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Abstract 
We propose a model-based extension of weighting design-effect measures.  We develop a summary-level 
diagnostic for different v ariables of interest, in  single-stage sampling and under calibration weigh t 
adjustments.  Our proposed design effect measure captures the j oint effects o f a non- epsem sampling 
design, unequal weights produced using calibration adjustments, and the strength of the  association 
between an analysis variable and the auxiliaries used in calibration. We compare our proposed measure to 
existing design effect measures using a case study and simulation involving establishment-type data.  
 
Key words: Auxiliary data; Kish weighting design effect; Spencer design effect; generalized regression 
estimator 
 
 

1. Introduction 
 
The most popular measure to summarize the impact of differential weights is Kish’s (1965, 1992) design 
effect due to  weighting.  Spencer (2000) proposed  a si mple model-based approach that depends on a  
single covariate to esti mate the i mpact on variance  of using variable weights  in a situation where the  
analysis variable depends on the single covariate.  

  
However, these approaches do not provide a summary measure of the impact of the gains in precision that 
may accrue f rom sampling with vary ing probabilities and using a calibration esti mator like the general 
regression (GREG) e stimator. While Kish design effects att empt to measure the im pact of variable  
weights, they are informative only under special circumstances, do not account for alternative variables of 
interest, and can incorrectly measure the impact of differential weighting in some circumstances (Kish 
1992).  Spencer’s approach holds for with-replacement single-stage sampling for a very sim ple estimator 
of the total constructed with inver se-probability weights with no further adjustments.  There are also few 
empirical examples comparing these measures in the literature. 

 
In particular, the Kish and Spencer measures, reviewed in section 2, may  not accurately produce design 
effects for unequal weighting induced by  calibration adjustments.  These ar e often applied to reduce  
variances and correct for undercoverage and/or nonr esponse in survey s (e.g., Särndal an d Lundström 
2005; Kott 2009).  When the calibration covariates are correlated with the coverage/response mechanism, 
calibration weights can improve the m ean squared error (MSE) of  an estimator.  In m any applications, 
since calibration involves unit-level adjustments, calibration weights can vary more than the base weights 
or category-based nonresponse or poststratification adjustments (Kalton and Cervantes-Flores 2003; Brick 
and Montaquila 2009).  Thus, an ideal measure of the impact of calibration weights incorporates not only 
the correlation between the survey variable of interest y  and the weights, but also the correlation between 
y  and the calibration covariates x  to avoid “penalizing” weights for the mere sake that they vary. 

 

JSM 2013 - Survey Research Methods Section

3664



 

We extend these existing design effects to produ ce a new measure that s ummarizes the impact of 
calibration weight adjust ments before and after th ey are applied to single-stage survey weights.  The  
proposed measure in section 3 account s for the joint effect of a non-epsem sample design and unequal 
weight adjustments in the larger class of calibration estimators.  Our summary measure incorporates the 
survey variable like Spencer’ s model, using a generalized reg ression variance to reflect multiple 
calibration covariates.  In  section 4, we apply  the estimators in a case study and simulation involving 
establishment-type survey data and demonstrate empirically how the proposed estimator outperforms the 
existing methods in the presence of unequal calibration weights.  
  
 

2. Existing Methods 
 

In this section, we specify notation and summari ze the Kish and Spencer measures.  The assu mptions 
used to derive each of these are also presented. 
 
2.1. GREG Weight Adjustments 
Case weights resulting from calibration on benchm ark auxiliary variables can be defined with a global 
regression model for the survey variables (see Kot t 2009 for a review).  Deville and Särndal (1992) 
proposed the calibration approach that involves minimizing a distance function between the base weights 
and final weights to obtain an optimal set of survey weights.  Specifying alternative calibration distance 
functions produces alternative esti mators.  S uppose that a single- stage probability sample of n units is 
selected with i  being the selection probability of unit i and ix  a vector of p auxiliaries associated with 
unit i.  A least squares distance function produces the general regression estimator (GREG): 

