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Abstract

To assess long-term cumulative benefit of a treatment, théaeship between cumulative drug
exposure and outcomes could be explored to understand egsense. However, cumulative ex-
posure corresponds to the longitudinal profile of an outgomtech is heavily confounded with
natural disease progression and missing data. A modetitzgigroach is developed to account for
the confounding factors. In particular, the observed messare adjusted by the projected disease
progression at the corresponding time points before expagsponse is assessed. The proposed
approach introduces new insights to the interpretationtudysdata. In the case study used to
demonstrate the method, there seem to be various degreffisadyetrend favoring higher level of
cumulative exposure in active drug, based on selectedtaliand biomarker endpoints.
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1. Introduction

During drug development, two of the most typical questiores “aow high” the dose or
“how long” the treatment duration needs to be. These questiwe naturally answered
by assessing the relationship between cumulative drugsexp@nd cumulative treatment
effect. However, in clinical trials, understanding thelreamulative treatment effect is
often difficult because cumulative exposure, correspandinthe longitudinal profile of
the observed outcome, is often a mixture of multiple factors

e Drug effect: the actual treatment difference over placebo
o Natural disease progression: the deterioration obsemddrunaive treatment
e Missing data impact: early dropouts may have shown greateridration

This complexity is particularly clear for a clinical triaf the neurodegenerative disease.
For example, clinical trials for the Alzheimer’'s diseaseD{fare usually conducted with
elderly patients and last for years. During the course ofngtley AD trial, the disease
condition of the trial participants, who often have compexcomitant medical conditions
due to age, deteriorates dramatically. These factors aieise a large portion of early
dropouts and invalidate the direct interpretation of thealative exposure. As a result,
when assessing the effect of cumulative exposure, it igakito adjust the impact of these
confounding factors.

We have proposed a model-based approach to account for theucding factors.
This approach provides a way to adjust for (remove) the impiihe confounding factors
and undercover the true treatment benefit associated vettrtig exposure. This method
introduces important new insights to the interpretatiorstofly data. In particular, in the
case study used to demonstrate the method, there seem toidigs\v@degrees of efficacy
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trend favoring higher level of cumulative exposure in aztivug, based on selected clinical
and biomarker endpoints.

The rest of the paper is organized as follows: in Section 2otleposed approach is
introduced with details; in Section 3 a case study is preskett illustrate its use; Section 4
concludes and offers some discussion.

2. Method

Before introducing the details of the proposed approathideonsider an example of two
hypothetical subjects who have received active treatmmeahiAD clinical trial. The trial
plans to record 6 consecutive post-baseline cognitive aneagents but only 1 of these
2 subjects finished the trial (the other early terminatedrafte 5th measurement). The
observed longitudinal outcomes of these 2 subjects ardagliesgh by the solid curves in
Figure 1. Due to informative dropout, subject 2 exhibitedhgly faster deterioration as
compared to subject 1. In addition, assume the real diseageaggsion for these 2 subjects
without treatment are given by the dashed lines of the cpomding color, then the real
drug response is represented by the distance between thevatien (solid curve) and the
potential disease progression under naive treatmertig¢dasirve). This provides a simple

—— Subject 1 observed
—— Subject 1 natural progression
Subject 2 observed
Subject 2 natural progression

Chan_gefrom Easeline )

Visit

Figure 1: Subject level response adjustment
formulation of the observed outcome as
Ropservedt) = E(t) + P(t) +m(t), t=1,2,..,T, Q)

whereR is the responséy is the real effect of cumulative exposurejs the natural disease
progression, andh is the potential missing data impact. By Equation 1, the é&ffiect of
drug exposure is given by

E(t) = Ropserved!) — P(t) — m(t) = Ragjusted?) - t=1.2...T,  (2)

This leads to the proposed 3-step approach in evaluatingethesffect of cumulative ex-
posure:
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1. A disease progression model is constructed to represematural disease progres-
sion over the time course of the trial, where subject-lebaracteristics and dropout
timing are taken into consideration

