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Abstract
To assess long-term cumulative benefit of a treatment, the relationship between cumulative drug

exposure and outcomes could be explored to understand dose response. However, cumulative ex-
posure corresponds to the longitudinal profile of an outcome, which is heavily confounded with
natural disease progression and missing data. A model-based approach is developed to account for
the confounding factors. In particular, the observed measures are adjusted by the projected disease
progression at the corresponding time points before exposure response is assessed. The proposed
approach introduces new insights to the interpretation of study data. In the case study used to
demonstrate the method, there seem to be various degrees of efficacy trend favoring higher level of
cumulative exposure in active drug, based on selected clinical and biomarker endpoints.
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1. Introduction

During drug development, two of the most typical questions are “how high” the dose or
“how long” the treatment duration needs to be. These questions are naturally answered
by assessing the relationship between cumulative drug exposure and cumulative treatment
effect. However, in clinical trials, understanding the real cumulative treatment effect is
often difficult because cumulative exposure, corresponding to the longitudinal profile of
the observed outcome, is often a mixture of multiple factors:

• Drug effect: the actual treatment difference over placebo

• Natural disease progression: the deterioration observed under naive treatment

• Missing data impact: early dropouts may have shown greater deterioration

This complexity is particularly clear for a clinical trial of the neurodegenerative disease.
For example, clinical trials for the Alzheimer’s disease (AD) are usually conducted with
elderly patients and last for years. During the course of a lengthy AD trial, the disease
condition of the trial participants, who often have complexconcomitant medical conditions
due to age, deteriorates dramatically. These factors oftencause a large portion of early
dropouts and invalidate the direct interpretation of the cumulative exposure. As a result,
when assessing the effect of cumulative exposure, it is critical to adjust the impact of these
confounding factors.

We have proposed a model-based approach to account for the confounding factors.
This approach provides a way to adjust for (remove) the impact of the confounding factors
and undercover the true treatment benefit associated with the drug exposure. This method
introduces important new insights to the interpretation ofstudy data. In particular, in the
case study used to demonstrate the method, there seem to be various degrees of efficacy
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trend favoring higher level of cumulative exposure in active drug, based on selected clinical
and biomarker endpoints.

The rest of the paper is organized as follows: in Section 2 theproposed approach is
introduced with details; in Section 3 a case study is presented to illustrate its use; Section 4
concludes and offers some discussion.

2. Method

Before introducing the details of the proposed approach, let us consider an example of two
hypothetical subjects who have received active treatment in an AD clinical trial. The trial
plans to record 6 consecutive post-baseline cognitive measurements but only 1 of these
2 subjects finished the trial (the other early terminated after the 5th measurement). The
observed longitudinal outcomes of these 2 subjects are displayed by the solid curves in
Figure 1. Due to informative dropout, subject 2 exhibited slightly faster deterioration as
compared to subject 1. In addition, assume the real disease progression for these 2 subjects
without treatment are given by the dashed lines of the corresponding color, then the real
drug response is represented by the distance between the observation (solid curve) and the
potential disease progression under naı̈ve treatment (dashed curve). This provides a simple

Figure 1: Subject level response adjustment

formulation of the observed outcome as

RObserved(t) = E(t) + P (t) +m(t) , t = 1, 2, ..., T , (1)

whereR is the response,E is the real effect of cumulative exposure,P is the natural disease
progression, andm is the potential missing data impact. By Equation 1, the trueeffect of
drug exposure is given by

E(t) = RObserved(t)− P (t)−m(t) = RAdjusted(t) , t = 1, 2, ..., T , (2)

This leads to the proposed 3-step approach in evaluating thereal effect of cumulative ex-
posure:
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1. A disease progression model is constructed to represent the natural disease progres-
sion over the time course of the trial, where subject-level characteristics and dropout
timing are taken into consideration

2. The observed outcome measures are adjusted by the projected disease progression at
thecorresponding time points

3. The resulting model-adjusted outcome measures are linked with the level of cumula-
tive exposure (ie, total area under the entire concentration curve)

2.1 Disease progression model

A disease progression model reflects the amount of deterioration over time under naive
treatment. Being used as the basis of the adjustment made to the observed data, the disease
progression model is a critical part of the approach. While adisease progression model
can be established following multiple approaches, a good choice that can be used for the
purpose of this exposure response analysis needs to satisfyseveral requirements:

• Characterizes the longitudinal profile of the progression.This means, regardless of
the actual structure of the disease progression model, it needs to have a term that
reflects the time course of the measurements

