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Abstract
This paper presents a practical test for goodness–of–fit of low–order Autoregressive (AR) models.

The test compares the maximum absolute deviation between the estimated integrated spectrum and
the theoretical integrated spectrum of an AR model. We demonstrate using simulation that the
multitaper method results accurate estimates of AR model coefficients. Simulation is used to study
the effectiveness of the goodness–of–fit test. Recently Tourre et al. (2011) presented a spectral
analysis of the Burgundy Pinot Noir Grape Harvest Date (GHD) series using the multitaper method,
and this analysis used an AR(1) model to prewhiten the data. We fit several AR models to the Pinot
Noir series, then using our goodness–of–fit test, we determine that several AR models, including an
AR(1), are reasonable for the GHD series.

Key Words: Time Series, Spectral Estimation, Goodness of Fit, Multitaper Method, Autoregres-
sive Coefficient

1. Introduction

In this paper we: (a) use simulation to show that multitaper spectral estimation in con-
junction with the Levinson–Durbin recursions provide accurate selection of autoregressive
(AR) coefficients, (b) propose a practical test for assessing the goodness–of–fit of AR coef-
ficients, (c) test, using simulation, the proposed goodness–of–fit test, and (d) fit several AR
models the Burgundy Pinot Noir Grape Harvest Date (GHD) time series. Our tests find that
several models are acceptable for this series. This paper dose not consider the problem of
AR coefficient order selection, and in practical application we use the Akaike Information
Criterion (AIC).

AR models are used in many applications, for example they are used to prewhiten data
in engineering applications (Thomson 1977), and to prewhiten data in climate science prior
to harmonic analysis (Mann and Lees 1996). The choice of AR model and the estimated
AR coefficients used in prewhitening can affect the residuals and the subsequent harmonic
analysis, thus masking or enhancing features of the spectrum. Using simulation, we show
that AR coefficients obtained by different methods are not equally distributed, and we find
in our simulations that the Levinson–Durbin recursions with multitaper spectral estimates
and Burg’s algorithm produce unbiased low variance estimates. We fit and compare the
goodness–of–fit of several AR models to the Burgundy Pinot Noir GHD series, which has
been used in the climate literature (Chuine et al. 2004; Tourre et al. 2011).

Goodness of fit for AR models have been proposed and discussed in the literature,
(Priestley 1981, pp. 475–494) and Anderson (1997). Our test is based on the maximum
absolute deviation of the integrated spectrum, originally proposed by Bartlett (Priestley
1981, p. 479), and as a practical point, our test use simulation to determine approximate
p-values.

There are multiple methods for fitting AR coefficients, and we review two popular
methods: (a) solving the Yule–Walker equations with Levinson–Durbin recursions, and (b)
Burg’s recursions using forward and backward estimators. The former can be improved by
using a better (multitaper) estimator of the autocorrelation function.
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This paper is organized in the following manner. Section 2 discusses some of the ba-
sic theory of AR coefficients, and it reviews two of the procedures used in calculation of
the coefficients, section 3 reviews some general cautionary notes regarding the use of AR
models, section 4 compares several methods used in obtaining AR coefficients, section 5
discusses goodness–of–fit tests for AR coefficients, section 6 presents a simulation analy-
sis of goodness–of–fit tests, section 7 compares various fitted AR models for the Burgundy
GHD series, and section 8 gives concluding remarks and suggests future work.

2. Calculation of AR Coefficients

2.1 Preliminaries

Definition 1. If {Zt} is a purely random process with zero mean and variance σ2
Z , indexed

by t = 1, 2, . . . , N . The process {Xt} is an AR process of order p (denoted as an AR(p)
process), and we have

Xt = φ1Xt−1 + . . .+ φpXt−p + Zt. (1)

Subject to certain constraints AR(p) processes are often considered second-order stationary,
meaning the first and second moments are time invariant. See Chatfield (2004, pp. 43–44)
for the constraints. The coefficients φ1, φ2, . . . , φp are called autocorrelation coefficients.

Remark 1. Equation (1) notes an analogy between an AR(p) model and a regression prob-
lem; however, instead of independent variables the right side of equation (1) has lagged
copies of the dependent variable.

Remark 2. The pth coefficient of an AR(p) process is called a reflection or partial autocorre-
lation coefficient. One can use the notation φ̂1,p to indicate the first sample autocorrelation
coefficient in an order p model, and thus indicate it differs from φ̂1,1 which would be the
only autocorrelation coefficient in an AR(1) process. We will use the two subscript notation
if the order, p, is unclear or changing.