2. The observed outcome measures are adjusted by the pobjlisease progression at
the corresponding time points

3. The resulting model-adjusted outcome measures arallinké the level of cumula-
tive exposure (ie, total area under the entire concentratiove)

2.1 Disease progression model

A disease progression model reflects the amount of detédoraver time under naive
treatment. Being used as the basis of the adjustment makle tbserved data, the disease
progression model is a critical part of the approach. Whitlisease progression model
can be established following multiple approaches, a goaicehthat can be used for the
purpose of this exposure response analysis needs to ssdisfyal requirements:

e Characterizes the longitudinal profile of the progressibhis means, regardless of
the actual structure of the disease progression modeledse have a term that
reflects the time course of the measurements

o Differentiates patients with distinct disease severithisTneans, in addition to the
time component, the disease progression model needs tparate the impact of
several subject-level variables (eg, age, baseline dissagerity, etc) that are be-
lieved to impact the rate of progression. By doing this, tteqrted disease progres-
sion for subjects with different characteristics would lifeedent and the model can
be used to provide subject-level projection of the diseasgrpssion

e Recognizes dropout effect. Due to informative dropoutbjestis who early termi-
nated from the study usually demonstrate higher level afriation as compared to
those who stayed longer in the study. By recognizing thealrbpffect, the dropout
model should be able to differentiate the path of diseasgression between a study
terminator and a study completer. With that, consider Zep#giwith identical char-
acteristics but one completed the study but one early textmihbefore completion,
the dropout model should give different projected diseases@ning paths for these
2 subjects

The disease progression model we considered is essemtialixed-effect model for
repeated measures (MMRM). In any study with longitudinabmegements, such model
can be established by using all observed response of thehaaoeatment subjects. In
particular, our MMRM includes the observed response asdpemtent variable, and a set
of model covariates such as subject demographics (eg, lzagline disease severity, time
(visit) corresponding to each observed response, timedpatt, and several interaction
terms as appropriate.

2.1.1 Mode-based adjustment

After a disease progression model is constructed, all gbdaresponse could be adjusted
by subtracting the model-projected disease progressi@ver8l points should be noted
when using the model to adjust
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e For any given subject, the model-projected disease prsigreshould be calculat-
ed using that particular subjects information as requingthle disease progression
model, including time to dropout. With that, each subjeatampared with her/his
own path of natural disease progression

e While the disease progression model provides the entiteqiahe disease progres-
sion for any given subject, the adjustment should be madeairthe corresponding
time point

e Observed response from placebo-treated subjects couldjbsted, too. Because
the disease progression model itself is constructed usanglacebo data, the adjust-
ed response of placebo-treated subjects should represehtérandom noise that
centers at 0

2.1.2 Exposure response modeling

The relationship of interest is the one between adjustgmbrese and corresponding cumu-
lative exposure level. Once every single observed respoasd®een adjusted, an analysis
that links the cumulative exposure and adjusted respors®raisponding time point could
be performed. Such analysis could be as simple as a coorelatialysis based on a par-
ticular time point, or as complicated as a model that incdualeinformation as an analysis
for repeated measures (multiple records provided by the saject).

However, it worth to point out that, since the adjustment é&lmbased on the matching
time point, the adjusted response is no longer impactecdto. tin other words, an adjust-
ed response at visit 5 can now be compared to an adjustechsespovisit 6, and the only
factor that differentiates these 2 records would be the tatina exposure level. For ex-
ample, as we will further discuss in the case study in Se&jahe final exposure-response
analysis is performed by using each subjects last availabl@surement, which could be
observed at different time points due to early dropouts.

3. A case study

As a case study, we considered data from 2 recently finishadepB clinical studies in
testing the safety and efficacy of bapineuzumab IV in padienth mild to moderate AD.

3.1 Bapineuzumab

While the real cause of Alzheimers disease is still unkndtwmostly commonly accepted
explanation is given by the amyloid hypothesis which sutggtsat the disease develops
when clumps of abnormal proteins (beta amyloid) grow in therb Bapineuzumab is a
humanized monoclonal antibody, which binds to and cleata amyloid peptide, and is
designed to provide antibodies to beta amyloid directhhtogatient.

