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Abstract   
Conventionally, inferential statistics focuses on measures of central tendency, eg, the 
population mean. Little attention is given to differences in the range of sample 
distributions, and the range is often associated with exceptional values. Under certain 
circumstances, effects visible at the edges of a sample distribution may provide more 
sensitive and even more meaningful measures of differences between populations than 
the difference in means. In this paper we introduce the Range Disparity Distribution 
(RDD) to describe the probability that a given number of items in one set fall outside the 
range of all the items in another set on a given measure. Here we define the RDD, prove 
that it is a probability distribution, and then proceed to derive the mean and variance. We 
also provide a statistical test comparing two groups based on the RDD. 
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Introduction 
 

 
At the 2007 American Statistical Association meetings, “The Range Disparity 
Distribution and Its Applications” was presented as a contribution to “Application of 
Innovative Analysis in Clinical Trials.” In that presentation, we introduced an analysis of 
range disparity [1]. Our position was that for the purpose of comparing groups—for 
example, groups of patients undergoing differing treatments in clinical trials—little 
attention had been devoted to the ranges of clinical data. This led us to formulate a 
statistical test for the number of values in one dataset expected to be beyond the range of 
all the values in another, independent dataset. In certain circumstances, such an analysis 
may provide more sensitive and even more meaningful measures of differences between 
populations than the differences in means. Several practical examples were given. This 
paper notes a special-case relation between the range disparity distribution (RDD) and the 
negative hypergeometric distribution [2–4], and from that derives the mean and variance 
of the RDD. As further practical examples, we describe potential uses of the RDD in 
analyses of clinical and industrial data. 
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Illustrating the Basic Problem 
 
Suppose that of 10 straws with randomly differing lengths, 6 happen to be in urn A and 
the other 4 in urn B. What is the probability that a given number of the straws in urn B are 
longer than the longest straw in urn A? For urn B to contain no such straws, the answer 
requires no calculation. The 6 straws in urn A would have to include the longest straw of 
all 10, and for this to be the case, the probability is simply 6/10, or 60%. For urn B to 
contain exactly one straw longer than the longest straw in urn A, 
• Urn B would have to include the longest straw, a 4-in-10 chance, and also: 
• One of the 6 straws in urn A would have to be the longest among the remaining 9, a 

6-in-9 chance. 
 
The probability of both these requirements being met is 4/10×6/9, or 27%. For urn B to 
contain exactly two straws longer than the longest straw in urn A, 
• Urn B would have to include the longest straw, a 4-in-10 chance, and also: 
• Urn B would have to include the longest straw among the remaining 9, a 3-in-9 

chance, and also: 
• One of the straws in urn A would have to be the longest among the remaining 8, a 6-

in-8 chance. 
The probability of all these requirements being met is 4/10×3/9×6/8, or 10%. The full use 
of this logic produces the probability distribution displayed in Table 1. 
 
Table 1: Probability Distribution for Likelihood of Longer Straws in a Set of 4 Than the 

Longest Straw in a Set of 6a 
 

 
 

aDue to rounding, the sum of all probabilities does not add up to exactly 100%. 
 

Methods 
 
The combinatorics of straws in urns suggests the following formal definition: 
Let S and T be positive integers. Let Y be a random variable, and let y be an integer 
ranging from 0 to T. P(Y=y) has the distribution: 
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P(Y=y) represents the probability that a given number of items in a set of T values fall 
outside the maximum (or minimum) value in an independent set of S values. In 
combinatorial notation, P(Y=y) can be rewritten as: 
 

 
 
The negative hypergeometric distribution contains 3 parameters, S and T as above and 
r= 1, …, S, with Y as the random variable, as above. We have: 
 

 
 
By setting r to 1, the negative hypergeometric distribution reduces to the RDD. From the 
mean and variance of the negative hypergeometric distribution, the mean and variance of 
the RDD are: 
 

 

Statistical Inference Based on RDD 

Having considered the basic properties of the RDD, we can examine application to the 
direct comparison of two groups. The capability of comparing groups at the upper and 
lower limits is quite important for evaluation of complex systems that are typical of 
biological or clinical testing, as some variables may only, or at least disproportionately, 
affect the upper tail of a distribution, the determining factors for the lower range residing 
elsewhere.  

Suppose we have two independent groups and wish to compare the maximum values 
between the two groups. Let Y1, Y2, …., YT be the measures from Group 1 and X1, X2, …., 
XS be the measures from Group 2. Assume that the measures are from a continuous 
distribution such that ties are not possible. Let Xmax = max{Xj: j=1, 2, …,S}. Then 
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A hypothesis can be formed as: 

Null hypothesis:   

Alt hypothesis: 

 

Test statistic:     

 

Decision rule: 

 

HO: θ1 = θ2     

HA: θ1 > θ2 
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Reject HO if G ≥ αG where αG is 

chosen to satisfy Pr (G ≥ αG ) ≤ α  

where θ1 and θ2 represent the maximum values for the two populations. We can also form 
statistical inferences on group differences in terms of lower bounds by using the 
minimum and reversing the relationship in the null and alternative hypotheses. 