  ˆ ˆ ˆ ˆT
GREG HTy x HTx i i ii s

T T g y 


   B T T ,          (1) 

 
where ĤTy i ii s

T y 


  is the Horvitz-Tho mpson (HT, 1952) estim ator of the po pulation total of y, 

ˆ
HTx i ii s




T x  is the vector of HT esti mated totals for the auxiliary variables, 1
N

x ii
T x  is the 

corresponding vector of  known totals, 1 1 1ˆ T
s s ss s s
  B A X V Π y  is the regression coefficient, with  

1 1T
s s ss s s

 A X V Π X , T
sX  is the matrix of ix  values in the sample,  ss idiag vV  is the diagonal of the 

variance matrix specified under the working model (defined below), and  s idiag Π .  In the second 

expression for the GREG estimator in (1),   1 1ˆ1
T

i x HTx s i ig v   T T A x  is the “g-weight,” such that the 

case weights are i i iw g   for each sample unit i . 
 
The GREG estimator for a total is model-unbiased under the associated working m odel, T

i i iy  x β , 
 ~ 0,i iv . The GREG is consistent and appro ximately design-unbiased when the sam ple size is large 

(Deville and Särndal 1992).  When the model is correct, the GREG estimator achieves efficiency gains.  If 
the model is incorrect, then the effici ency gains will be dampened (or nonexistent) but the GREG 
estimator is still approximately design-unbiased.  Relevant to this work, the variance of the GRE G 
estimator can be used t o approximate the variance of any calibration estimat or (Särndal et. al 1992; 
Särndal et. al 1993) when the sample size is large.  This allows us to produce one design ef fect measure 
applicable to all estimators in the family of calibration estimators. 
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2.2. The Direct Design-Effect Measures for Single-Stage Samples 

For a given non-epsem sample   and estimator T̂  for the finite population total T , one definition for the 
direct design effect (Kish 1965) is 

      ˆ ˆ ˆ
srswr HTDeff T Var T Var T .            (2) 

 
We refer to this as a “direct” estimator because it uses theoretical variances in the nu merator and 
denominator.  The alternatives that a re presented subsequently use various approximations to the 
components in (2).  The design effect in (2) measures the size of the va riance of the estimator T̂  under 
the design  , relative to the variance of the estim ator of the same total if a sim ple random sample with 
replacement (srswr) of the same size had been used. 
 
We can approximate the variance of any calibration estimator ĉalT  using the approximate variance of the 
GREG (GREG AV, Särndal et. al 1992; Deville, at al. 1993), such that the design effect is  

      ˆ ˆ ˆ
cal GREG cal srswr HTDeff T Var T Var T .          (3) 

 
To estimate these design-effects, we use the appropr iate corresponding sample-based variance estimates.  
Estimates of both m easures (2) and (3) can be produced using conventional survey estimation software.  
Our proposed design effect is a model-based approximation to (3). 

 
2.3. Kish’s “Haphazard-Sampling” Design-Effect Measure for Unequal Weights  
Kish (1965, 1990) pr oposed the “design effect due to weighting” as a measure to quantify  the loss of 
precision due to using unequal and inefficient weights.  For  1, , T

nw ww  , this measure is 

 

    2

2

2

1K

ii s

ii s

deff CV

n w

w





    


 
 




w w

,              (4) 

 

where    21 2
ii s

CV n w w w


 w  is the coefficient of variation of the  weights with 
1

ii s
w n w


  .  Expression (4) is derive d from the ratio of  the variance of the we ighted survey mean 

under disproportionate stratified sampling to the variance under proportionate stratified sampling when all 
stratum unit variances are equal (Kish 1992).  With equal stratum variances, sampling with a proportional 
allocation to strata is optimal, which leads to all units having the same weight. 
 
