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Abstract

Conventionally, inferential statistics focuses oeasures of central tendency, eg, the
population mean. Little attention is given to diffaces in the range of sample
distributions, and the range is often associateth wkxceptional values. Under certain
circumstances, effects visible at the edges ofmapka distribution may provide more
sensitive and even more meaningful measures ddrdiftes between populations than
the difference in means. In this paper we introdtiee Range Disparity Distribution
(RDD) to describe the probability that a given nembf items in one set fall outside the
range of all the items in another set on a giveasuee. Here we define the RDD, prove
that it is a probability distribution, and then peed to derive the mean and variance. We
also provide a statistical test comparing two gsooi@sed on the RDD.

Key Words: probability distribution, central tendency, rangample distributions,
exceptional values

Introduction

At the 2007 American Statistical Association megdin “The Range Disparity
Distribution and Its Applications” was presented agontribution to “Application of
Innovative Analysis in Clinical Trials.” In that @sentation, we introduced an analysis of
range disparity [1]. Our position was that for therpose of comparing groups—for
example, groups of patients undergoing differingatments in clinical trials—little
attention had been devoted to the ranges of cliata. This led us to formulate a
statistical test for the number of values in on@sket expected to be beyond the range of
all the values in another, independent datasetettain circumstances, such an analysis
may provide more sensitive and even more meaningéasures of differences between
populations than the differences in means. Seyweadtical examples were given. This
paper notes a special-case relation between tige idigparity distribution (RDD) and the
negative hypergeometric distribution [2—4], andhirthat derives the mean and variance
of the RDD. As further practical examples, we diéscpotential uses of the RDD in
analyses of clinical and industrial data.
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lllustrating the Basic Problem

Suppose that of 10 straws with randomly differingdths, 6 happen to be in uand

the other 4 in urB. What is the probability that a given number @ gtraws in urB are

longer than the longest straw in Uk For urnB to contain no such straws, the answer

requires no calculation. The 6 straws in Arwould have to include the longest straw of

all 10, and for this to be the case, the probabititsimply 6/10, or 60%. For urd to

contain exactlynestraw longer than the longest straw in An

* UrnBwould have to include the longest straw, a 4-irctiince, andlso

e One of the 6 straws in uwould have to be the longest among the remainiray 9,
6-in-9 chance.

The probability of both these requirements being is&/10x6/9, or 27%. For urd to

contain exactlywo straws longer than the longest straw in Arn

* UrnBwould have to include the longest straw, a 4-irctiince, andlsa

 Urn B would have to include the longest straw among #maining 9, a 3-in-9
chance, andlsa

* One of the straws in urA would have to be the longest among the remainiray@,
in-8 chance.

The probability of all these requirements being imet/10x3/9x6/8, or 10%. The full use

of this logic produces the probability distributidisplayed inTable 1

Table 1: Probability Distribution for Likelihood of Longertaws in a Set of 4 Than the
Longest Straw in a Set of 6

Number of Resulting
Longer Straws Probability Caiculation P Value
0 6/10 60%

1 4/10x6/9 271%

2 4/10x3/9< 6/8 10%
3 410 3/9 2/8 % 6/7 3%
4 4M10=3/9= 2/8=1/7 = 6/6 0.5%

®Due to rounding, the sum of all probabilities doesadd up to exactly 100%.
Methods
The combinatorics of straws in urns suggests thewimg formal definition:

Let Sand T be positive integers. Let be a random variable, and letbe an integer
ranging from 0 tdl. P(Y=y) has the distribution:

S+T ¥=0
PY=N=] s 2 Fken
S+TXHS+T—R’O<y(T
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P(Y=y) represents the probability that a given numbeiteshs in a set oT values fall
outside the maximum (or minimum) value in an indeEnt set ofS values. In
combinatorial notatiorR?(Y=y) can be rewritten as:

4T (r+1)

P(Y=y)={ S y=0.1, ..

The negative hypergeometric distribution containgaBametersS and T as above and
r=1, ...,S with Y as the random variable, as above. We have:

P(Y=y)= (Y;j;1)(5+§j{—f)/(3§T), y=0,1, ., T

By settingr to 1, the negative hypergeometric distribution estuto the RDD. From the
mean and variance of the negative hypergeomestdhlition, the mean and variance of
the RDD are:

E(Y)=giy
_ TS(S+T+1)
Var(Y)=(s. 175 +2)

Statistical Inference Based on RDD

Having considered the basic properties of the R@®,can examine application to the
direct comparison of two groups. The capabilitycomparing groups at the upper and
lower limits is quite important for evaluation obroplex systems that are typical of
biological or clinical testing, as some variableaynonly, or at least disproportionately,
affect the upper tail of a distribution, the detavimg factors for the lower range residing
elsewhere.

Suppose we have two independent groups and wislortgpare the maximum values
between the two groups. L¥f, Yo, ...., ¥ be the measures from Group 1 aqdX,, ....,
Xs be the measures from Group 2. Assume that theuress@re from a continuous
distribution such that ties are not possible. Kgtx = max{X; j=1, 2, ...§. Then

.