Definition 2. The partial autocorrelation coefficient φj,j represents the correlation be-
tween Xt, and Xt−h with the linear dependence of the interceding terms, Xt−1, Xt−2, . . . ,
Xt−h+1 removed, or partialed out.

Remark 3. An alternative notation for AR(p) often used in engineering and in Priestley
(1981) processes is:

Yt + α1Yt−1 + α2Yt−2 + . . .+ αpYt−p = Zt, (2)

where αj = −φj .

Definition 3. The autocovariance sequence (acvs) for lag τ is defined as:

γτ = E{[Xt − µ][Xt−τ − µ]}, (3)

where µ is the mean of the process Xt, and τ = 0, 1, . . . , N − 1. We see that if τ = 0, then
γ(0) is simply the variance.

Definition 4. The autocorrelation sequence (acs) is defined as:

ρτ =
γτ
γ0
, (4)

and ρ0 = 1.
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Remark 4. A plot of the sample autocorrelation coefficients over increasing lag, τ , is known
as a correlogram.

Definition 5. The typical biased estimator of the acvs is

γ̂B
τ =

1

N

N−|τ |∑
τ=0

[Xt − X̄][Xt+|τ | − X̄]. (5)

Remark 5. If one replaces X̄ with µ, and multiplies by N
N−|τ | one would have an unbi-

ased estimate; however, simply making the second substitution while using an estimator
of µ will not produce an unbiased estimator. See Percival and Walden (1993, pp. 190–
191), hereinafter abbreviated as (P&W 1993), and Anderson (1971, pp. 448–449) for more
details.

Theorem 1. The sequence formed by (5) is positive definite if and only if the realizations
of X1, X2, . . . XN are not all identical (P&W 1993, p. 195).

Remark 6. Generally Fast Fourier Transforms (FFTs) are used instead of calculating the
autocovariance sequence in equation (5) directly. See remark 8.

Definition 6. We will often examine and estimate of the Spectral Density Function (sdf),
which is the Fourier transform of the acvs,

S(f) =
∞∑

τ=−∞
γτe
−i2πfτ . (6)

In equation (6), we allow τ ∈ Z, thus we are considering a process with infinite past and
future. Frequency, f , takes values in [0, 1/2]. We note the above equality is true only in
mean-square sense, but it can be considered point-wise in all practical applications (P&W
1993, p. 132).

Remark 7. The sdf for a stationary AR(p) process is

SAR(f) =
σ2

Z∣∣∣1−∑p
j=1 φje

−i2πfj
∣∣∣2 , for |f | ≤ 1/2, (7)

when ∆t = 1. In practice this equation is calculated using the FFT.

Definition 7. The customary estimator of the sdf is the direct spectral estimator:

ŜD(f) =

∣∣∣∣∣∆t
N∑
t=1

ht xte
−i2πft∆t

∣∣∣∣∣
2

. (8)

In the above estimator ∆t is the change in time step, t, and ht is a data taper. If we allow
ht =

√
1/n the direct spectral estimator becomes so–called periodogram, which we denote

as Ŝ(f) . The raw periodogram asymptotically unbiased, but the bias can exist even with
large sample sizes in practical applications (Thomson 1982, p. 1058). Additionally, the
periodogram is an inconsistent statistical estimator, that is the variance does not decrease
as the sample size increases (Chatfield 2004, p. 129). It can be shown that for real data
this estimator has a χ2

2 distribution when ht =
√

1/N for all frequencies except f = 0 and
f = 1/2 which have contain only real values and thus have a χ2

1 distribution (P&W 1993,
p. 222).
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Remark 8. The periodogram and the biased estimator of the autocovariance sequence, equa-
tion (5), are Fourier transform pairs,

{γ̂B
τ } ←→ {Ŝ(f)}

Definition 8. We will use a set of orthonormal Discrete Prolate Spheroidal Sequences
(DPSS), also known as Slepian sequences, as data tapers. These sequences are defined as
solutions to the system of equations (Slepian 1978):

N−1∑
t′=0

sin[2πW (t− t′)]
π(t− t′)

vt′,k(N,W ) = λk(N,W )vt,k(N,W ) (9)

for t, t′ = 0, 1, . . . , N − 1. These sequences are discrete time analogs of real functions that
are optimally concentrated in time and frequency (P&W 1993, pp. 75–81). The parameter
W represents the effective bandwidth, which is often included in the time–bandwidth pa-
rameter NW , and k represents the current taper. Typically there are k = 0, 1, . . . ,K − 1
tapers where K = 2NW .