2.4. Spencer’s Model-based Measure for PPSWR Sampling 
Spencer (2000) derives a design-effect measure to more fully account for t he effect on v ariances of 
weights that are correlated with the survey variable of interest.  The sample is assumed to be selected with 
varying probabilities and with replacement (denoted as PPSWR sampling here).  Sup pose that ip  is the 
one-draw probability of selecting unit i , which is correlated with iy  and that a linear model holds for iy : 

i i iy p     .  A particular case of this would be i ip x  , where ix   is a measure of size associated 
with unit i .  If the entire finite population were availab le, then the ordinary least squares estimates of   

and   are A Y BP   and     2i i ii U i U
B y Y p P p P

 
     , where ,Y P  are the finite  

population means for iy  and ip .  The finite populati on variance of the residuals,  i i ie y A Bp   , is 
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     22 2 1 2 21 1e yp i yp yi U
N y Y   


     , where yp  is the finite population correlation between 

iy  and ip .  The usual base weight un der PPSWR-sampling is   1
i iw np

 .  The estimated total studied 

by Spencer is referred to as the pwr-estimator (Särndal et al. 1992) and is defined as ˆ
pwr i ii s

T w y


 , 

with design-variance    21ˆ
pwr i i ii U

Var T n p y p T


 
 

in single-stage sa mpling.  Spencer  

substituted the model-based values for iy  into the pwr-estimator’s variance and took its ratio to the 
variance of the estimated total using srswr to produce the following design effect for uneq ual weighting 
(see Appendix in Spencer 2000): 

   2 22
2

2 2 2
2

1 1 we w e ew e w
S yp

y y y

n AnA nW nW
Deff

N N N N

     


  
 

      
 

.     (5) 

 
Assuming that the correlations in the last two terms of (5) are negligible, Spencer approximates (5) with 

  
2

21 1S yp
y

nW A nW
Deff

N N




   
          

,           (6) 

 
where   11 1i ii U i U

W N w nN p


 
    is the average weight in the po pulation.  Spencer proposed 

estimating measure (6) with 

         22 ˆ ˆ1 1S yp K y Kdeff R deff deff    w w ,         (7) 

 
where 2 ˆ and ypR   are t he R-squared and esti mated intercept from fitting the model i i iy p      

with survey weighted least squares,  22 ˆˆ y i i w ii s i s
w y y w

 
    with ˆ

w i i is s
y w y w   is 

the estimated population unit variance.  Spencer’s estimator (7) has a large-N approximation assumption.  
 
When yp  is zero and y  is lar ge, measure (7) is approxi mately equivalent to Kish’s m easure (4).  
However, Spencer’s method does incorporate the survey variable iy , unlike (4), and implicitly reflects 
the dependence of iy  on the selection probabilities ip .  We can explicitly see this by noting that when N  

is large, 1A Y BN Y   , and (6) can be written as 

  2
2

11 1S yp
Y

nW nW
Deff

N NCV


 
    

 
,            (8) 

 
where 2 2 2

yYCV Y  is the population-level unit coefficient of variation (CV). We estimate (8) with 

       2
2

11 1S yp K K
y

deff R deff deff
cv

   w w ,          (9) 

 
where 2 2 2ˆˆy y wcv y .  Note that ycv  is not the standard CV produced in conventional survey estimation 
software, since it estimates the population unit CV of y. 
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3. Proposed Design Effect Measure 
 
Here we extend Spencer’s  (2000) approach in single-stage sampling to produce a new weig hting design 
effect measure for a calibration esti mator.  While Spencer’ s assumed i i iy p     , here we model 

iy  as T T
i i i i iy       x β x β , where  1i ix x  and  β β .  Denote the full finite populati on 

estimators of   and β  by A and B and the finite population residuals as  T T
i i i i ie y A y    x B x B  

where  AB B .  
 
We produce the design effect in four steps: (1 ) constructing a linear approximation to the GREG 
estimator; (2) obtaining the variance of this l inear approximation; (3) substituting our model-based 
components into the GREG variance; and (4) takin g the ratio of the model-based variance to the variance 
of the pwr-estimator of the total under srswr.  Since steps (1)-(4) produce the theoretical design effect, for 
an estimator, we add: (5) plug-in sample-based estimates for each theoretical design effect component. 
 