 
“Subjects” and “Procedures” 
 

Example 1. 

Now consider a hypothetical clinical trial in which 20 subjects are randomized to take an 
active drug or placebo (10 subjects per group). Because hypercholesterolemia is a 
potential active-drug side effect, all subjects are required to have a baseline serum 
cholesterol level of 85 to 200 mg/dL. 
 

Results 
 

Table 2 lists the hypothetical subjects’ post-baseline cholesterol levels. To facilitate 
comparison between the active-drug and the placebo group, the listings (and subject ID 
numbers) are by ascending cholesterol level. 
 

Table 2: Post-baseline Cholesterol Levels in a Hypothetical Clinical Trial 
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Table 3 includes 3 standard statistical analyses of the post-baseline data. By all 3 
methods, there is no basis for concluding that the active treatment raises cholesterol 
levels.  
 
These results (Table 3) illustrate how standard analyses of lab data can miss potential 
signals. The conclusion from the data presented above would suggest that there is 
insufficient evidence to reject the null hypotheses of no treatment difference in favor of 
the alternative that the active treatment raises cholesterol; one might conclude that there 
is no drug safety concern. 
 
In contrast to the standard methods, the RDD-based approach (also included in Table 3) 
begins by noting that the maximum cholesterol level in the placebo group was 202 
mg/dL, and that 4 of the subjects in the active-treatment group had levels exceeding this 
value. By RDD calculation, the probability of finding that 4 or more values in a group of 
10 exceed the maximum value in another group of 10 is 0.043. Thus, the RDD analysis 
may lead to the conclusion that risk for hypercholesterolemia is of clinical concern. 
 

Table 3: Standard and RDD-Based Analyses of the Post-baseline Data 
 

 
 

aOne-sided. 
NA, not applicable; RDD, range disparity distribution; SD, standard deviation. 
 
An important difference between standard methods and the RDD-based approach is that 
the standard methods often require a pre-selected threshold value for clinical 
meaningfulness (eg, 200 mg/dL, for use of Fisher’s exact test in Table 2). In the RDD-
based approach, the data themselves set a threshold. 
 
Interestingly, if the threshold set is > 202 mg/dL (any value higher than the maximum 
value in the placebo group), the resulting p-value from Fisher’s exact test comparing 4/10 
active to 0/10 placebo is 0.043 (ie, the same p-value from the RDD; further analysis on 
the nature of this equality is needed). This says something very interesting about selecting 
somewhat arbitrary thresholds versus the data indicating what that threshold may be. 
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Example 2. 

In cancer trials, the tumor response is defined as at least 25% reduction from baseline in 
the sum of the bi-dimensional longest diameters for target lesions ie, the “tumor burden” 
[5]. Tumor response is commonly used as a primary endpoint to obtain accelerated 
regulatory approval. In a refractory study, the patient has previously failed to respond to 
the standard therapy (ie, at this point, it would be assumed impossible for a 100% 
reduction in the standard therapy arm). Frequently, there are no overall group differences 
in the average response, but there is an obvious advantage in the tail of the distribution of 
the tumor burden. For example, there may be a number of subjects in the treatment arm 
who had tumor burden reductions greater than the largest reduction in the standard 
therapy arm. 
 
 
Nonmedical Applications 
 

Example 3. 

In nonmedical as well as medical settings, 2 sets of data may have no significant 
difference in average value, but the tails of the distributions may disclose a pronounced 
difference. Suppose an industrial corporation suspects that its plant A is manufacturing 
items with a breaking strength lower than that of items manufactured by plant B. A 
limited sample consisting of 5 items from each of the plants is available for testing. If the 
breaking strength of more than 2 of the items from plant A falls below the range for all 5 
items from plant B, there is a basis for suspicion, in that by RDD calculation, the 
likelihood of such a finding resulting only from chance variation would be less than 0.10. 
If 4 or 5 of the samples from plant A were below the failure range for the samples from 
plant B, the likelihood that the finding resulted from chance variation would be less than 
0.025. 
 

Conclusions 
 

The RDD describes the probability that for a given measure, a given number of items in 
one set falls outside the range of all the items in another set. In this way, the RDD can 
test for consistency between the sets without a need to pre-establish an arbitrary threshold 
value for distinguishing between significant difference and chance oscillation. The RDD 
also offers a capacity for independent testing of the upper and lower bound of a dataset. 
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