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1. Introduction  

 

Biomarkers are important tools for early detection of various kinds of diseases. For 

example, biomarkers have been developed to detect cancers before the onset of clinical 

disease (Pepe et al., 2001). A receiver operating characteristic (ROC) curve is commonly 

used to assess the accuracy of a biomarker in distinguishing between diseased and non-

diseased patients (Zhou, Obuchowski and McClish 2002). Traditionally, ROC analysis 

deals with dichotomous diagnostic outcomes such as determining whether a disease is 

present or absent at a cross-sectional time point. For prognostic tests, however, we often 

deal with disease status that changes over time. A traditional ROC analysis for 

dichotomous disease status is not adequate under this situation because the disease 

outcome of a subject is not fixed. To accommodate time-dependent disease outcomes, a 

time-dependent ROC curve has been proposed (Heagerty and Zheng 2004) to assess the 

prognostic accuracy of a biomarker to distinguish between subjects with and without the 

disease event over time. 

 

A time-dependent ROC curve are often used for comparing the prognostic accuracies 

of a large number of candidate biomarkers for disease-related events such as death from 

cancers, HIV infections, and kidney failures. Methods to evaluate the prognostic value of 

a biomarker other than a time-dependent ROC curve exist. Examples include the 

extended R2 approach proposed by O’Quigley and Xu (2001) that measures the variation 

explained by a time-to-event model, and rank-based correlation coefficient approaches 

such as concordance, Kendall’s tau (Kendall 1938), and Spearman’s correlation 

coefficients. However, the difficulty for these approaches is that the categorizations of 

biomarker values are often arbitrary and may not yield categories that are comparable for 

different biomarkers. For this reason, the time-dependent ROC curves is more attractive 

since it can provide a common scale for the comparison of accuracy among different 

biomarkers. 

 

As the motivation, we describe our study question using a randomized clinical trail, 

namely the African American study of kidney disease and hypertension (AASK). This 

study enrolled 1094 African Americans with the following conditions: (1) hypertension; 

(2) 18 to 70 years of age; (3) a original glomerular filtration rate (GFR) of 20 to 65 

ml/min per 1.73 m2; and (4) no other apparent cause of renal insufficiency other than 

hypertension. Study participants were randomized to a usual mean arterial pressure 

(MAP) goal of 102 to 107 mmHg or a low MAP goal of <92 mmHg, and to initial 

treatment with one of three anti-hypertensive study drugs: a sustained-release β-blocker 

(metoprolol), an angiotensin converting enzyme inhibitor (ACEI, ramipril), or a 

dihydropyridine calcium channel blocker (amlodipine). The primary end point of the 

study is the time to end stage renal disease (ESRD), which was subject to censoring. The 

three major biomarkers are estimated GFR (eGFR), iothalamate GFR (iGFR) and urinary 

protein to creatinine ratio (UPCR) measured at baseline. Here our goal is to evaluate the 

performance of the above biomarkers for the prognosis of ESRD events in a future time 

from baseline. To obtain the goal, it’s natural that we establish a time-dependent ROC 

curves to evaluate the ability of the above biomarkers for the prognosis of ESRD events. 
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Other clinical risk factors, such as treatment and hypertension status, may affect the 

prognosis accuracy. Hence, it would be important to consider and adjust for these factors 

in constructing the ROC for the biomarkers. 

 

 

 

 

2. Notations and Definitions 

 

2.1. Notations 

Here, we consider the scenario where a biomarker has a continuous distribution and is 

measured only at baseline. Let Ti and Ci denote the event time and censoring time, 

respectively, for a subject i (i = 1, . . . , n), and let Di(t) denote the binary disease outcome 

for the subject i at time t from baseline. Define Vi = min(Ti,Ci), where min indicates the 

minimum of its arguments, and define Δi = 1(Ti ≤ Ci) where 1(.) is the indicator function, 

having value 1 when the condition of its argument is satisfied and value 0 otherwise. Let 

Yi be the baseline biomarker and Xi be the vector of covariates for subject i. For 

notational convenience, we define Zi = (Xi, Yi) for each i. 

 

2.2. Time-dependent True Positive Rate 

In the classic setting with binary outcomes, the true positive rate is the proportion of 

cases who have positive test results. When the outcome is a failure time, however, there 

are different ways of defining cases, resulting in different kinds of true positive rates 

being 

defined. Here we present two definitions of the time-dependent true positive rate (TPR), 

which has been given in the literature such as Heagerty and Zheng (2004). By using the 

Baye’s rule, these TPRs can be expressed by the ratio of the integrals of the conditional 

survivor function, as shown in equations (1) and (2). 

