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1. Introduction

This paper is concern with the implementation of the methods described in Kloke,
McKean, and Rashid (2009). We present a new sandwich estimator of the variance
covariance structure which performs well in simulation studies. We also present an
R (R Development Core Team 2010) package, jrfit which implements estimation
and testing proceedures.

2. Review JR estimation

Rank estimation was first introduced by Jureǎková (1971) and Jaeckel (1972).
Hettmansperger and McKean (2011) present an overview.

Kloke et al. (2009) showed that R estimation can be extended to cluster cor-
related data. In this section we briefly review JR estimation and develop some
notation.

JR estimation can be applied to cluster correlated data. Assume that there are
m clusters and the there are nk experimental units in the kth cluster (k = 1, . . . ,m).
Denote the outcome or response variable by yki. Covariates and treatment assign-
ment information is contained in the design vector xki. A linear model is then
formed

yki = α+ xT
kiβ + eki for k = 1, . . . ,m, i = 1, . . . , nk (1)

where α is the intercept parameter, β is a p× 1 vector of unknown parameters, and
eki is an error term. We assume that the errors within a block are correlated (i.e.
eki&eki′) but the errors between blocks are independent (i.e. eki&ek′j). Further we
assume that eki ∼ F, f . Now write model (1) in block vector notation as

yk = α1nk
+Xkβ + ek. (2)

where 1nk
is an nk × 1 vector of ones and Xk = [xk1 . . .xknk

]T is a nk × p design
matrix and ek = [ek1, . . . eknk

]T is a nk×1 vector of error terms. Let N =
∑m

k=1 nk.
Now write as one large model

y = α1N +Xβ + e (3)

where 1N is an N × 1 vector of ones and X = [XT
1 . . .XT

m]T is a N × p design
matrix and e = [eT1 , . . . e

T
m]T is a N × 1 vector of error terms. Since there is an

intercept in the model, we may assume (WLOG) that X is centered. Then the R
estimator of β is given by

β̂ϕ = Argmin‖y −Xβ‖ϕ where ‖v‖ϕ =
N
∑

t=1

a(R(vt))vt
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is Jaeckel’s dispersion function. As shown in Kloke et al. (2009) (c.f. Brunner and
Denker 1994), the asymptotic distribution of β̂ is given by

β̂ϕ∼̇Np

(

β, τ2(XTX)−1)

(

m
∑

k=1

XT
kΣϕk

Xk

)

(XTX)−1)

)

where Σk = var(ϕ(F (ek))) and F (ek) = [F (ek1), . . . , F (eknk
)]T . Denote the second

term in the variance product by V ϕ =
(
∑m

k=1X
T
kΣϕk

Xk

)

. In next sections we
present estimates of this variance term. The scale parameter τϕ can be esimated
with the Koul, Sievers, and McKean (1987) estimate.

2.1 Inference

We present Wald test of the hypothesis

H0 : Kβ = 0 versus HA : Kβ 6= 0. (4)

Of course other constants on the right hand side of the hypothesis can tested by
subtracting it from the fitted value of the parameter estimate. The Wald test of (4)
is based on the statistic

T ∗ =
(

Kβ̂
)T (

Kvar(β̂)KT
)(

K (̂β)
)

.

Kloke et al. (2009) showed that the T ∗ has an asymptotic χ2(q) distribution where
where q is the rank of K.

3. Estimates of variance of parameter estimates

In this paper we consider two estimates of variance of the parameter estimates.
That is we estimate Σϕ in two ways. The first was consider in the Kloke et al.
(2009) paper and the other is a sandwich-type estimator.

If we assume that the errors within a block are exchangeable then the variance
of the scores within a block are compound symmetric Σϕ = (1− ρϕ)I + ρϕJ where
ρϕ = cov(ϕ(F (eki))ϕ(F (ekj)) for i 6= j. As discussed in Kloke et al. (2009) ρϕ can
be estimated as

ρ̂ϕ =
1

M − p

m
∑

k=1

∑

i>j

a(R(êki))a(R(êkj)), where M =
m
∑

k=1

(

nk

2

)

.

An estimate which does not require the fairly strong assumption of exchangeable
errors is the sandwich estimator which is given by

m

m− p

m
∑

k=1

XT
k a(R(êk))a(R(êk))

TXk.