Definition 9. We use a set of orthonormal Slepian sequences in constructing multitaper
spectral estimate. If we let Ŝk(f) represent the direct spectral estimator in equation (8)
formed using the Slepian sequence of order k, then the simplest form if the multitaper
spectral estimate becomes

Ŝ(MT ) ≡ 1

k

K−1∑
k=0

Ŝk(f). (10)

The individual Ŝk(f) estimates are often referred to as eigenspectra, and the averaged
estimator, equation (10), is distributed as χ2

2K for f 6= 0 and f 6= 1/2.

Remark 9. When using Slepian sequences, the bandwidth parameter W is specified by
setting the value time-bandwidth value NW . Typically one sets a bandwidth parameter
between 2 and 6 (P&W 1993, p. 335) and noninteger values can be used (Thomson 1982, p.
1086). Judicious selection of the bandwidth parameter can allow for the resolution a lower
power harmonic that would otherwise be masked by an adjacent higher power harmonic.

Remark 10. In practice we will use the adaptive weighted multitaper spectral estimate,
Ŝ(AMT )(f), which uses a sophisticated weighted averaging scheme. This weighting scheme
generally down-weights higher order eigenspectra which have a higher bias. See Thomson
(1982, pp. 1065–1066) for more details. This weighted averaging scheme provides a non-
integer degree-of-freedom estimate at each frequency which is typically slightly below 2K.

2.2 Yule-Walker Equations

The Yule-Walker equations are part of the oldest method for estimating the parameters of a
zero-mean stationary AR(p) process {Yt}. The method involves the following steps:
(a) Assume the process is stationary. [This step may seem a bit circular.]
(b) Multiply equation (1) by Xt−k for k = 1, 2, . . . , p,
(c) Take expected values,

γk =

p∑
j=1

φjγk−j for all k > 0. (11)

Using the fact that Yt−k is uncorrelated with noise that occurs after time t− k, we see
that E{ZtYt−k} = 0.
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(d) As γ−j = γj we write the Yule-Walker equations as

γ1 = φ1γ0 + φ2γ1 + · · · + φpγp−1

γ2 = φ1γ1 + φ2γ0 + · · · + φpγp−2
...

...
...

. . .
...

γp = φ1γp−1 + φ2γp−2 + · · · + φpγ0.

(12)

In matrix form we have:

γγγp = Γpφφφp, (13)

where γγγp = (γ1, γ2, . . . , γp)
T , where the superscript T denotes transpose operation,

φφφp = (φ1, φ2, . . . , φp)
T , and

Γ =


γ0 γ1 · · · γp−1

γ1 γ0 · · · γp−2
...

...
. . .

...
γp−1 γp−2 · · · γ0

 . (14)

The Toeplitz symmetric matrix Γ [equation (14)] is positive definite in all practical
applications (P&W 1993, p. 394).

(e) Thus we have an estimate:

φφφp = Γ−1
p γγγp. (15)

Which gives us the variance of white noise term in equation (1) estimate as:

σ2
Z = γ0 −φφφT

pγγγp. (16)

(f) Finally the method of moments is used and the estimator of γ̂B from equation (5) is
used to form γ̂̂γ̂γp in equations (15) and (16) and these equations become

φφφp = Γ̂−1
p γ̂̂γ̂γp, and σ̂2

Z = γ̂0 − φ̂̂φ̂φT
p γ̂̂γ̂γp. (17)

Note that the vector γpγpγp represents the autocorrelation coefficients φj for an AR(p) pro-
cess.

The Yule–Walker equations can be solved by matrix inversion, but are generally solved
using the Levinson–Durbin recursions which are related to a modified Cholesky [lower
triangular matrix] decomposition.

