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Abstract 

 
Maximum likelihood estimation (MLE) is often used for estimating lethal dose 50% 

(LD50) and dose reduction factor (DRF) in toxicity studies. We investigated two point 

estimators of LD50 and DRF: the MLE and the median of a parametric bootstrap 

distribution. In a Monte Carlo experiment, we simulated quantal response data from 

different experimental settings. We then compared mean squared error (MSE) between 

MLE and the bootstrap estimator of both LD50 and DRF. The bootstrap estimator of both 

LD50 and DRF generally has a lower MSE than the MLE, especially in smaller sample 

sizes. After investigating the variances and biases of these estimators, the differences 

between the MSE of the bootstrap estimator and the MSE of the MLE are attributable to 

the variances. We recommend using the median of the parametric bootstrap for 

estimating LD50 and DRF over the MLE. 
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1. Introduction 

 
Quantal response analyses relate the probability of an event (e.g., death) to a quantitative 

factor (e.g., toxin dose). In toxicology studies, a parameter of interest is the dose that is 

lethal to half of the population; i.e. lethal dose 50% or LD50. When interpreting LD50 

values, a smaller LD50 indicates greater toxicity. A parameter useful for comparing two 

LD50s is the dose reduction factor (DRF, a.k.a. relative potency). A motivating example 

is comparing the LD50 of total body irradiation between animals receiving a potential 

radioprotectant and animals receiving no treatment. DRF is LD501 / LD500, where 1 and 

0 subscript treatment and control, respectively. If LD501 > LD500 then DRF>1 which 

means the treatment reduces the toxicity from that experienced by the controls. The focus 

of this paper is to compare two point estimators of LD50 and DRF: (i) the MLE and (ii) 

the median of a parametric bootstrap. 
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2. Methods 

 

2.1 Model 
 

Let Y be the number of events out of n. Model Yjk ~ Bin(njk, p(xjk; j, )) for k = 1, 2, …, mj, 
where m is the number of distinct x values in group j = 0, 1, and njk is the number of 

subjects receiving dose xjk. We use probit regression to estimate () in p(xjk; j, ) 

= (TRTj xjk) where () is the standard normal cumulative distribution 

function and TRT indicates receipt of treatment (1) or not (0). Probit regression was 

chosen over logistic regression since LD50 estimation was primarily developed using 

probit regression and continues to be often used for LD50 estimation.  

 

Using maximum likelihood, we fit a given data set with a probit regression, obtaining 

( ̂   ̂   ̂). These MLEs are then used in two ways: (i) to obtain MLEs of LD50 and DRF, 

and (ii) to generate B bootstrap data sets under the model  

                                                  Y
*
jk ~ Bin(njk, p(xjk;  ̂   ̂)), 

where n and x are as in the original data set. This latter usage is a type of parametric 

bootstrap. From each of the bootstrapped data sets, we obtain the MLEs of (0, 1, ), 

say   ̂ 
   ̂ 

   ̂ ), compute LD50* and DRF*, and finally take the median from each of the 

bootstrapped distributions of the parameters of interest (Figure 1).   

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Schematic of how bootstrap data were generated. 
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2.2 Simulation Study 

 
We considered the number of doses (M), the number of animals per treatment×dose (N), 

steepness of the response (SLOPE), and dose reduction factor (DRF).  

 

We set: 

 M at 3, 5 and 7,  

 N at 4, 9 and 16,  

 SLOPE at (α, β) = (1.5714, 2.91) for shallow control and (-23.25, 23.25) for steep 

control, and  

 DRF contingent upon SLOPE, 

o at 1, 2.2, and 3.26 for shallow, and 

o at 1, 1.1, and 1.16 for steep. 