Two phase 3 placebo-controlled clinical trials were coneddo evaluate the safe-
ty and efficacy of bapineuzumab in patients with mild to matkerAD. The first study
(Study ELN115727-301 or simply Study 301) enrolled onlyigrats who are apolipopro-
tein E 4 gene noncarriers. Patients were to receive 6 quarterlynjgtiions of place-
bo or bapineuzumab at 0.5 mg/kg or 1.0 mg/kg dose levels. €hensl study (Study
ELN115727-302 or simply Study 302) enrolled only patientsovare apolipoprotein E
¢4 gene carriers. Enrolled patients followed the same dosomgme as Study 301 pa-
tients, but only 1 bapineuzumab dose (0.5 mg/kg) was testedopen label extension
study (Study ELN115727-351 or simply Study 351) was corellisthere completers of
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the double-blind parent studies (Study 301 or Study 302) beagnrolled to receive only
bapineuzumab. A diagram is given in Figure 2 to illustraie sample size in each study.
The co-primary clinical endpoints were cognitive and fimal ability as measured by

Total mITT
n=2337

Study 302
n=1090

Placebo Bapi
n=432 n=658

Study 301
n=1247

I_I_I

Placebo Bapi
n=493 n=754

Placebo Bapi Placebo Bapi
n=371 n=547 ERER n=466

Placebo Bapi
n=295 n=423

Placebo Bapi
n=284 n=376

Figure 2: Sample size in bapineuzumab IV phase 3 studies

ADAS-Cog/11 total score and DAD total score. In additioraibramyloid load was also

assessed via PET imaging. Finally, compared to placebdndagpumab did not demon-

strate statistically significant treatment effect based@@primary clinical endpoints, but

demonstrated statistically significant treatment effesda on the PET imaging biomarker
in ApoE €4 carriers.

3.2 Cumulative exposure analysis

The proposed cumulative exposure analysis was performegast hoc analysis, in explo-
ration of whether or not higher level of cumulative exposuae potentially larger treatment
benefit. Figure 3 shows a simple scatter plot of cumulativeg @xposure in AUC (ug/mL
x day) and the observed response, defined as change frormieaiseADAS-Cog/11 to-
tal score at the last visit. Two trend lines are superimpdeeiddicate the clear upward
trend in both ApoE4 carriers and noncarriers. For ADAS-Cog/11 total scorggelavalue
means greater impairment, therefore Figure 3 seems to siutpge higher level of exposure
causes greater amount of deterioration.

Such counter-intuitive observation is a direct consegeericonfounding factors dis-
cussed in Section 1. To see this, it should be noted thataskyath high level of cumula-
tive exposure are generally those who stayed longer in tldysHHowever, due to natural
disease progression, subjects who stayed longer in thg badia longer time period for
disease deterioration. This natural disease progressiirong enough to significantly off-
set the drug effect, and thus cause an apparent upward ttes laoking at the responses
with adjusting for the confounding factor. Therefore, thégaset serves as a good exam-
ple to apply the proposed 3-step exposure response analgti®d, which is illustrated in
detail in the next 3 subsections.

3698



JSM 2013 - Biopharmaceutical Section

8
o o
i
a2

= ApoE-4 Noncarrier
ApoE-4 Carrier

Observed Response

 Cumulative AUC (ugimL x day)

Figure 3: Observed response (ADAS-Cog/11 total score) vs. cumvelatkxposure AUC

3.21 Disease progression model

A mixed-effect model for repeated measures (MMRM) was usdulild the disease pro-
gression model. The model used only placebo data (withtstigidification for Study 351)
and included the following terms:

e Visit schedule

baseline age

randomization strata

baseline value of the corresponding variable

time to dropout

e baseline value vs. visit interaction

In addition, to appreciate the difference in disease pssjoa between different patien-
t populations, the model was constructed separately forEAqb carriers and Apok4
noncarriers, and for treatment phase (double-blind petampen label extension period).