We have included a degrees of freedom correction that seems to work well.
Based on simulation studies (not shown) it was concluded that the denominator

degrees of freedome be m when using the sandwich estimator and N − p − 1 − 1
where p is the number of parameters in the model and the two additional degrees
of freedom are for the intercept and estimation of ρϕ.
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4. Simulation Studies

We conducted a series of simulations studies to determine the which critical values
should be used in small samples. The main goals, however, were 1. determine if we
should be using asymptotic (χ2, normal) critical values or small sample (F , t) ; 2.
compare the two estimates of the variance of the parameter estimates.

The simulations are based on the following model

ykj = α+ xT
kjβ +wT

kj∆+ bk + ekj .

where ∆ is a k− 1× 1 vector of effect sizes. For simplicity we assume the reference
group is the first group.

The parameter ρ denotes the interclass correlation coefficient; the simulation
size is 10000; level of α = 0.05 for all tests of hypothesis. In the plots of empirical

level we have included horizontal lines at α ± 1.96
√

α(1−α)

size . Methods resulting in

points consistently within the region represent valid tests.

4.1 RBD

In this section we present a summary of the simulations we conducted which mimic
a randomized block design. We simulate both error terms from the normal distri-
bution as well as the covariates. Treatment is balanced within each block.

4.1.1 Empirical Level (k = 3 and p = 1)

We varied the number of blocks (m = 4, 8, 16, 32). The block size was n = 6.
We considered k = 3 treatments and p = 1 covariates. We varied the interclass
correlation coefficient (ρ = 0.1, 0.25, 0.75, 0.9). We test for a treatment effect with
the hypothesis H0 : ∆1 = ∆2 = 0.

The results of the experiement are present in Figure 4.1.1.

Figure 1:
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When the correlation is low or moderately low the cs estimates of variance while
utilizing F critical values yields valid tests. The sandwich estimate of variance while
utilizing F critical values seems to yield slightly concervative tests.

It appears that utilizing the asymptotic χ2 critical values tends to result in
liberal inference and their use is not considered further.
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4.2 Power

To observe power when utilizing the sandwich estimate we performed an experiement
in which we increased the effect size ∆i for i = 2, k. There were 32 blocks in total,
8 each of n = 6, 12, 18, 24. We used low (ρ = 0.1) and high (ρ = 0.9) interclass
correlation. The results are presented in Figure 4.2-4.2.

Figure 2: Power curves for low icc (ρ = 0.1)
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When there is low correlation, using the cs estimate performs better in that it
has a slight advantage over the sandwich estimate. When there is high correlation,
again, we see that using the CS estimate leads to liberal inference.

Figure 3: Power curves for high icc (ρ = 0.9)
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4.3 Repeated Measures

In this section we present a summary of the simulations we conducted which mimic
a repeated measures design. Here treatment is assigned at random to each block.
That is the experimental units is a block. One can think of this as a randomized
control trial with measurements taken over time.

The hypotheses we wish to test here are for a profile analysis. The contrast

JSM 2013 - Section on Nonparametric Statistics

3809



matrices are
K1 = [1− I − 1I] and K2 = [1T − 1T ].

K1 tests for parallel profiles and K2 tests for equal median for the treatment. If
both the tests H0 : Kiβ = 0 are not rejected then the test of coincident profiles is
also not rejected.

We examined 4 and 8 repeated measures. The number of blocks varied from
m = 12, 25, 50, 75, 100, 150, 200. There were k = 2 treatments where were assigned
at random to each of the blocks.

The results are presented in Figures 4.3-4.3.

Figure 4: Empirical Level: H0 : K1∆ = 0 (number of blocks = 4)
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Figure 5: Empirical Level: H0 : K1∆ = 0 (number of blocks = 8)
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Again, we see the CS estimate can be liberal for small samples, especially when
ρ is large.
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Figure 6: Empirical Level: H0 : K2∆ = 0 (number of blocks = 4)
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Figure 7: Empirical Level: H0 : K2∆ = 0 (number of blocks = 8)
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5. Usage of jrfit

The R (R Development Core Team 2010) package jrfit1 extends Rfit (Kloke and
McKean 2012) for the case of cluster correlated data discussed in this paper. The
package provides estimation and tests of hypothesis. The methods of covariance
estimation discussed in this paper are implemented.

To fix ideas, we present an analysis of a simulated dataset utilizing both the
compound symmetry and sandwich estimators discussed in the previous section.

