=N Am, and therefore limsupAn ⊇

LimsupAn, which completes the proof.

Observe that LimsupAn can be empty. Consider the following diverging se-
quence of sets, An := [n−1, n+1], for every n. It is immediate that LimsupAn = ∅.
Throughout the rest of the paper, we will neither assume the existence nor the
uniqueness of Θr and the Θr

n’s. In particular, in the sequel, Θr may be empty, a
subset of X , or a singleton set.

4. Almost Sure Consistency of Fréchet Sample Mean

In this section, we prove a strong law of large numbers for sample Fréchet means
in spaces having a bounded metric. This result can be regarded as an adaptation
of Ziezold’s (1977) original result to spaces equipped with a bounded metric. This
new proof also allows us to re-formulate Ziezold’s theorem using the Kuratowski
upper limit.

Theorem 1. Given a probability space (Ω,F ,P) and a separable bounded metric
space (X , d), let X1, . . . , Xn be a sequence of independent and identically distributed
(iid) abstract-valued random variables, such that Xi : Ω 7→ X , for every Xi. Then,

σ̂rn → σr a.s., and Limsup
n→∞

Θ̂r
n ⊆ Θr a.s.,

for every finite r ≥ 1, and where Limsup is defined as in equation (7).

The particular mode of convergence of the Fréchet sample mean used in theorem
1 will sometimes be denoted by Xn

a.s.→ X, which implies that LimsupXn ⊆ X with
probability one. Observe that the integrability of the rth order metric is implied by
the finiteness of both d and µ. Since d(x, y) ≤ M , for every x, y ∈ X , we have for
any arbitrary α ∈ X and finite r ≥ 1,

E[d(X,α)r] =

∫
X
|d(x, α)|rdµ(x) ≤

∫
X
M rdµ(x) = M rµ(X ) <∞,

by the linearity of the Lebesgue integral, and the fact that µ is a probability mea-
sure. The integrability of the exponentiated metric was not explicitly assumed by
Sverdrup-Thygeson (1981). This author, however, assumed that X is compact,
which implies that dr is integrable for any finite r ≥ 1.

The key to the proof of theorem 1 is based on a classical result, due to Rao (1962),
which stipulates the conditions under which the weak convergence of a probability
measure is equivalent to the uniform convergence of a probability measure, in a
sense made clear in theorem 2. This can be seen as a generalization of the Glivenko-
Cantelli lemma to random variables taking values in separable metric spaces (see
also Parthasarathy, 1967, chap. 2). In this result, we will need to define a class of
functions on the separable space X , which we will denote by F := F(X ), whereby
every f ∈ F is a real-valued continuous function that satisfies f : X 7→ R. Such
a class of functions is said to be uniformly bounded when for every f ∈ F , and
every x ∈ X , there exists an M ∈ R, such that f(x) ≤ M . In addition, F is
equicontinuous at a point x0 ∈ X , if for every ε > 0, there exists δ(x0) > 0, such
that for every u ∈ Nδ(x0) := {u ∈ X : d(x0, u) < δ}, we have |f(x)− f(u)| < ε, for
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every f ∈ F . The class F is said to be equicontinuous if it is equicontinuous for
every x ∈ X . Finally, F is said to be uniformly equicontinuous if δ does not depend
on x0. We will denote the collection of all finite measures on B by M(B), and ⇒
will indicate weak convergence.

Theorem 2 (Rao, 1962, p.672). Let F(X ) be a class of real-valued functions on a
separable space X , and assume that F(X ) is (i) dominated by a continuous integrable
function on X , and that (ii) F(X ) is equicontinuous. If, for some sequence of
measures µn ∈M(B), and µ ∈M(B), we have µn ⇒ µ, a.s., then

lim
n→∞

sup
f∈F

∣∣∣∣∫ fdµn −
∫
fdµ

∣∣∣∣ = 0, a.s..

The following lemma will be used in the proof of theorem 1. This result links the
properties of a bounded metric space with the conditions required in Rao’s (1962)
theorem. For this purpose, we will require the following classes of point functions
on a metric space (see Searcóid, 2007).

Definition 1. For any metric space (X , d), the z-point function is defined as
dz(x) := d(z, x) for every x ∈ X . The class of point functions on (X , d) is then
denoted by D(X ) := {dz : ∀ z ∈ X}. Similarly, we will make use of the class of
exponentiated point functions, defined as follows,

Dr(X ) := {drz : ∀ z ∈ X} ,

for every finite r ≥ 1, and where elements in either D or Dr will be denoted by dz,
and drz, respectively.