2.3 Levinson–Durbin Recursions

2.3.1 Preliminaries

Definition 10. LetWi,j be a subvector extraction operator. If vvv = (v1, v1, . . . , vN )T , then

Wi,j vvv = (vi, vi+1, . . . , vj)
T , (18)

where 1 ≤ i ≤ j ≤ N .
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2.3.2 One-Step Ahead Prediction

Definition 11. We write the one–step–ahead AR(p) best linear predictor as

→
XN+1(p) = φ1XN + φ2XN−1 + · · ·+ φpXN−(p−1). (19)

In matrix notation this can be written as
→
XN+1(p) = φφφT

pXXXp,

whereXXXp =WN−(p−1),NXXX , that isXXXp vector of the last p elements fromXXX = (X1, X2,
. . . , XN )T .

Definition 12. The mean–squared one–step–ahead prediction error is given by

PN+1 = E{(
→
XN+1(p)−XN+1)2} (20)

= γ(0)− γγγT
pΓ−1

p γγγp.

See Shumway and Stoffer (2006, p. 112) for details.

2.3.3 Levinson–Durbin Algorithm

The recursions begin by setting

φ0,0 = 0, and P1 = γ(0), (21)

then for n ≥ 1, the partial autocorrelation coefficients are updated by

φn,n =
ρn −

∑n−1
k=1 φn−1,kρn−k

1−
∑n−1

k=1 φn−1,kρk
, (22)

and the mean–squared one–step–ahead prediction error is from

Pn+1 = Pn(1− φ2
n,n). (23)

The update of the mean–squared one–step–ahead prediction error in equation (23) is evi-
dently suggested by Burg in 1961. See Burg (1975, p. 14).The autocorrelation coefficients
are obtained when n ≥ 2 using

φn,k = φn−1,k − φn,nφn−1,n−k, for k = 1, 2, . . . , n− 1. (24)

2.3.4 Using Tapered Spectra to Estimate the ACVS

It has been noted that there is no reason to restrict oneself to the acvs computed from unta-
pered spectral estimates (P&W 1993, pp. 396–397), one can use direct spectral estimators
and multitaper estimates. In has been shown (P&W 1993, pp. 405–406) that a direct spec-
tral estimator using Slepian sequences with NW = 2 accurately depict the theoretical
spectra of a known AR(4) process. We present simulations comparing different estimates
for a known AR(4) sequence.
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2.4 Burg’s Method

2.4.1 Overview

Burg’s algorithm is also a solution the Yule–Walker equations; however, it focuses on
primarily estimating the partial autocorrelation coefficients without using an estimate of
γ̂τ . It does this by focusing on minimizing the error in the one–step–ahead and one–step-
backwards prediction estimates. In practice, the Burg algorithm has been shown to be more
efficient than use of the Levinson–Durbin recursions using the standard biased estimator,
γ̂B
τ , for smaller sample size (P&W 1993, p. 414). Our simulations indicate the Burg algo-

rithm is considerably more effective than the Levinson–Durbin recursions when using the
standard biased estimator, γ̂B

τ , but it is not significantly more effective, when a multitaper
spectral estimate version of γ̂τ is used. Additionally the Burg estimator is not without its
own drawbacks (P&W 1993, pp. 525–531).

2.4.2 Preliminaries

Definition 13. We write the prediction error associated with the one–step–ahead AR(p)
predictor, equation (19), as

→
ε t(p) = Xt −

→
Xt(p). (25)

Definition 14. As in definition 11, we write the one–step-back AR(P) best linear predictor
as

←
Xt(p) = φ1Xt+1 + φ2Xt+2 + · · ·+ φpXt+p. (26)

Definition 15. We write the prediction error associated with the one–step–back AR(p)
predictor, equation (26), as

←
ε t(p) = Xt −

←
Xt(p). (27)

Definition 16. Define L as a circular shift operator. If vvv = (v1, v1, . . . , vN )T , then

Lvvv = (vN , v1, v1, . . . , vN−1)T

Definition 17. We plan to fit an AR(p) model to XXX = (X1, X2, . . . XN )T and we define
the following vector of length N + p

→
eee (0) = (X1, X2, . . . , XN , 0, 0, . . . , 0)T .

The vector isXXX concatenated with p zeros.

Definition 18. We also define

←
eee (0) = L→eee (0) = (0, X1, X2, . . . , XN , 0, . . . , 0)T .