G = Z I{Yi > Xmax} is the number of observations in Group 1 thatlarger than the
i=1

largest observation in Group 2. Th@has the RDD with:

TS(S+T +1))

E(G) = 5L+1 anaVar(@) = (g e
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A hypothesis can be formed as:
Null hypothesis: Ho: 6,=6,
Alt hypothesis: Ha: 6, >0,

G=> 1Y > Xy

M-

Test statistic:

.u‘

Reject i if G> G, whereG, is
chosen to satisfy PG> G,) <a

Decision rule:

wheref; and8, represent the maximum values for the two populati®Ve can also form
statistical inferences on group differences in teraf lower bounds by using the
minimum and reversing the relationship in the amidl alternative hypotheses.

“Subjects” and “Procedures”

Example 1.

Now consider a hypothetical clinical trial in whi@@ subjects are randomized to take an
active drug or placebo (10 subjects per group).aBse hypercholesterolemia is a
potential active-drug side effect, all subjects eequired to have a baseline serum
cholesterol level of 85 to 200 mg/dL.

Results
Table 2 lists the hypothetical subjects’ post-baseline estdrol levels. To facilitate

comparison between the active-drug and the plagetap, the listings (and subject 1D
numbers) are by ascending cholesterol level.

Table 2: Post-baseline Cholesterol Levels in a Hypothetialical Trial

Active-Treatment Group Placebo Group

Cholesterol Cholesterol
Subject’D  (mg/dL) Subject’D  (mg/dL)
001 125 002 126
003 138 005 138
004 166 007 168
006 178 008 172
009 190 010 188
01 192 013 192
012 203 014 195
015 214 016 198
017 223 018 201
020 231 019 202
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Table 3 includes 3 standard statistical analyses of thd-lpaseline data. By all 3
methods, there is no basis for concluding that d@bive treatment raises cholesterol
levels.

These resultsT@ble 3 illustrate how standard analyses of lab dataro@és potential
signals. The conclusion from the data presented/ealweould suggest that there is
insufficient evidence to reject the null hypothesésio treatment difference in favor of
the alternative that the active treatment raisedesterol; one might conclude that there
is no drug safety concern.

In contrast to the standard methods, the RDD-bappdoach (also included Fable 3
begins by noting that the maximum cholesterol lewekhe placebo group was 202
mg/dL, and that 4 of the subjects in the activettreent group had levels exceeding this
value. By RDD calculation, the probability of fimdj that 4 or more values in a group of
10 exceed the maximum value in another group o61M043. Thus, the RDD analysis
may lead to the conclusion that risk for hyperch@elemia is of clinical concern.

Table 3: Standard and RDD-Based Analyses of the Post-basbhita

Active-
Treatment Placebo

Group Group Analysis
(N=10) (N=10) Method P Value*

Mean (SD) serum 186.0(35.0) 178.0(26.9) ttest 0.287

cholesterol, mg/dL Wilcoxon 0.289
rank-sum test

n (%) with levels 4 (40%) 2 (20%) Fishersexact 0.314

=200 mg/dL test

n (%) of active- 4 (40%) NA RDD 0.043

treatment group with
levels exceeding the
range in the placebo

group

%0ne-sided.
NA, not applicable; RDD, range disparity distritmutj SD, standard deviation.

An important difference between standard methodsthe RDD-based approach is that
the standard methods often require a pre-selechedshold value for clinical
meaningfulness (eg, 200 mg/dL, for use of Fishexact test inTable 2). In the RDD-
based approach, the data themselves set a threshold

Interestingly, if the threshold set is > 202 mg/@iny value higher than the maximum
value in the placebo group), the resulting p-vdtoen Fisher’s exact test comparing 4/10
active to 0/10 placebo is 0.043 (ie, the same pevfilom the RDD; further analysis on
the nature of this equality is needed). This saysething very interesting about selecting
somewhat arbitrary thresholds versus the dataatidg what that threshold may be.
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Example 2.

In cancer trials, the tumor response is definedtdsast 25% reduction from baseline in
the sum of the bi-dimensional longest diameterddaget lesions ie, the “tumor burden”
[5]. Tumor response is commonly used as a primangpeint to obtain accelerated
regulatory approval. In a refractory study, theguathas previously failed to respond to
the standard therapy (ie, at this point, it would dssumed impossible for a 100%
reduction in the standard therapy arm). Frequettibtre are no overall group differences
in the average response, but there is an obviotengabe in the tail of the distribution of
the tumor burden. For example, there may be a nuwibgubjects in the treatment arm
who had tumor burden reductions greater than thge$a reduction in the standard
therapy arm.

Nonmedical Applications

Example 3.

In nonmedical as well as medical settings, 2 sétglada may have no significant
difference in average value, but the tails of tieridbutions may disclose a pronounced
difference. Suppose an industrial corporation sttspthat its planA is manufacturing
items with a breaking strength lower than that tefris manufactured by plai A
limited sample consisting of 5 items from eachha plants is available for testing. If the
breaking strength of more than 2 of the items fdant A falls below the range for all 5
items from plantB, there is a basis for suspicion, in that by RDDcwation, the
likelihood of such a finding resulting only fromantce variation would be less than 0.10.
If 4 or 5 of the samples from plaAtwere below the failure range for the samples from
plantB, the likelihood that the finding resulted from alka variation would be less than
0.025.

Conclusions

The RDD describes the probability that for a give@asure, a given number of items in
one set falls outside the range of all the itemarinther set. In this way, the RDD can
test for consistency between the sets without d teere-establish an arbitrary threshold
value for distinguishing between significant diface and chance oscillation. The RDD
also offers a capacity for independent testindnefupper and lower bound of a dataset.
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