 

2.2.1. Cumulative True Positive Rate, TPRC: 

 

 
 

where S(t|x, u) is the survival function at event time T = t, conditional on covariates 

X = x and biomarker value Y = u. Here, TPRC evaluates the capacity of biomarker, Y , 

for detecting events occurring up to a time point t. Using this definition, we are interested 

in predicting the disease prevalence of the study cohort at a given time. 

 

 

2.2.2. Incident True Positive Rate, TPRI : 

 
where f(t|x, u) is the probability density function for T = t conditional on covariates X = x 

and biomarker value Y = u. Here, TPRI evaluates the capacity of the biomarker, Y , for 

detecting events that occur right at the time point t. Using this definition, we are more 

interested in the disease incidence of the study cohort at a given time. 
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2.3. Time Dependent False Positive Rate 

Similar to the time-dependent true positive rate, there are different types of time-

dependent false positive rates according to the definition of controls. Next, we give two 

kinds of the false positive rate (FPR), which also has been given in previous literature 

(Heagerty and Zheng 2005). By using the Baye’s rule, these FPRs can also be expressed 

by the ratios of the integrals of the conditional survivor functions. 

2.3.1. Dynamic False Positive Rate, FPRD: 

 

 
 

Under this definition, the time defining the controls is dynamic. Usually this dynamic 

time is the time lags after the measurement of biomarker for subjects in the study. 

Controls are those who have not developed the disease at these time lags. 

 

2.3.2. Static False Positive Rate, FPRS: 

 
 

Under this definition, controls are subjects who are disease free in time period, (0, t∗), 

where t∗ is a fixed time point. For static FPR, we usually need to prespecify the time 

point t∗ such that the controls can be described as a reference group of the study. The 

problem of FPRS is that the time defining controls, t∗, is not the same as, or related to, 

the time defining cases in the corresponding TPR. 

 

2.4. Time-dependent ROC Curves 

After choosing the time-dependent TPR and FPR, we can define the time-dependent 

ROC curves. The cumulative/dynamic ROC curve (ROCC/D), the incident/static ROC 

curve (ROCI/S), and the incident/dynamic ROC curve (ROCI/D) are all meaningful 

time-dependent ROC curves, which are compound functions of the time-dependent TPR 

and FPR defined in the Sections 2.2 and 2.3 (Heagerty and Zheng 2005; Cai et al. 2006). 

The definitions for the above time-dependent covariate-specific ROC curves can be 

expressed as follows: 

 
 

 
where v denotes the time-dependent FPR, t (satisfying t > 0) denotes the time lag from 

baseline, and x denotes a certain realization of covariates X. Here, ROC
C/D

, ROC
I/S

, 

ROC
I/S 

denote the corresponding cumulative/dynamic, incident/static, and 

incident/dynamic true positive rate, respectively. Let y∗ be the threshold value that yields 
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v, i.e., FPRD(y*; t, x) = P(Y > y* |T > t, x) = v or FPRS(y*; t*, x) = P(Y > y*|T > t*, x) = 

v. Then the time-dependent ROC is the true positive (or sensitivity) obtained using the 

threshold value y* such that: 

 
where ROC

./. 
denotes the three types of time-dependent ROC curves defined above. 

 

All of the time-dependent ROC curves defined above can be used to evaluate and 

compare the accuracy of biomarkers in classifying subjects based on their times to 

disease event after adjusting for covariates. The cumulative/dynamic ROC curve is useful 

in distinguishing subjects failing by a given time from those failing after that time; the 

incident/dynamic ROC curve is useful in distinguishing subjects failing at a given time 

from those failing after that time; the incident/static ROC curve is useful in distinguishing 

subjects failing at one time point from those failing after a fixed time point; In this paper, 

we will focus on cumulative/dynamic, and incident/static ROC curves. 

 

3. Time-dependent ROC Model 

From the definition of time-dependent TPR and FPR in (1)-(4) and the time-dependent 

ROC curves in (5)-(7), we can see that both the conditional survival function for the 

disease time and the conditional distribution of the biomarker must be estimated in order 

to obtain the time-dependent TPRs, FPRs, and ROC curves. 