2.4.3 Burg’s Procedure

We define the variance σ̃2
0,= γ̂B

0 , then for k = 1, 2, . . . , p we recursively compute the
following:

φ̃k,k =
2〈Mk+1,N

→
eee (k − 1),Mk+1,N

←
eee (k − 1)〉

‖Mk+1,N
→
eee (k − 1)‖2 + ‖Mk+1,N

←
eee (k − 1)‖2

(28)
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σ̃2
k = σ̃2

k−1(1− φ̃2
k,k)

→
eee (k) =

→
eee (k − 1)− φ̃k,k

←
eee (k − 1)

←
eee (k) = L (

→
eee (k − 1)− φ̃k,k

→
eee (k − 1)).

Where we use 〈·, ·〉 to denote vector inner product, and ‖ · ‖2 to denote the squared norm.
The Burg estimator φ̃k,k differs from the Yule–Walker estimator φ̂k,k, but the Burg

procedure can be modified to obtain the Yule–Walker estimate. The key point of the Burg
estimator is that an estimator of autocovariance sequence, typically γ̂B

τ for τ > 0, is no
longer required, where as for the Yule–Walker equations, an estimator of the autocovariance
sequence is required for integer values of τ ≤ p.

3. Cautionary Notes on using AR Spectral Estimates

We generally consider AR models useful for prewhtening data, but we caution against
its use in general spectral estimation in the physical sciences. Kaveh and Lippert (1983)
believe AR spectral estimation can be patched for use, but Tukey (1984) cautioned against
the general use of parametric spectral estimation. For a general overview of the problems
of parametric spectral estimation see (P&W 1993, pp. 525–531).

Two specific problems of note when using AR spectral estimates for a sinusoid in addi-
tive noise are: (a) the location of the peak in the spectrum is found to depend on the phase
of the sinusoid, and (b) two adjacent peaks in the spectrum can appear as one peak (P&W
1993, p. 525). The second problem is known in the literature as spectral line splitting.

Two proposed solutions are: (a) replacing the real–valued with an analytic signal (Kay
and Marple 1981, p. 1396), and (b) using improved estimates of the autocorrelation func-
tion, equation (1). The first solution must consider taking an appropriate Hilbert transform
that does not have the same bias properties as estimates based on the raw [biased] peri-
odogram and the process becomes complicated in the presence of multiple lines. We take
the latter approach.

4. Comparison of Methods for Finding AR Coefficients

We compare selected AR coefficient estimation techniques on simulated data from a high
signal–to–noise ratio AR(4) process which has been used in the literature, φφφ = (2.7607,
−3.8106, 2.6535,−0.9238)T (Bishop and Ulrych 1975; Box et al. 1994). Table 1 compares
the Mean–Squared–Error (MSE), mean, median, and sample standard deviation, from esti-
mates of the partial autocorrelation coefficient φ4,4 = −0.9238 using the Levinson–Durbin
recursions with the biased autocovariance estimator, to an autocovariance estimator based
on single Slepian taper NW = 5, and to an autocovariance estimator constructed using the
adaptive multitaper method withNW = 5, and k = 5. The acvs estimators were calculated
from the estimated spectrum using the property in remark 8. Figure 1 indicates a compari-
son partial autocorrelation coefficients. In this simulation, the multitaper spectral estimate
and the Burg estimate are preferred, and the use of a single Slepian taper is preferred to the
standard biased acvs estimator.

5. Goodness–of–fit Test for Autoregressive Processes

The approach for testing the goodness–of–fit of an AR process is based on comparing
the observed standardized integrated spectrum to the theoretical standardized integrated
spectrum of the selected autoregressive model (Anderson 1997).
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Default Single Taper Multitaper Burg
MSE 0.30903 0.00062 0.00017 0.00017
Mean -0.4252 -0.9135 -0.9204 -0.9204
Median -0.4114 -0.9159 -0.9214 -0.9213
Sample SD 0.2457 0.0227 0.0128 0.125

Table 1: Comparisons of estimates of φ4,4 from 100,000 run simulation using the Yule-
Walker equations with the biased autocovariance estimator, an autocovariance estimator
using one Slepian taper with NW = 5, and an adaptive weighted multitaper spectral es-
timate with NW = 5, and k = 8, and the partial autocovariance estimator made using
Burg’s method.

5.1 Preliminaries

Definition 19. The empirical distribution, F̂ (x) for a random sample of observations of X
is generally F̂ (x) = the proportion of samples observations ≤ x.