• Differentiates patients with distinct disease severity. This means, in addition to the
time component, the disease progression model needs to incorporate the impact of
several subject-level variables (eg, age, baseline disease severity, etc) that are be-
lieved to impact the rate of progression. By doing this, the projected disease progres-
sion for subjects with different characteristics would be different and the model can
be used to provide subject-level projection of the disease progression

• Recognizes dropout effect. Due to informative dropouts, subjects who early termi-
nated from the study usually demonstrate higher level of deterioration as compared to
those who stayed longer in the study. By recognizing the dropout effect, the dropout
model should be able to differentiate the path of disease progression between a study
terminator and a study completer. With that, consider 2 patients with identical char-
acteristics but one completed the study but one early terminated before completion,
the dropout model should give different projected disease worsening paths for these
2 subjects

The disease progression model we considered is essentiallya mixed-effect model for
repeated measures (MMRM). In any study with longitudinal measurements, such model
can be established by using all observed response of the placebo-treatment subjects. In
particular, our MMRM includes the observed response as the dependent variable, and a set
of model covariates such as subject demographics (eg, age),baseline disease severity, time
(visit) corresponding to each observed response, time to dropout, and several interaction
terms as appropriate.

2.1.1 Model-based adjustment

After a disease progression model is constructed, all observed response could be adjusted
by subtracting the model-projected disease progression. Several points should be noted
when using the model to adjust
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• For any given subject, the model-projected disease progression should be calculat-
ed using that particular subjects information as required by the disease progression
model, including time to dropout. With that, each subject iscompared with her/his
own path of natural disease progression

• While the disease progression model provides the entire path of the disease progres-
sion for any given subject, the adjustment should be made only at the corresponding
time point

• Observed response from placebo-treated subjects could be adjusted, too. Because
the disease progression model itself is constructed using the placebo data, the adjust-
ed response of placebo-treated subjects should represent aset of random noise that
centers at 0

2.1.2 Exposure response modeling

The relationship of interest is the one between adjusted response and corresponding cumu-
lative exposure level. Once every single observed responsehas been adjusted, an analysis
that links the cumulative exposure and adjusted response atcorresponding time point could
be performed. Such analysis could be as simple as a correlation analysis based on a par-
ticular time point, or as complicated as a model that includes all information as an analysis
for repeated measures (multiple records provided by the same subject).

However, it worth to point out that, since the adjustment is made based on the matching
time point, the adjusted response is no longer impacted by time. In other words, an adjust-
ed response at visit 5 can now be compared to an adjusted response at visit 6, and the only
factor that differentiates these 2 records would be the cumulative exposure level. For ex-
ample, as we will further discuss in the case study in Section3, the final exposure-response
analysis is performed by using each subjects last availablemeasurement, which could be
observed at different time points due to early dropouts.

3. A case study

As a case study, we considered data from 2 recently finished phase 3 clinical studies in
testing the safety and efficacy of bapineuzumab IV in patients with mild to moderate AD.

3.1 Bapineuzumab

While the real cause of Alzheimers disease is still unknown,the mostly commonly accepted
explanation is given by the amyloid hypothesis which suggests that the disease develops
when clumps of abnormal proteins (beta amyloid) grow in the brain. Bapineuzumab is a
humanized monoclonal antibody, which binds to and clears beta amyloid peptide, and is
designed to provide antibodies to beta amyloid directly to the patient.

Two phase 3 placebo-controlled clinical trials were conducted to evaluate the safe-
ty and efficacy of bapineuzumab in patients with mild to moderate AD. The first study
(Study ELN115727-301 or simply Study 301) enrolled only patients who are apolipopro-
tein E ε4 gene noncarriers. Patients were to receive 6 quarterly IV injections of place-
bo or bapineuzumab at 0.5 mg/kg or 1.0 mg/kg dose levels. The second study (Study
ELN115727-302 or simply Study 302) enrolled only patients who are apolipoprotein E
ε4 gene carriers. Enrolled patients followed the same dosingscheme as Study 301 pa-
tients, but only 1 bapineuzumab dose (0.5 mg/kg) was tested.An open label extension
study (Study ELN115727-351 or simply Study 351) was conducted where completers of
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the double-blind parent studies (Study 301 or Study 302) maybe enrolled to receive only
bapineuzumab. A diagram is given in Figure 2 to illustrate the sample size in each study.
The co-primary clinical endpoints were cognitive and functional ability as measured by

Figure 2: Sample size in bapineuzumab IV phase 3 studies

ADAS-Cog/11 total score and DAD total score. In addition, brain amyloid load was also
assessed via PET imaging. Finally, compared to placebo, bapineuzumab did not demon-
strate statistically significant treatment effect based onco-primary clinical endpoints, but
demonstrated statistically significant treatment effect based on the PET imaging biomarker
in ApoE ε4 carriers.