Lemma 3. If (X , d) is a bounded metric space, then Dr(X ) is uniformly bounded
and uniformly equicontinuous for every finite r ≥ 1.

Proof. By the boundedness of (X , d), there exists an M ∈ R, such that d(x, y) ≤M ,
for every x, y ∈ X . Therefore, dz(x) ≤ M , for every x ∈ X , for every dz ∈ D, and
thus D is uniformly bounded. Moreover, since drz(x) ≤ M r < ∞, for every finite
r ≥ 1, it follows that each Dr also forms a uniformly bounded class of functions.
Next, by the reverse triangle inequality, we have |dz(x)− dz(x0)| ≤ d(x, x0), for all
x, x0, z ∈ X , thereby proving the (uniform) equicontinuity of the class D on X . For
the case of r ≥ 1, we consider the exponentiated version of the triangle inequality.
Using the binomial expansion,

d(z, x)r ≤
(
d(z, x0) + d(x0, x)

)r
= d(z, x0)

r +
r−1∑
k=1

(
r

k

)
d(z, x0)

r−kd(x0, x)k + d(x0, x)r.

Similarly, for any given x0 ∈ X , d(z, x0)
r ≤ d(z, x)r+

∑r−1
k=1

(
r
k

)
d(z, x)r−kd(x, x0)

k+
d(x, x0)

r. Combining these two inequalities and invoking the symmetry of d, we
have

|d(z, x)r − d(z, x0)
r| ≤ d(x0, x)r + d(x0, x)M r−1

r−1∑
k=1

(
r

k

)

≤ d(x0, x)M r−1

(
1 +

r−1∑
k=1

(
r

k

))
,
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where M is the uniform bound on the class D. Now, choose δ = ε/γM r−1, where
γ := 1 +

∑r−1
k=1

(
r
k

)
, such that if d(x, x0) < δ, then |drz(x)− drz(x0)| < γδM r−1 = ε,

for every x ∈ Nδ(x0), for every drz ∈ Dr, thence proving the equicontinuity of Dr at
x0. Since δ did not depend on the choice of x0, it follows that Dr is also uniformly
equicontinuous.

Proof of Theorem 1. Observe that the theorem is trivially verified if Limsup Θ̂r
n =

∅. Thus, assume that Limsup Θ̂r
n is non-empty. We here adopt the line of argu-

ment followed by Sverdrup-Thygeson (1981). However, since we are not assuming
compactness, there are several aspects of Sverdrup-Thygeson’s proof that becomes
somewhat delicate. In the sequel, we will make use of the following quantities for-
mulated with respect to the class of point functions described in definition 1. For
every z ∈ X , let

Tn(z) :=
1

n

n∑
i=1

drz(Xi)−
∫
X
drz(x)dµ(x), (8)

and similarly,

T ∗n(z) :=
1

n

n∑
i=1

drz(Xi)−
∫
X
drθ(x)dµ(x). (9)

Since Tn(x) is real-valued, one can invoke the strong law of large numbers for real-
valued random variables, which gives

Tn(z)→ 0, a.s., ∀ z ∈ X . (10)

Note, however, that since we have used infima in the definitions of the Fréchet
theoretical and sample means in equations (1) and (2), it follows that the conver-
gence of Tn(z) → 0 is not assured when z is an element of Θ or an element of Θ̂n.
However, as established in lemma 3, the class of point functions, Dr(X ), is uniformly
bounded and (uniformly) equicontinuous. Moreover, we have seen that the finite-
ness of E[drz(X)] is implied by the boundedness of d, such that E[drz(X)] ≤M rµ(X ).
Thus, it follows that there exists a continuous integrable function, i.e. f(x) := M r,
dominating every drz ∈ Dr. Moreover, a classical result on the convergence of em-
pirical measures based on iid random variables taking values in separable metric
spaces (see Parthasarathy, 1967, theorem 7.1, p.53) implies that

µn ⇒ µ, a.s., (11)

where µn := n−1
∑n

i=1 δXi , is the empirical measure on X . Therefore, we are in a
position to apply theorem 2, which shows that the empirical measure, µn, converges
uniformly with probability 1. That is,

P

[
sup
z∈Dr

∣∣∣∣∣ 1n
n∑
i=1

drz(Xi)−
∫
X
drz(x)dµ(x)

∣∣∣∣∣→ 0

]
= 1,

which may be re-written as

sup
z∈Dr

∣∣Tn(z)
∣∣ = sup

z∈X

∣∣Tn(z)
∣∣→ 0, a.s.. (12)