Definition 20. The integrated spectra H(f0) =
∫ f0
−1/2 S(f) df , can be well estimated by

Ĥ(f0) =

∫ f0

−1/2
Ŝ(D)(f) df. (29)

Note that tests based on the integrated spectrum, standardized or not, are generally not
considered to be affected by the bias properties of using the raw periodogram (Priestley
1981, p. 471). In the case of real–valued data, equation (29) can be adjusted to only
consider positive frequencies (see: (Priestley 1981, p. 474)).

Definition 21. The standardized integrated spectrum can be written as

F (f) =

∫ f0
−1/2 S(f) df∫ 1/2
−1/2 S(f) df

, (30)

which we estimate using the standard spectral estimator in equation 8. The goodness–of–
fit tests draw on the correspondence between the standardized integrated spectrum and the
empirical distribution function, and standardization provides that advantage that asymp-
totic distributions are valid under more general conditions than those without standardiza-
tion (Anderson 1997). As with the integrated spectrum, definition 29, this estimator can be
constructed from only positive frequencies when restricted to real–valued data.

5.2 Goodness–of–fit Tests for AR Processes

An overview of goodness–of–fit tests for AR and Moving Average (MA) models are pre-
sented in Priestley (1981, pp. 475–494). We will be using the maximum absolute deviation
of the integrated spectrum as a measure of goodness–of–fit, and we will simulations to es-
timate p-values for the observed maximum absolute deviation. We note Anderson (1997)
proposes the same test statistic, the maximum absolute deviation of the integrated spec-
trum, to test the null hypothesis that the observations are on an AR process of an order
not greater than the specified one. In place of asymptotic results linking the Cramér–von
Mises, or Kolmogorov–Smirnov statistic, we propose the practical measure of relying on
simulations to generate approximate p-values.
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Figure 1: Estimated fourth reflection coefficient based on a hundred thousand run simu-
lation of an AR(4) process with coefficients 2.7607, -3.8106, 2.6535, -0.9238. Levinson–
Durbin estimate using: (a) the default estimate, (b) one DPSS taper with NW = 5, and
(c) an adaptive multitaper estimate with k = 8. The dashed line indicates -0.9238. Mean
estimates were -0.425, -0.914, and -0.920 respectively. The distribution of Burg estimator
is very similar to the multiatper spectral estimator and is not shown.

Bartlett related the asymptotic distribution of the mean absolute deviation between the
estimated normalized spectrum and the theoretical spectrum,

max
0≤f≤1/2

√
N |F̂+(f)− F+(f)|, (31)

to the Kolmogorov–Smirnov statistic which has been used in testing the goodness–of–fit
in empirical distributions (Priestley 1981, p. 480). We use the subscript positive sign + to
indicate we are constructing the estimate solely on positive frequencies, (see definition 21).

5.3 Proposed Methodology

Limiting distributions for the goodness–of–fit tests have been studied Anderson (1997); but
practical software solutions are not readily available, and we propose a simple simulation
based statistical test. Additionally simulations do not constrain us to a one–size-fits all
approach. We propose (a) careful fitting of AR coefficients, (b) plotting the estimated
spectra against the theoretical spectra, see equation (7), for the selected AR model, and (c)
comparing the estimated standardized integrated spectrum to the theoretical spectra for the
AR using the maximum absolute deviation as a test. We then use simulations to assess the
significance of the observed distance. In constructing the theoretical AR spectrum used in
the standardized integrated spectrum, we estimate σ2

Z in equation (7), from the data.

6. Simulations of Goodness–of–fit

We assess the goodnes of fit for AR models for two AR models used in the literature, the
AR(4) model discussed in figure 1, and the AR(2) modelφφφ = (0.75,−0.5)T (P&W 1993, p.
45). Figure 2 compares empirical distributions of the distance, showing four comparisons
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in our simulations, two cases where the simulated AR process matches the theoretical, and
two cases where we simulate mismatches, that is the AR process simulated does not match
the theoretical. The top two plots show the distributions of the distances where the models
accurately fit, and the lower two show distributions of misfit models. Comparing the top
two plots in figure 2 to the bottom two, one can see considerable x-axis values change. The
misfit models generate larger distances. The red line indicates fitted Gamma distributions
and table 2 indicates the shape and rate parameters of the fitted Gamma distributions.
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Figure 2: This figure shows the observed maximum absolute distance observed from 40000
simulations. The top left is from comparing a simulated AR(4) to the theoretical AR(4),
the top right is from comparing a simulated AR(2) to the theoretical AR(2), the bottom left
is from comparing a simulated AR(4) to the theoretical AR(2), and the bottom right is from
comparing a simulated AR(4) to a theoretical AR(2)

Models Shape SD (Shape) Rate SD (Rate)
AR(4) 7.9970 0.0554 2.1444 0.0153
AR(2) 10.2543 0.07136 6.5002 0.0464
Misfit AR(2) 1676.2664 11.8357 135.2800 0.9553
Misfit AR(4) 176.7686 1.2486 13.9327 0.0986

Table 2: Shape and rate parameters for the fitted Gamma distributions shown in figure 2.
Both the shape and rate parameters are considerably higher for the case where the simulated
AR model did not match the theoretical model.