Step 1. A linearization of the GREG estimator (Exp. 6.6.9 in Särndal et al. 1992) is 

 

 

1

ˆ ˆ ˆ T
GREG HTy x HTx

T
x U

T
x i ii s

T T

e

n e p


 

 

 

T T B

T B

T B



 


            (10) 

 
where  U i ii s

e e 


  is the HT esti mator of the population total of the ie , U ii U
E e


 .  The last 

line of (10) holds if we assume that with-replacement sampling was used and that ip  is small enough that 

i inp  .  Next, define i  to be the num ber of times that unit i is selected for the sam ple.  Since 

 i iE np   , the second component in (10) has design-expectation  1
i i Ui s

E n e p E



 .   

 

Step 2. From (10), 1ˆ T
GREG x i ii s

T n e p


 T B  , with design-variance 

 
   

 

1

21

ˆ T
GREG x U i ii s

i i i Ui U

Var T Var n e p

n p e p E

 







 

 




T B
.        (11) 

 
Steps 3 and 4. We follow Spencer’s approach and substitute model values in variance (11) to form ulate a 
design-effect measure.  However, here we substitute in the m odel-based equivalent to ie , not iy  as 
Spencer does.  Substituting the GREG residuals ie  into the variance and taking its ratio to the var iance of 

the pwr-estimator in sim ple random sampling with replacem ent,   2 2ˆ
srs pwr yVar T N n , where 

 22 1
1

N
y ii

N y Y 


  , will produce our approxim ate design effect due to unequa l calibration 

weighting.   
 
We can sim plify things greatly defining i iu A e  , where T

i i iu y  x B , which i mplies 

UU A E A   .  The resulting design effect is  
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  2 2

2

2 2 2u w
H uw uu w u

y y

nnW
Deff A

N N

 
   

 

 
   
 
 

.         (12) 

where  22 1
1

N
u ii

N u U 


  ,  22 1
1

N
y ii

N y Y 


  , 2u w
  is the finite population correlation 

between 2
iu  and iw , 2

2
u

  is the variance of 2
iu and uw  is the correlation between iu  and iw .   

Step 5. To estimate (12), we use  

    2 2

2

2 2
ˆ ˆ ˆ ˆ ˆˆ ˆ2
ˆ ˆ
u w

H K uw uu w u
y y

n
deff deff

N

 
   

 
  w ,        (13) 

where the model parameter estimate ̂  is obtained using surve y-weighted least squares,  2ˆ y  and ˆ
wy  

were defined in section 2.3,   22ˆ ˆu i i w ii s i s
w u u w

 
   , ˆ ˆw i i ii s i s

u w u w
 

  , and 

ˆˆ T
i i iu y  x β .   

 

If the correlations in (12) are negligible, then we obtain 
2

2
u

H
y

nW
Deff

N




 
 
 
 

, which can be estimated with  

   2 2ˆ ˆH K u ydeff deff   w .             (14) 

Note that without  calibration, we have ˆˆ T
i i i iu y y  x β  and 2 2

u y  .  In this case expre ssion (14) 

becomes HDeff nW N , which we estimate with Ki sh’s measure   21Kdeff CV    w .  However, 

when the relationship between the calibration covariates x  and y  is stronger, the variance 2
u  should be 

smaller than 2
y .  In this case, measure (14) is smaller than  Kish’s estimate using on ly the weights.  

Variable weights produced from calibration adjustm ents are thus not as “pen alized” (shown by  overly 
high design effects) as they  would be using t he Kish and Spen cer measures.  However, if we have  
“ineffective” calibration, or a we ak relationship between  x  and y , then 2

u   can be greater than 2
y , 

producing a design effect greater th an one.  Th e Spencer measure only accounts for an indirect 
relationship between x  and y  if there was only one x and it was used to produce ip .  This is illustrated  
in section 4 with both a o ne-sample example case study and simulation that mimics establishment-type 
data.  We also examine the extent to which the corre lation components in our proposed design effect (12) 
are significant, or large enough t o influence the exact measure.  Our design effect measure is a model-
based version of the standard m easure (4).  Its calculation requires onl y the sample y -values, covariates, 
and calibration weights.  This measure can, thus, b e produced m ore quickly than measur e (3), whose 
components are often available later in data processing after a variance estimation system is set up. 
 