The estimated model terms for the double-blind period baseADAS-Cog/11 total
score are given in Table 1. It worth to note that, while nohbeitatistically significant, the
coefficient for the term “time to dropout” was negative foitho¢the noncarrier and carrier
populations. This intuitively reflects the fact that sultgearho early terminated from the
study often demonstrated greater amount of deterioratwmADAS-Cog/11, larger score
means greater impairment).

3.2.2 Adjusted response

Based on the MMRM-based disease progression model spetifi8dction 3.2.1, each
subject’s last observed outcome is adjusted by subtrattimgnodel projected disease pro-
gression at the corresponding time point. For example estildj was a study completer,
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Table 1: Fitted disease progression model for ADAS-Cog/11 totatesc

ApoOE =4 Noncarrier

ApoEz4 Carrier

Model Terms Coeff. Estimate (SE)  Model Terms Coeff. Estimate (SE)
Intercept 5.6499 (2.2179) Intercept 7.8834 (2.6256)
Baseline 0.2271 (0.0481) Baseline 0.2300 (0.0558)

Age -0.0443 (0.0216) Age -0.0470 (0.0273)
Time to dropout -0.0196 (0.0117) Time to dropout -0.0265 (0.0125)
MMSE: Low 2.8437 (0.5386) MMSE: Low 1.9702 (0.5427)
AD Med: No -1.9626 (0.7593) AD Med: No -1.2737 (0.9078)
ApoE Allele: 1 NA (NA) ApoE Allele: 1 -0.6596 (0.5268)
Week: 13 1.1309 (0.9812) Week: 13 0.2257 (1.2464)
Week: 26 -0.0966 (0.8937) Week: 26 -1.4345 (1.1145)
Week: 39 -0.5595 (0.7890) Week: 39 -1.7955 (1.0306)
Week: 52 -1.5227 (0.7093) Week: 52 -0.3949 (0.9196)
Week: 65 -0.0160 (0.7082) Week: 65 -1.3741 (0.8406)
Baselinex Week: 13 -0.3528 (0.0443) | Baselinex Week: 13 -0.3349 (0.0505)
Baselinex Week: 65 -0.0597 (0.0311) | Baselinex Week: 65 -0.0103 (0.0347)

therefore his projected response at the 6th post-basdkitemas subtracted from his last
observed response. One the other hand, subject 2 earlyntgediafter the 4th dose, there-
fore her projected response at the 3rd post-baseline vistaubtracted from her last ob-
served response.

Figure 4 illustrates a scatter plot of cumulative drug exjpesn AUC (ug/mL x day)
and the adjusted response. Two trend lines are also supesgtpo demonstrate the down-
ward trend within both ApoE4 carrier and noncarrier populations.

= ApoE-4 Noncarrier
ApoE-4 Carrier

. Adjusted Response

 Cumulative AUC (ugimL x day)

Figure 4: Adjusted response (ADAS-Cog/11 total score) vs. cumedagixposure AUC
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3.2.3 Cumulative exposure response modeling

Based on the scatter plot (Figure 4), for simplicity, a linesgression was performed to
demonstrate the relationship between cumulative drugsexeaand the adjusted response

Radjusted= @+ 8- E . 3

However, it should be noted that other approaches mightdfened under various consid-
erations. For example, from a typical dose-response pbwiew, an EMax type of model
might be fit to recognize the potential “ceiling effect” ofhi exposure level

5-E

Fadjusted= @+ 55 - 4)

Also, a nonparametric approach (eg, LOESS) might be apjfiadspecific parametric
shape of the dose response cannot be identified at priori.

Figure 5 shows the exposure response for ADAS-Cog/11 totakshased on simple
linear regression. The 2 trend lines are identical to thedtrignes in Figure y but, to
better illustrate the trend signal, scatter plot is not jmest. Several vertical reference
lines are also provided to show the cumulative exposurd tE@va study completer from
each treatment group with typical body weight. The exposasponse in both patient
populations exhibit certain level of downward trend, sigjigg stronger treatment effect
associated with higher level of cumulative drug exposure.