In order to get a sense of how the simulated integrated spectra compare to the theoret-
ical, the top left plot in figure 3 show the observed integrated spectrum from that AR(4)
simulation run that had the extreme (largest) value for maximum absolute deviation of the
40000 simulated against the theoretical integrated spectrum for the AR(4) process. The
top right plots the AR(2) simulation run that had the extreme (largest) value for maximum
absolute deviation of the 40000 simulated against the theoretical integrated spectrum for
the AR(2) process. These two plots demonstrate extreme (largest) differences when the
AR process is appropriate. The bottom two plots indicate the extreme (smallest) observed
difference between simulation and theoretical when the simulated process did not match
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Figure 3: We ran 40000 simulations each comparing a simulated AR(4) to the theoretical
AR(4), top left, a simulated AR(2) to the theoretical AR(2), top right, a simulated AR(2) to
the theoretical AR(2), bottom left, and a simulated AR(4) to the theoretical AR(2), bottom
right. The top two plots indicate the worst fit of the 40000 runs when the simulations were
from the same model as the theoretical, and the bottom two plots indicate the best fit of the
40000 runs when the simulations are from a different model than the theoretical.

the theoretical. Comparing the bottom left plot and the bottom right plot one wonders if a
misfit to a AR(4) process is easier to detect than the misfit to the AR(2) process.

7. Burgundy Grape Harvest Dates

A robust linkage between Burgundy GHD and European climate fluctuations has been pro-
posed Tourre et al. (2011), and Pinot Noir is considered to be highly sensitivity to climate
variations. As we mentioned, in the physical sciences it is customary to use AR models
to prewhiten the data (Mann and Lees 1996), before the residuals from the AR model are
used in harmonic analysis. Figure 4 presents the raw spectrum of the GHD series, and the
associated spectra several AR models, including models of the same order where different
techniques were used to obtain the AR coefficients. It does appear from plot that selec-
tion of AR model prewhitener can affect harmonic analysis of residuals. We proceed to fit
several AR models to the Burgundy GHD series and test them for goodness–of–fit.

Using our method for comparing AR goodness–of–fit, table 3 shows the observed max-
imum absolute deviation of the sample integrated spectrum from the theoretical integrated
spectrum of the model, and simulated p–values testing the hypothesis that the maximum
absolute deviation is greater than would be expected if the data matched the theoretical AR
model. While looking at the spectrum in figure 4 it appears the choice of prewhitner can
affect the significance of the harmonic components; however, this test does not enable us
to distinguish between models.

8. Conclusions and Future Work

This paper demonstrated using simulation that various methods of calculating autoregres-
sive coefficients affect the values of the estimated coefficients, and that multitaper spectral
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Figure 4: Adaptive multitaper spectrogram of the Harvest Date series. The parameters
used are: NW = 3, k = 5. Plotted over the spectrum, we have the standard AR(1) in red,
the standard AR(8) in green, the DPSS tapered AR(8) in blue, and the multitaper AR(8)
spectrum in cyan.

AR(p) Model Max Abs Dist Simulated P–value
AR(1) no taper 0.9335 0.2634
AR(8) no taper 0.9291 0.2073
AR(8) 1 DPSS 0.9286 0.1839
Misfit AR(4) 0.9305 0.2256

Table 3: Maximum absolute deviation of the observed GHD standardized integrated spec-
trum to the theoretical standardized integrated spectrum for the various models and approx-
imate p–values based on simulations testing the null hypothesis that the maximum absolute
deviation small enough for the model to be appropriate. Based on this goodness–of–fit
criterion, we see little difference in the choice of models, and certainly no significant dif-
ference. We conclude each of the four models fit reasonably well.

estimation used with Levinson–Durbin recursions are as effective as Burg’s recursions in
obtaining AR coefficients for a high signal–to–noise ratio AR(4) process. We proposed
a practical method of testing the goodness–of–fit of AR estimators using the maximum
absolute deviation between the standardized integrated spectrum from the estimated data
and the theoretical standardized integrated spectra from the theoretical AR model, and we
tested this method on two AR processes with simulations. We selected different AR models
for the Burgundy GHD data set and used our goodness–of–fit tests to see if any are are not
appropriate. We concluded that the four selected models fit reasonably well to the GHD
series.