 

4. Evaluation Using Establishment Data 
 
Here a sample dataset of tax return data is used to mimic an establishment survey setup.  The data come 
from the Tax Year 2007 SOI Form 990 Exempt Organization (EO) sample.  This is a stratified Bernoul li 
sample of 22,430 EO tax returns selected from  428,719 filed wit h and processed by  the IRS between  
December 2007 and November 2010.  This sam ple dataset, along with the population fram e data, is free 
and electronically available online ( Statistics of Income 2011).  T hese data m ake a candidate 
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“establishment-type” example dataset for estimating design effects, in which Kish’s design effect may not 
apply.   
 
The SOI EO sample dataset is used her e as a ps eudopopulation for illustration purposes.  Four variables 
of interest are used: Total Assets, Total Liabilities, Total Revenue, and Total Expenses.  Returns that were 
sampled with certainty and havi ng “very small” assets (defined by  having Total Assets less than 
$1,000,000, including zero) were removed, leaving 8,914 u nits.  We then  randomly replicated and 
perturbed the data up to a pseudopopulation of 50,000 units. 
 
Figure 1 shows a pairwise plot of the pseudo-po pulation, including plots of t he variable values against 
each other in  the lower  left panels, histograms on the diagonal panels, and t he correlations among the 
variables in the upper right panels.  This plot mimics establishment-type data patterns.  From the diagonal 
panels, we see that the variables of interest are all hi ghly skewed.  From the lower left panels, there exists 
a range of different relationships among them.  The Total Assets variable is less related to Total Revenue 
and Total Ex penses (with m oderate correlations of 0 .41-0.44); Total Revenue and Total Ex penses are 
highly correlated.   

 
Figure 1. Pseudopopulation Values and Loess Lines for Design Effect Evaluation 

 
 

4.1 One-Sample Example Results 
Three pps samples were selected (n=100; 500; 1,000) without replacement from the pseu dopopulation 
using the square root of Total Assets as a measure of size.  The HT weights were then calibrated using the 
“linear” method in th e calibrate function in the survey package for R (correspondi ng to a  
GREG estimator, Lumley 2012) to match the totals of an intercept, Total Assets and Total Revenue. The  
analysis variables are Total Liabilities and Total Expe nses.  Figures 2 and 3 show boxplots and plots of 
the sample weights before (labeled “HT wt” in Fig. 2) and after (“cal wt”) these adjustments. 
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Figure 2. Boxplots of PPSWR Sample Weights Before and After Calibration Adjustments 
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Figure 3. Plots of PPSWR Sample Weights Before and After Calibration Adjustments 
 

 
As is apparent from Figure 3, the HT weights and the GREG weights do not differ dramatically; however, 
the GREG esti mator is m ore efficient as shown below.  Eight estim ates of the design effects ar e 
considered, with results shown in Table 1: 
 
 The standard design effect measures (2) and (3).  Expression (2) reflects the effi ciency of pps sampling 

and use of t he  -estimator.  Expression (3) reflects gains (if any) of pps sampling com bined with 
GREG estimation; 
 

 The Kish measure (4) computed using the GREG weights; 
 
 Three Spencer measures: (i) the exact mea sure that estimates (5), (ii) the appr oximation (7) assuming 

zero correlation terms, an d (iii) the large-population approxim ation (9).  The  Spencer measures are 
designed to reflect gains due to PPSWR sampling and use of the pwr-estimator.  It does not account for 
any gains due to calibration. 