Flacsbo 0.5 mgikg & doses 1.0 mgikg & dases 2.0 mgikg & doses

f_\djusted Response

B ApoE-4 Noncarrier
ApoE-4 Carrier

* Cumulative AUC (ug/mL x day)

Figure5: Adjusted response in ADAS-Cog/11 by cumulative AUC

Similarly, Figure 6 shows the exposure response for PET @ichybad (Florbetapir
PET global cortical average SUVr). Similar to that of the AB&Log/11 total score, the
exposure response for PET amyloid load also exhibits a danshivend for both patient
populations, with the signal in the ApoE e4 carrier popolath bit stronger.

4. Summary and discussion

In this paper we introduced a model-based approach to afses®atment effect of cu-
mulative drug exposure. Such approach accounts for sev@nébunding factors that are
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Placebo 0.5 mgkg & doses 1.0 mg/kg & doses

AUJUSTSU Response

727 | m ApoE-4 Noncarrier
ApoE-4 Carrier

Cumulative AUC (ugimL x day)

Figure 6: Adjusted response in PET GCA SUVr by cumulative AUC

typically experienced in longitudinal studies of chronieunodegenerative disease. The
proposed approach has 3 steps: first, a disease progressa®i i1 constructed to repre-
sent the natural disease progression over the time courde dfial, where subject-level
characteristics and dropout timing are taken into conatiter; then, the observed out-
come measures are adjusted by the projected disease iograsthe corresponding time
points; finally, the resulting model-adjusted outcome mezs are linked with the level
of cumulative exposure (AUC). In the case study used to dsirate the method, there
seem to be various degrees of efficacy trend favoring highel bf cumulative exposure
in active drug, based on selected clinical and biomarkepeintks.

While this approach is demonstrated for analyzing the efiécumulative drug ex-
posure, it can be in principal applied in all situations veh#re confounding impacts of
time course need to be adjusted. The key component of theagpis the construction
of disease progression model. Although such model can bblstted using different ap-
proaches, it is important to validate the appropriatenésseomodel via methods such as
visual predictive checking (VPC). Figure 7 compares theeolet ADAS-Cog/11 total s-
core mean placebo response during parent and extensiagevith that is suggested by
the proposed disease progression model. The VPC suggastaetMMRM-based disease
progression model well captures the natural disease ded&an in the overall population
and when recognizing the baseline disease severity.

Finally, despite of its potentially wide application, theoposed approach has certain
limitations that need to be emphasized

e Interpretation of cumulative exposure. The cumulativeosxpe (AUC) is jointly im-
pacted by multiple factors (eg, dose level, number of dadearance, body weight,
etc), therefore it is difficult to identify the marginal effeof a single factor. For
example, when higher level of cumulative exposure is beiagfienless additional
control is applied, it is impossible to determine if the bidr@mes from higher dose
level or longer treatment duration.

e Due to the purpose and hence the design of the study, sulgbotation to different
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Figure 7: Visual predictive check: disease progression model (ABZdg)/11)

exposure levels is generally not random. For example, lomuative exposure is to
some extent confounded with early dropouts, while the effiggerformance of the
early terminated subjects is observed to be worse than tier@epopulation.

e The adjustment of natural disease progression is perfotrasdd on a specific set
of disease progression models. Therefore the results dmulsensitive to model
misspecification. For example, informative dropouts maate bias in modeling the
disease progression. Although related factors (eg, timdrdpout) are included in
the disease progression model, this might not be sufficireobimpletely capturing
the missing data impact, especially when missing data assing not at random

e The exposure-response is modeled using specific paranfiemdtions, which as-
sume particular curve shapes and add certain restrictioddimitations in repre-
senting the relationship

REFERENCES

Lee H., Kimbo H., Rogge M., et al. (2003), Population pharakéwetic and pharmacodynamic modeling of
etancercept using logistic regression analySlgnical Pharmacology & Therapeutics, 73(4): 348-365.

Hutmacher M., Nestorov |., Ludden T., et al. (2007), Modglthe exposure-response relationship of etan-
ercept in the treatment of patients with chronic moderatseteere plaque psoriasidournal of Clinical
Pharmacology, 47: 238-248.

3703