There are several areas for future work: (a) test, with simulations, different but closely
related simulated AR models in order to determine how the test works, and test simulations
with mixed spectra which include discrete line components, (b) consider other ways of
comparing two spectra, for example the L2 distance would be more sensitive to overall
differences, whereas maximum absolute deviation may be more sensitive to high power
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line components, (c) questions of stationarity and change point exist in climate series such
as the Burgundy GHD series, thus one could section the series at a change point and make
multiple comparisons of spectra before and after the change point to each other, and to AR
model for the entire series.

References

Anderson, T. W. (1971), The Statistical Analysis of Time Series, Wiley New York.

— (1997), “Goodness-of-fit Tests for Autoregressive Processes,” Journal of Time Series Analysis, 18, 321–339.

Bishop, T. and Ulrych, T. (1975), “Maximum Entropy Spectral Analysis and Autoregressive Decomposition,”
Reviews of Geophysics and Space Physics.

Box, G. E. P., Jenkins, G. M., and Reinsel, G. C. (1994), Time Series Analysis: Forecasting and Control, Wiley,
3rd ed.

Burg, J. P. (1975), “Maximum Entropy Spectral Analysis,” Ph.D. thesis, Stanford University.

Chatfield, C. (2004), The Analysis of Time Series: an Introduction, CRC Press.

Chuine, I., Yiou, P., Viovy, N., Seguin, B., Daux, V., and Ladurie, E. L. R. (2004), “Historical Phenology:
Grape Ripening as a Past Climate Indicator,” Nature, 432, 289–290.

Kaveh, M. and Lippert, G. A. (1983), “An Optimum Tapered Burg Algorithm for Linear Prediction and Spectral
Analysis,” ASSP–31, 438–444.

Kay, S. M. and Marple, Jr, S. L. (1981), “Spectrum Analysis–A Modern Perspective,” Proceedings of the IEEE,
69, 1380–1419.

Mann, M. E. and Lees, J. M. (1996), “Robust Estimation of Background Noise and Signal Detection in Climatic
Time Series,” Climatic Change, 33, 409–445.

Percival, D. B. and Walden, A. T. (1993), Spectral Analysis for Physical Applications, Cambridge University
Press New York, NY, USA.

Priestley, M. B. (1981), Spectral Analysis and Time Series. Volume 1: Univariate Series. Volume 2: Multivari-
ate Series, Prediction and Control, Probability and Mathematical Statistics.

Shumway, R. H. and Stoffer, D. S. (2006), Time Series Analysis and its Applications: With R Examples,
Springer, 2nd ed.

Slepian, D. (1978), “Prolate Spheroidal Wave Functions, Fourier Analysis, and Uncertainty. V–the Discrete
Case,” Bell System Tech. J, 57, 1371–1430.

Thomson, D. J. (1977), “Spectrum Estimation Techniques for Characterization and Development of WT4
Waveguide,” Bell Syst. Tech. J, 56, 1769–1815.

— (1982), “Spectrum Estimation and Harmonic Analysis,” Proceedings of the IEEE, 70, 1055–1096.

Tourre, Y. M., Rousseau, D., Jarlan, L., Le Roy Ladurie, E., and Daux, V. (2011), “Western European Climate,
and Pinot Noir Grape Harvest Dates in Burgundy, France, since the 17th Century,” Climate Research, 46,
243.

Tukey, J. W. (1984), “Styles of Spectrum Analysis,” in A Celebration in Geophysics and Oceanography – 1982
In Honor of Walter Munk, La Jolla, CA: Scripps Institution of Oceanography, Reference Series 84-5, March,
1984, pp. 100–103, pp 1143-1153 of The Collected Works of J. W. Tukey Vol II, D. R. Brillinger, Ed.,
Wadsworth, Monterey, Ca., 1984.

JSM 2013 - Section on Statistics and the Environment

3834