 
 Two proposed measures: (i) the exact proposed si ngle-stage design effect (13) and (ii) the zero-

correlation approximation (14).  Both of these are meant to show the precision gains (if any) of PPSWR 
sampling combined with GREG estimation. 
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Note that neither the Spencer nor the proposed m easures account for any reduction in variances due to 
sampling a large fraction o f the population.  We also use the conventional approach of selecting samples 
without replacement but computing estimated design effects that refer to with-replacement sampling. 
Several results are cl ear from Table 1.  First, use of PPSWR sampling and the HT-estimator is more 
efficient than srswr in this population.   ĤTdeff T  ranges from 0.70 to 0.83, depending on the variable 

and sample size.  The GREG is estimated to be considerably more efficient with deff’s of 0.34 to 0.39 for 
Liabilities and from 0.01 to 0.02 for Expenses.  For these three PPSWR samples, the Ki sh measure is 
consistently above one for all sample sizes.  This measure also does not depend on the variable of interest, 
and the fact that all esti mates exceed one incorrectly implies that the pps sample design with or without 
calibration weighting is quite inefficient.   
 
For Liabilities and Expenses, the Spencer exact measure ranges from 0.27 to 0.45 and overstates th e 
efficiency of the (PPSWR sampling, pwr-estimator) combination compared to the directly computed deff 
of the HT esti mator.  However, the Spencer zero -correlation and large- N approximations are also  
inaccurate.  For example, the zero-cor relation and large- N approximations for (Liabilities, n=100) are 
1.04 and 1.06 but  ĤTdeff T =0.83 for that variable and sam ple size. The exact proposed measure is 

exactly close, within two decimals rounding, to the directly calculated  ĜREGdeff T  in all cases. 

 
Table 1. Design Effect Estimates of Single PPSWR Samples Drawn from the SOI 2007 

Pseudopopulation EO Data 
 Variable of Interest 
 Total Liabilities 

(weakly correlated with x ) 
Total Expenses 

(strongly correlated with x ) 
Design Effect Estimates 100n  500n  1000n  100n  500n   1000n 
Direct design effects   
     HT-estimator* 
     GREG estimator** 
Kish 
Spencer 
     Exact 
     Zero-corr. approx.  
     Large-N approx. 
Proposed 
     Exact  
     Zero-corr. approx. 

 
0.83 
0.34 
1.42 

 
0.27 
1.04 
1.06 

 
0.34 
0.85 

 
0.75 
0.34 
1.25 

 
0.45 
0.93 
0.89 

 
0.35 
0.66 

 
0.70 
0.39 
1.26 

 
0.45 
0.97 
0.95 

 
0.39 
0.79 

 
0.72 
0.02 
1.42 

 
0.51 
1.08 
1.18 

 
0.02 
0.05 

 
0.75 
0.02 
1.25 

 
0.63 
1.02 
1.07 

 
0.02 
0.03 

 
0.78 
0.01 
1.26 

 
0.53 
1.07 
1.09 

 
0.01 
0.02 

 *    ˆ ˆ
srsVar T Var T   ; **    ˆ ˆ

GREG srsVar T Var T  ; both measures calculated with R’s svytotal function. 

 
We can understand why  calibration is more efficient for Expenses than for Liabilities by  examining the 
distributions of iy  and iu .  Figures 4 and 5 show boxpl ots of iu  and iy  for each variabl e and sample 
size.  We see that, particularly for the Total Expenses variable, the iu -values in all of these samples have 
shorter ranges of values and less variation than iy .  This occurs since Total Expenses is highly correlated 
with the calibration varia ble Total Revenue (see Figur e 1) and  explains why the direct and proposed 
design effect measures are so much smaller for Total Expenses. 
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Figure 4. Boxplots of iy  and iu -values from ppswr Samples from the 2007 SOI EO Data, Total 

Liabilities Variable (weakly correlated with x ) 
 

y u

0e
+0

0
2e

+0
7

4e
+0

7
6e

+0
7

8e
+0

7

n=100

y u

0.
0e

+0
0

5.
0e

+0
7

1.
0e

+0
8

1.
5e

+0
8

n=500

y u

0.
0e

+0
0

1.
0e

+0
8

2.
0e

+0
8

3.
0e

+0
8

n=1000

 
Figure 5. Boxplots of iy  and iu -values from ppswr Samples from the 2007 SOI EO Data, Total 