Consequently, Tn(θ̂n) → 0, a.s., and Tn(θ) → 0, a.s., for every θ̂n ∈ Θ̂n and every
θ ∈ Θ, respectively.
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Further, from the definition of θ̂n and θ, we can ‘sandwich’ T ∗n(θ̂n) in the follow-
ing manner. Firstly, observe that by the minimality of the θ’s,

Tn(θ̂n) =
1

n

n∑
i=1

dr
θ̂n
(Xi)−

∫
X
dr
θ̂n
(x)dµ(x)

≤ 1

n

n∑
i=1

dr
θ̂n
(Xi)−

∫
X
drθ(x)dµ(x) = T ∗n(θ̂n).

(13)

Secondly, by the minimality of the θ̂n’s, we similarly have,

T ∗n(θ̂n) =
1

n

n∑
i=1

dr
θ̂n
(Xi)−

∫
X
drθ(x)dµ(x)

≤ 1

n

n∑
i=1

drθ(Xi)−
∫
X
drθ(x)dµ(x) = Tn(θ).

(14)

Thence, combining equations (13) and (14), we obtain,

Tn(θ̂n) ≤ T ∗n(θ̂n) ≤ Tn(θ),

such that, using equation (12),

|T ∗n(θ̂n)| ≤ max{|Tn(θ̂n)|, |Tn(θ)|} → 0, a.s., (15)

which proves the a.s. convergence of σ̂rn to σr.
We now turn to the convergence properties of the Fréchet sample mean of the

rth order, Θ̂r
n. Here, we generalize Ziezold’s (1977) proof strategy to Fréchet sample

means of any order (see also Molchanov, 2005, p.185). Choosing

θ̂ ∈ Limsup
n→∞

Θ̂r
n,

it then suffices to show that θ̂ ∈ Θr, which is verified if E[d(X, θ̂)r] ≤ E[d(X,x′)r],
for every x′ ∈ X . We proceed by constructing the following subsequence of natural
numbers.

Observe that from the definition of the Kuratowski upper limit and the equiv-
alence relation reported in lemma 2, it follows that θ̂ ∈ Cl(

⋃∞
m=n Θ̂r

m), for every n,
where Cl(·) denotes the closure of a set. Thus, one can construct a subsequence,
{nk : k ∈ N}, such that for every k, there exists an element θ̂k ∈

⋃∞
m=k Θ̂r

m, which

satisfies d(θ̂k, θ̂) ≤ 1/k. Moreover, we can define nk := min{n ∈ N : n ≥ k, θ̂k ∈ Θ̂r
n}.

Now, after an application of the triangle inequality, followed by the Minkowski in-
equality, we have(

1

nk

nk∑
i=1

d(Xi, θ̂)
r

)1/r

≤

(
1

nk

nk∑
i=1

d(Xi, θ̂k)
r

)1/r

+

(
1

nk

nk∑
i=1

d(θ̂k, θ̂)
r

)1/r

,

which gives (
1

nk

nk∑
i=1

d(Xi, θ̂)
r

)1/r

≤

(
1

nk

nk∑
i=1

d(Xi, θ̂k)
r

)1/r

+
1

k
.
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As k → ∞, it then follows from equation (12) that since (nk)k∈N is a subsequence
of (n)n∈N, we obtain

(
E[d(X, θ̂)r]

)1/r
≤ liminf

k→∞

(
1

nk

nk∑
i=1

d(Xi, θ̂k)
r

)1/r

, (16)

where liminf is here taken with respect to non-negative real numbers. Moreover, by
construction, each θ̂k is minimal with respect to any element x′ ∈ X , such that

1

nk

nk∑
i=1

d(Xi, θ̂k)
r ≤ 1

nk

nk∑
i=1

d(Xi, x
′)r, (17)

for every x′ ∈ X and k ∈ N. Observe that given the continuity and monotonicity
of g(x) := x1/r on positive real numbers, we have liminf g(xn) = g(liminf xn), for
every sequence satisfying xn ∈ R+. Therefore, it suffices to combine equations (16)
and (17) in order to obtain E[d(X, θ̂)r] ≤ E[d(X,x′)r], for every x′ ∈ X , as required.
Thence, θ̂ ∈ Θr a.s., but since θ̂ was arbitrary, we have Limsup Θ̂r

n ⊆ Θr a.s., as
required.
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distancié. Annales de L’Institut Henri Poincaré, 10(4), 215–310.
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