The setup is as follows:

> m<-160 # blocks

> n<-4 # observations per block

> p<-1 # baseline covariate

> k<-2 # trtmnt groups

We simulated the block effects from a t-distribution with 5 degrees of freedom
and the random errors from a t-distribution with 3 degress of freedom. Note the

1available at http://www.biostat.wisc.edu/~kloke/
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assumptions for exchangeable errors is met. Also, the sample size is sufficiently
large for one to utilize the sandwich estimator and obtain reliable inference.

Next, we set up the design and simulate a baseline covariate which we assume
normally distributed.

> trt<-as.factor(rep(sample(1:k,m,replace=TRUE),each=n))

> block<-rep(1:m,each=n)

> x<-rep(rnorm(m),each=n)

We set the overall treatment effect to be ∆ = 0.5 so that we can form the response
as follows.

> delta<-0.5

> w<-trt==2

> Z<-model.matrix(~as.factor(block))

> e<-rt(m*n,df=5)

> b<-rt(m,df=3)

> y<-delta*w+Z%*%b+e

In this case the covariate is unimportant. First we analyze the data with the com-
pound symmetry assumption.

The three required arguments to jrfit are the design matrix, the response
vector, and the vector denoting block membership.

> library(jrfit)

> X<-cbind(w,x)

> fit<-jrfit(X,y,block,var.type='cs')

> summary(fit)

Coefficients:

Estimate Std. Error t-ratio p.value

w 0.6055401 0.2204266 2.7471278 0.0061823

x -0.1785521 0.1142161 -1.5632832 0.1184834

Notice, by default the intercept is not displayed in the output of the summary func-
tion. If the inference on the intercept is of interest than set the option int to TRUE

in the jrfit summary function. The cell medians model can also be fit as follows.

> library(jrfit)

> W<-model.matrix(~trt-1)

> X<-cbind(W,x)

> fit<-jrfit(X,y,block,var.type='cs')

> summary(fit)

Coefficients:

Estimate Std. Error t-ratio p.value

trt1 -1.1208e+00 1.7048e-01 -6.5748e+00 1.0165e-10

trt2 -5.1528e-01 1.4972e-01 -3.4417e+00 6.1597e-04

x -1.7855e-01 1.1422e-01 -1.5633e+00 1.1849e-01

Now we present the same analysis utilizing the sandwich estimator. The sand-
wich estimator is also the default.
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> X<-cbind(w,x)

> fit<-jrfit(X,y,block,var.type='sandwich')

> summary(fit)

Coefficients:

Estimate Std. Error t-ratio p.value

w 0.6055401 0.2176245 2.7825000 0.0060434

x -0.1785521 0.1238383 -1.4418158 0.1513088

> X<-cbind(W,x)

> fit<-jrfit(X,y,block,var.type='sandwich')

> summary(fit)

Coefficients:

Estimate Std. Error t-ratio p.value

trt1 -1.1208e+00 1.6947e-01 -6.6139e+00 5.3311e-10

trt2 -5.1528e-01 1.4915e-01 -3.4548e+00 7.0506e-04

x -1.7855e-01 1.2384e-01 -1.4418e+00 1.5131e-01

Not surprizingly, based on what was observed in the simulation studies, the
results for both methods are similar in this case.

We have include a function wald.test.jrfit computes the test of discussed in
Section 2.1. There are two required arguments: the results of a call to the fitting
routine jrfit and the contrast matrix K. The following code demonstrates a test
for no treatment effect.

> K<-matrix(c(1,-1,0),nrow=1)

> wald.test.jrfit(fit,K)

$statistic

[,1]

[1,] 7.742992

$p.value

[,1]

[1,] 0.006041207

$asymptotic

[1] FALSE

$df

[1] 1 160

Utilizing the cs estimate.

> K<-matrix(c(1,-1,0),nrow=1)

> wald.test.jrfit(jrfit(X,y,block,var.type='cs'),K)

$statistic

[,1]

[1,] 7.547381
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$p.value

[,1]

[1,] 0.00617998

$asymptotic

[1] FALSE

$df

[1] 1 636

6. Summary

In certain situations, the compound symmetry (cs) estimator may be favorable to
the sandwich estimator. That said, we have demonstrated a number of situations for
which the cs estimator leads to liberal and it’s general use cannot be recommended.
The sandwich estimate tends to lead to conservative inference. However, in general,
the sandwich estimate seems favorable. Based on the simulations we conducted, we
recommend the use of the sandwich estimator. The results of our simulation work
on for the gradient test yielded similar results, though we chose to not present.
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