Expenses Variable (strongly correlated with x ) 
 

 
4.2. Simulation Study Results 
We replicated the PPSWR-sampling in the previo us section 10, 000 times to further un derstand the 
empirical behavior of the alternative d esign effect es timators.  The empirical relbiases and ratio of the 
mean square errors (MSE’s) of the totals are 

   1
ˆ ˆ100 S
s ss

relbias T T T T


    

   
   

2 2
, ,1 1

ˆ ˆ

ˆ ˆ

HT GREG

S S
HT s GREG ss s

MSE ratio MSE T MSE T

T T T T
 



   
 

 
where ŝT  is an estimated total from sample s (either HT or GREG),  S=10,000 is the number of samples 
selected, and ,ĤT sT  and ,ĜREG sT  are the estimated HT and GREG totals from sample s.  These results are 
shown in Table 2 on the following page. 
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Table 2. Simulation Results of HT and GREG Totals, 10,000 ppswr Samples Drawn from the 
SOI 2007 Pseudopopulation EO Data 

 Variable of Interest 
 Total Liabilities 

(weakly correlated with x ) 
Total Expenses 

(strongly correlated with x ) 
Estimates 100n   500n   1000n   100n   500n   1000n   
relbias(HT) 
relbias(GREG) 
MSE ratio 

0.04 
0.47 
1.20 

0.06 
0.13 
1.19 

0.03 
0.13 
1.21 

0.06 
-0.10 
38.99 

0.03 
-0.01 
41.56 

-0.03 
0.00 

42.15 
Note: A small number of samples were dropped in which either the matrix to be inverted for  
the GREG was singular or the GREG produced negative weights.  The percentages of  
samples dropped were 3.6% for n=100, 1.2% for n=500, and 0.5% for n=1000. 

 
As seen in Table 2, both estimators are approximately unbiased.  The GREG is also more precise than the 
HT estimator, especially for Total Expenses, as evi denced by the MSE ratios larg er than one.  We also 
computed the biases of the various estim ated design effects across the 10,000 samples. The relbiases of  
the Kish design effect estimates are computed as 

      ˆ ˆ100K K HTy HTyrelbias deff deff empdeff T empdeff T   , 

where Kdeff  is the average Ki sh deff over all samples and  ĤTyempdeff T  is the average over al l 

samples of the deff’s of ĤTyT  computed from the survey package.  The relbiase s of the Spencer and 
proposed measures are computed as 

      ˆ ˆ100S S HTy HTyrelbias deff deff empdeff T empdeff T    and  

      ˆ ˆ100H H GREG GREGrelbias deff deff empdeff T empdeff T   

where Sdeff  and Hdeff  are, respectively, the m eans of one of  the Spencer or proposed  alternatives.  

 ĜREGempdeff T  is computed as the average over all samples of the deff’s of the GREG computed from 

the survey package.  The relbiases are displayed in Table 3. 
 

Table 3. Relative Bias of Design Effect Estimates,10,000 Samples Drawn from the SOI 2007 
Pseudopopulation EO Data 

 Variable of Interest 
 Total Liabilities 

(weakly correlated with x ) 
Total Expenses 

(strongly correlated with x ) 
Design Effect Estimates 100n   500n   1000n   100n   500n   1000n   
Empirical deff’s* 
     HT 
     GREG 

 
0.51 
0.43 

 
0.50 
0.42 

 
0.51 
0.42 

 
0.65 
0.02 

 
0.63 
0.02 

 
0.64 
0.02 

Relative biases (percent) 
Kish** 
Spencer** 
     Exact 
     Zero-corr. approx.  
     Large-N approx. 
Proposed*** 
     Exact  
     Zero-corr. approx. 