 

In this section, the semi-parametric location model for biomarkers and the non-parametric 

time-to-event model are introduced. The estimation procedure is described in Section 4. 

The survival function of the disease time conditional on biomarker and covariates can be 

estimated from the former model together with the regression parameters and the 

transformation function. The biomarker distribution conditional on covariates can be 

obtained from the latter model. 

 

3.1. Model of Biomarkers 

Here, we assume that biomarker Y depends on covariates X through the following semi-

parametric model: 

 
where ϵ* is the random error with unknown distribution. Then, the distribution function 

of the biomarker Y can be be given by: 

 
where H∗(.) is the cumulative distribution function (CDF) of ϵ∗, and α0 is the vector of 

parameters for the linear regression of covariates X on biomarker Y . This semi-

parametric location model was also adopted in Song and Zhou (2008). 

 

3.2. Model of Event Time 

We consider the typical setting of a censored time-to-event outcome where the data is 

subject to right censoring. We use the notations given in Section 2.1 and suppose there 

are n subjects in the dataset. One important assumption we make is that, given Zi, the 

event time Ti and the censoring time Ci are independent. We assume that the event time 

Ti depends on biomarker and covariates through the following nonparametric 

transformation model: 
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where G(.) is an unknown monotone increasing transformation function, and ϵ is the 

unobserved random error with mean zero and variance 1. Since ϵ and C are unobserved, 

there is a well-known identification problem. Given the observed variables Δi, Z and T, 

Equation (10) continues to hold if G, ϵ and C∗ are replaced by αG, αϵ and αC∗, for any 

constant αG. Therefore, the scale and location normalizations are needed. As shown by 

Gorgenes and Horowitz (1996), and Ichimura (1993), identification of β up to scale 

requires that Z has at least one component that is continuously distributed conditional on 

the others and whose β-coefficient is nonzero. Without loss of generality, we let the first 

element of vector X have coefficient 1 and other elements have coefficients vector θ, i.e., 

βT = (1, θT). For location normalization, we let Λ(t0) = 0, where t0 is some constant. 

Since the time to disease event, Ti, is subject to censoring, it is not always observed. 

However, Vi and Δi are always observed. Thus, the model (10) can be expressed in terms 

of Vi and Δi as follow: 

 

      
where C* i = G(Ci), the transformation of the censoring variable. 

 

3.3. Time-Dependent ROC Curve 

Based on different kinds of the time-dependent TPR and FPR given by (1)–(4), the time-

dependent ROC curve can be obtained by using equations (5)–(7). 

 

4. Application in Kidney Disease Study - AASK 

 

As an application, we consider the data from AASK randomized clinical trial with a 

factorialdesign. For comparison purpose, we used the our time-dependent ROC estimator, 

ROC
C/D

, to three different baseline biomarkers (eGFR, iGFR and UPCR) at select t (1, 2, 

3, and 4 years since baseline). Table 7.1 shows the baseline summary statistics of AASK 

cohort by the two baseline blood pressure groups(BP=L and BP=M). Figures 1 and 2 

present the covariate-specific time-dependent ROC
C/D

 curves (with 95% confidence 

intervals) of the above three biomarkers and their corresponding AUCs at the four time 

points listed above. 

 

There are only slight changes in ROC curves (and AUC) of the three biomarker across 

the six combinations of the two risk factors (BP and Drug). However, the figures show 

that the performances of eGFR and iGFR for prognosis of ESRD event are similar across 

the four pre-specified time points. Among the three biomarkers, eGFR and iGFR have 

consistently better overall performance than that of UPCR. For detection of early ESRD 

events at 12 months, UPCR has better sensitivities for specificities higher than 80% (or, 

equivalently, false positive rate lower than 20%). We also plot the covariate-specific area 

under the time-dependent ROC curve (AUC) as a function of time in this example (we 

customized the time range from 6 months top 60 months). Figures 3 and 4 show the time-

dependent AUCs for the six different combinations of the baseline covariates (BP and 

DRUG). For eGFR and iGFR, the AUCs are consistently increasing from about 0.80 at 6 

months to about 0.95 at 60 months. Besides, There is a slight ”U” shape of the AUC(t) 

curve of UPCR, with the bottom of AUC at 0.65 around 24 months. However, we can 

find only tiny differences in AUC(t) curves among different covariates combinations. 
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Table 1:  Patient Characteristic of AASK Trial 
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