3.2 Cumulative exposure analysis

The proposed cumulative exposure analysis was performed asa post hoc analysis, in explo-
ration of whether or not higher level of cumulative exposurehas potentially larger treatment
benefit. Figure 3 shows a simple scatter plot of cumulative drug exposure in AUC (ug/mL
× day) and the observed response, defined as change from baseline in ADAS-Cog/11 to-
tal score at the last visit. Two trend lines are superimposedto indicate the clear upward
trend in both ApoEε4 carriers and noncarriers. For ADAS-Cog/11 total score, larger value
means greater impairment, therefore Figure 3 seems to suggest that higher level of exposure
causes greater amount of deterioration.

Such counter-intuitive observation is a direct consequence of confounding factors dis-
cussed in Section 1. To see this, it should be noted that subjects with high level of cumula-
tive exposure are generally those who stayed longer in the study. However, due to natural
disease progression, subjects who stayed longer in the study had a longer time period for
disease deterioration. This natural disease progression is strong enough to significantly off-
set the drug effect, and thus cause an apparent upward trend when looking at the responses
with adjusting for the confounding factor. Therefore, thisdataset serves as a good exam-
ple to apply the proposed 3-step exposure response analysismethod, which is illustrated in
detail in the next 3 subsections.
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Figure 3: Observed response (ADAS-Cog/11 total score) vs. cumulative exposure AUC

3.2.1 Disease progression model

A mixed-effect model for repeated measures (MMRM) was used to build the disease pro-
gression model. The model used only placebo data (with slight modification for Study 351)
and included the following terms:

• visit schedule

• baseline age

• randomization strata

• baseline value of the corresponding variable

• time to dropout

• baseline value vs. visit interaction

In addition, to appreciate the difference in disease progression between different patien-
t populations, the model was constructed separately for ApoE ε4 carriers and ApoEε4
noncarriers, and for treatment phase (double-blind periodor open label extension period).

The estimated model terms for the double-blind period basedon ADAS-Cog/11 total
score are given in Table 1. It worth to note that, while not being statistically significant, the
coefficient for the term “time to dropout” was negative for both the noncarrier and carrier
populations. This intuitively reflects the fact that subjects who early terminated from the
study often demonstrated greater amount of deterioration (for ADAS-Cog/11, larger score
means greater impairment).

3.2.2 Adjusted response

Based on the MMRM-based disease progression model specifiedin Section 3.2.1, each
subject’s last observed outcome is adjusted by subtractingthe model projected disease pro-
gression at the corresponding time point. For example, subject 1 was a study completer,
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Table 1: Fitted disease progression model for ADAS-Cog/11 total score

ApoE ε4 Noncarrier ApoEε4 Carrier
Model Terms Coeff. Estimate (SE) Model Terms Coeff. Estimate (SE)

Intercept 5.6499 (2.2179) Intercept 7.8834 (2.6256)
Baseline 0.2271 (0.0481) Baseline 0.2300 (0.0558)

Age -0.0443 (0.0216) Age -0.0470 (0.0273)
Time to dropout -0.0196 (0.0117) Time to dropout -0.0265 (0.0125)

MMSE: Low 2.8437 (0.5386) MMSE: Low 1.9702 (0.5427)
AD Med: No -1.9626 (0.7593) AD Med: No -1.2737 (0.9078)

ApoE Allele: 1 NA (NA) ApoE Allele: 1 -0.6596 (0.5268)
Week: 13 1.1309 (0.9812) Week: 13 0.2257 (1.2464)
Week: 26 -0.0966 (0.8937) Week: 26 -1.4345 (1.1145)
Week: 39 -0.5595 (0.7890) Week: 39 -1.7955 (1.0306)
Week: 52 -1.5227 (0.7093) Week: 52 -0.3949 (0.9196)
Week: 65 -0.0160 (0.7082) Week: 65 -1.3741 (0.8406)

Baseline× Week: 13 -0.3528 (0.0443) Baseline× Week: 13 -0.3349 (0.0505)
... ... ... ...

Baseline× Week: 65 -0.0597 (0.0311) Baseline× Week: 65 -0.0103 (0.0347)

therefore his projected response at the 6th post-baseline visit was subtracted from his last
observed response. One the other hand, subject 2 early terminated after the 4th dose, there-
fore her projected response at the 3rd post-baseline visit was subtracted from her last ob-
served response.