75.2 
 

-46.2 
32.8 
33.2 

 
-0.2 
94.0 

75.2 
 

-41.0 
34.3 
34.9 

 
0.2 

96.8 

75.3 
 

-39.4 
34.6 
35.2 

 
0.2 

97.6 

66.9 
 

-25.6 
37.1 
44.7 

 
11.5 

104.1 

66.0 
 

-25.8 
40.0 
46.6 

 
-0.4 
91.0 

65.1 
 

-24.9 
40.1 
46.5 

 
-0.1 
93.0 

    * averages across the simulated samples; ** relative to the average of empirical HT deff’s; *** relative to the  
     average of empirical GREG deff’s 
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For both variables of inter est, we see l arge positive biases for t he Kish design effect, and the design 
effects involving approximations.  This suggests that ignoring correlation components accounted for  in 
the ‘exact’ Spencer and proposed design effects would lead to over-estimating the design effects. 
 
Figures 6 and 7 at the end of this paper show boxplots of the alternative empirical design effect estimates.  
Each plot also shows vertical ref erence lines for the average of the empirical HT (in red) and GREG (in  
blue) design effects.  We can see that the empirical distributions are all sk ewed and the proposed exact  
design effect cover the average of the GREG design effect for both variables, particularly Total Expenses.  
 
 

5. Discussion, Limitations, and Conclusions 
 

We propose a new desig n effect that gauges the im pact of calibration weighting  adjustments on an  
estimated total in single-stage sam pling.  Two existing design effects are the Kish (1965) “design effect 
due to weighting” and one due to Spencer (2000).  Both of these are inadequate to reflect efficiency gains 
due to calibration.  T he Kish deff is a reasonable measure if equal weighting is optimal or nearly so, but 
does not reveal efficiencies that may accrue from sampling with varying probabilities.  The Spencer deff 
does signal whether the HT (or pwr) estimator in varying probability sampling is more efficient than srs.  
But, the Spencer deff does not reflect any gains from using a calibration estimator.   
 
The proposed design effect measures the im pact of both sampling with varying probabilities and of using 
a calibration estimator, like the GREG, that takes advantage of auxiliary information.  As we demonstrate 
empirically, the proposed design effects do not pena lize unequal weights when the relation ship between 
the survey variable and calibration covariate is strong.  We also dem onstrated empirically that th e 
correlation components in the Spencer measure and our proposed measure can be im portant in som e 
situations.  It is not overl y difficult to calculate these components, so we recommend incorporating them 
when possible to avoi d overly high estimates of th e design effects.  However, the hig h correlations 
between survey and auxiliary  variables that we observed in our pseudopopulati on data may be 
unattainable for some surveys that lack auxiliary information.  In cases where the auxiliary information is 
ineffective or is not used, t he proposed measure approximates Kish’s deff. The measure presented here is 
applicable to single-stage sa mpling but can be exte nded to more complex sample designs, like cluster 
sampling.   
 
Our measure uses the model underlying the general re gression estimator to extend the Spenc er measure. 
The survey variable, covariates, and weights are required to produce the design effect estimate.  Since the 
variance (11) is approximately correct in large samples for all calibration estimators (Särndal et. al 1992), 
our design effect should reflect the effects of many forms of com monly used weighting adjustment 
methods, including poststratification, raking, and the GREG estimator.  Altho ugh design effects that do  
account for these adjustm ents can be computed directly from estimated variances, it is im portant for 
practitioners to understand that the existing Kish and Spencer deff’s do not reflect any gains from those 
adjustments. The deff introduced in this paper, thus, serves as a corrective to that deficiency. 
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Figure 6. Empirical Boxplots of Design Effect Estimates of 10,000 PPSWR Samples Drawn from the SOI 2007 Pseudopopulation EO Data 

Total Liabilities Variable (weakly correlated with x ). Red line is average of empirical HT deff’s; blue line average of empirical GREG deff’s. 
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Figure 7. Empirical Boxplots of Design Effect Estimates of 10,000 PPSWR Samples Drawn from the SOI 2007 Pseudopopulation EO Data Total 

Expenses Variable (strongly correlated with x ). Red line is average of empirical HT deff’s; blue line average of empirical GREG deff’s. 
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