   

The settings for M and N were selected based upon the number of radiation doses and 

samples sizes that are often used in the radiation countermeasure studies (see Landes et 

al., 2013 for a review). And the SLOPE and DRF settings were also chosen based on 

observed values reported in the radiation countermeasure literature. There were 54 

different settings (3 M/N × 3 N/SLOPE × 2 SLOPE/DRF × 3 DRF). We chose doses to be 

centered on the true LD50 for each treatment group and equally spaced, and generated 

random responses under a probit regression model defined by the given setting. The data 

were analyzed with probit regression and estimates computed and recorded. We repeated 

this process 1,000 times for each of the 54 settings. 

 
 

3. Results 

 
We compared the mean square error (MSE) between the MLE and the bootstrap 

estimator of both LD50 and DRF. The bootstrap estimators of both LD50 and DRF 

generally had lower MSE than the MLE (Figures 2 and 3). For smaller sample sizes, the 

bootstrap estimators of both LD50 and DRF had considerably lower MSE than the MLE. 

However, as the sample size increases, the difference of the MSEs between the two 

estimators decreases. 
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Figure 2: For each M×N combination, MSE compared between MLE and bootstrap 

median estimators of DRF and LD50. 

 
Another way to view the differences of MSE between the MLE and the bootstrap 

estimator is shown in Figure 3. The MSE of the bootstrap estimator is expressed as a 

percentage of the MSE of the MLE. When the percentage is below 100 percent, the 

bootstrap estimator has lower MSE compared to the MLE. Percentages over 100 percent 

indicate the MLE has lower MSE compared to the bootstrap estimator.  
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Figure 3: For each M×N combination, MSE of bootstrap median estimators expressed as 

a percentage of the MLE’s MSE. Note: Vertical axis starts at 50 percent to highlight 

differences. 

 

 
In continuation of expressing the MSE of the bootstrap estimator as a percentage of the 

MLE’s MSE, we compared the variance and bias
2
 of the two estimators since the MSE is 

the sum of the variance and bias
2
. In all cases, the bias

2
 accounted for less than 5 percent 

of the MSE. On average, both components (variance and bias
2
) of the bootstrap median 

estimators were less than that for MLEs. The bootstrap median estimator was 

substantially better for the smallest M×N combinations. 

 

JSM 2013 - Biopharmaceutical Section

3771



 
 
Figure 4: For each M×N combination, variance (blue) and bias

2
 (red) of bootstrap 

median estimators expressed as a percentage of the MLE’s components. Note: Vertical 

axis starts at 50 percent to highlight differences. 

 

 

 

 

4. Conclusions 

4.1 Recommendation 

 
For smaller sample sizes (e.g., < 60), the parametric bootstrap estimator has a notably 

lower MSE than the MLE for both LD50 and DRF. Therefore, we recommend using the 

parametric bootstrap estimator over the MLE when sample sizes are low. Otherwise the 

parametric bootstrap estimator and MLE are comparable when estimating LD50 and 

DRF. 

 

4.2 Limitations 
 

We used the median of the bootstrap distribution to obtain the point estimator rather than 

the mean. As sample sizes decrease the probability of astronomically large parameter 

estimates in the bootstrap distribution increase; the median was resistant to these outliers. 

Theoretically, the mean of the bootstrap distribution is preferred, but the median tends to 
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be more stable when working with small samples. For theoretically symmetric bootstrap 

distributions, the mean and median will be the same.   

 

Though the simulation study covers a wide range of scenarios appropriate for radiation 

countermeasure studies, it does not consider extreme slopes (|β| near 0 or ∞), very small 

sample sizes (e.g., M×N = 2×1), or logistic regression. Further preliminary investigation 

into these limitations show a similar pattern of the bootstrap estimator having a better 

MSE than the MLE on which it is based in small sample situations.  

 

Another consideration is that the expected response rate (averaging over all M doses) was 

50% - the response rate carrying the most information about the parameters. We did not 

explore the (real) possibility of the design points missing the truth, and thus having 

response rates further away from 50%. We are unsure of how the two estimation methods 

would compare in such cases.  

 

This study considers only point estimation. We are currently investigating whether 

bootstrap confidence intervals for the desired parameters tend to outperform confidence 

intervals based on maximum likelihood estimation, especially when working with small 

samples.  
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