Figure 4 illustrates a scatter plot of cumulative drug exposure in AUC (ug/mL× day)
and the adjusted response. Two trend lines are also superimposed to demonstrate the down-
ward trend within both ApoEε4 carrier and noncarrier populations.

Figure 4: Adjusted response (ADAS-Cog/11 total score) vs. cumulative exposure AUC
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3.2.3 Cumulative exposure response modeling

Based on the scatter plot (Figure 4), for simplicity, a linear regression was performed to
demonstrate the relationship between cumulative drug exposure and the adjusted response

RAdjusted= α+ β · E . (3)

However, it should be noted that other approaches might be preferred under various consid-
erations. For example, from a typical dose-response point of view, an EMax type of model
might be fit to recognize the potential “ceiling effect” of high exposure level

RAdjusted= α+
β · E

γ + E
. (4)

Also, a nonparametric approach (eg, LOESS) might be appliedif a specific parametric
shape of the dose response cannot be identified at priori.

Figure 5 shows the exposure response for ADAS-Cog/11 total score based on simple
linear regression. The 2 trend lines are identical to the trend lines in Figure y but, to
better illustrate the trend signal, scatter plot is not provided. Several vertical reference
lines are also provided to show the cumulative exposure level of a study completer from
each treatment group with typical body weight. The exposureresponse in both patient
populations exhibit certain level of downward trend, suggesting stronger treatment effect
associated with higher level of cumulative drug exposure.

Figure 5: Adjusted response in ADAS-Cog/11 by cumulative AUC

Similarly, Figure 6 shows the exposure response for PET amyloid load (Florbetapir
PET global cortical average SUVr). Similar to that of the ADAS-Cog/11 total score, the
exposure response for PET amyloid load also exhibits a downward trend for both patient
populations, with the signal in the ApoE e4 carrier population a bit stronger.

4. Summary and discussion

In this paper we introduced a model-based approach to assessthe treatment effect of cu-
mulative drug exposure. Such approach accounts for severalconfounding factors that are
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Figure 6: Adjusted response in PET GCA SUVr by cumulative AUC

typically experienced in longitudinal studies of chronic neurodegenerative disease. The
proposed approach has 3 steps: first, a disease progression model is constructed to repre-
sent the natural disease progression over the time course ofthe trial, where subject-level
characteristics and dropout timing are taken into consideration; then, the observed out-
come measures are adjusted by the projected disease progression at the corresponding time
points; finally, the resulting model-adjusted outcome measures are linked with the level
of cumulative exposure (AUC). In the case study used to demonstrate the method, there
seem to be various degrees of efficacy trend favoring higher level of cumulative exposure
in active drug, based on selected clinical and biomarker endpoints.

While this approach is demonstrated for analyzing the effect of cumulative drug ex-
posure, it can be in principal applied in all situations where the confounding impacts of
time course need to be adjusted. The key component of the approach is the construction
of disease progression model. Although such model can be established using different ap-
proaches, it is important to validate the appropriateness of the model via methods such as
visual predictive checking (VPC). Figure 7 compares the observed ADAS-Cog/11 total s-
core mean placebo response during parent and extension periods with that is suggested by
the proposed disease progression model. The VPC suggests that the MMRM-based disease
progression model well captures the natural disease deterioration in the overall population
and when recognizing the baseline disease severity.

Finally, despite of its potentially wide application, the proposed approach has certain
limitations that need to be emphasized

• Interpretation of cumulative exposure. The cumulative exposure (AUC) is jointly im-
pacted by multiple factors (eg, dose level, number of doses,clearance, body weight,
etc), therefore it is difficult to identify the marginal effect of a single factor. For
example, when higher level of cumulative exposure is beneficial, unless additional
control is applied, it is impossible to determine if the benefit comes from higher dose
level or longer treatment duration.

• Due to the purpose and hence the design of the study, subjects’ allocation to different
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Figure 7: Visual predictive check: disease progression model (ADAS-Cog/11)

exposure levels is generally not random. For example, low cumulative exposure is to
some extent confounded with early dropouts, while the efficacy performance of the
early terminated subjects is observed to be worse than the general population.

• The adjustment of natural disease progression is performedbased on a specific set
of disease progression models. Therefore the results couldbe sensitive to model
misspecification. For example, informative dropouts may create bias in modeling the
disease progression. Although related factors (eg, time todropout) are included in
the disease progression model, this might not be sufficient in completely capturing
the missing data impact, especially when missing data are missing not at random

• The exposure-response is modeled using specific parametricfunctions, which as-
sume particular curve shapes and add certain restrictions and limitations in repre-
senting the relationship
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