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Abstract
Following detection of signals by genome-wide association studies (GWAS), investigators may

choose to sequence some or all of the members of the GWAS sample to narrow down a set of po-
tentially causal variants. This is known as a two-phase fine-mapping design. Additional efficiencies
may be achieved if phase 2 fine mapping is carried out in multiple stages, with each stage comprised
of a mutually exclusive subset. We consider a Bayesian approach to two-phase sampling that allows
intermediate sampling time points. At each sampling point, we assess each sequence variant within
a region by a Bayes factor that compares different genetic models, e.g., additive, dominant and re-
cessive. For variants in which no genetic model outperforms the others, we apply Bayesian model
averaging to account for genetic model uncertainty. We assess the efficiency of this two-phase de-
sign in the discovery of true functional variants and investigate the impact of sample allocation and
correlation between tag and the functional on the efficiency.

Key Words: Bayes factor, fine mapping, next-generation sequencing, model averaging, two-phase
design

1. Introduction

In focused studies following up reasonable hits from genome-wide association studies
(GWAS), investigators may choose to comprehensively sequence a whole genomic region
of interest using next generation sequencing (NGS) technologies, or to selectively sequence
the region using customized technology to genotype additional SNPs. The purpose of re-
gional re-sequencing studies is to identify potential causal variants, estimate the size of
genetic effect, and characterize the mode of inheritance, i.e., genetic model. Despite the
reduction in the genotyping cost per base-pair, the cost of regional sequencing in large sam-
ples is still high, and considerable savings may be gained from a two-phase design which
sequences only a subset of the original sample.

Two-phase designs have been used in surveys, epidemiology and clinical trials, when
a target variable is difficult or expensive to measure (e.g., Breslow and Holubkov, 1997;
Breslow et al., 2009). At phase 1, a sample is drawn from the population and data on
response and auxiliary variables are collected. Strata are then destined using the auxiliary
variables that are correlated with the target variables. At phase 2, subjects are drawn from
each stratum using a simple random sampling without replacement, and measurements
of the target variables are made on the sampled subjects. Recently, two-phase stratified
designs have been used in fine mapping studies for complex quantitative traits and human
diseases (Chen et al., 2012; Schaid et al., 2013), in which GWAS subjects are sampled
from strata, defined by the genotype categories of the GWAS tag SNP that drew attention
to the genomic region, and the more expensive sequence data are collected on the sampled
subjects. It was shown that there was efficiency gain when the tag SNP common and
rare homozygote strata were oversampled and the heterozygote stratum was undersampled,
provided that the tag SNP is highly correlated with the functional seq variant whose effect
followed an additive genetic model (Chen et al., 2012).
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Several authors have explored the nature of the relationship between the GWAS tag
SNP, used to identify the region of interest, and a sequence (seq) variant of interest within
the region, examining how their correlation affects the ability to estimate association at the
seq variant and distinguish among genetic models (Spencer et al., 2011; Vukcevic et al.,
2011; Faye and Bull, 2011). Characterizing the genetic model, or mode of inheritance for
a putative causal variant, even approximately, is of interest in the fine-mapping process
particularly for a binary disease trait and may be informative for on-going study design.

Genetic model specification in genetic analysis is a very long-standing problem (for
discussion see Vukcevic et al., 2011; Strauch et al., 2003; Stephens and Balding, 2009;
Wang, 2012). The additive model, though widely used in GWAS association discovery
stage, may not correctly characterize the underlying genetic mechanism for the true func-
tional seq variant. A misspecification of the genetic model may have an undesirable impact
on the subsequent analysis such as leading to biased estimator of the genetic association
parameter. Furthermore, using an incorrect genetic model in a two-phase stratified design
may result in a sample size allocation scheme that decreases the inferential efficiency.

Multi-stage sampling designs may be adapted by large-scale studies in order to analyze
data and discover variants sequentially. One strategy to deal with genetic model specifica-
tion is to first localize the function seq variant and gain knowledge about the genetic model,
through analyzing the first batch of sequence data, and then modify the genetic model and
sample size allocation scheme at subsequent stages. Although the theory of sequential
sampling was instrumental in the development of the pedigree lod score in linkage anal-
ysis (Province, 2001), sequential analysis procedures and adaptive designs have received
only a modicum of attention (see also Province, 2000; Konig et al., 2001, 2003; Bull et al.,
2002; Scherag et al., 2003, 2009; Yan et al., 2008). For the most part, sequential methods
in genetic analysis have focused on hypothesis testing and marker detection, rather than on
parameter estimation and genetic model inference.

In this paper, we consider the multi-stage phase 2 design in the fine mapping of a
GWAS-identified region for a complex disease. To incorporate prior biological informa-
tion or belief, we implement the seq variant analysis and the sampling strategies within
the Bayesian paradigm; but to deal with model uncertainty we adapt a model averaging
approach. A set of relevant non-genetic covariates can be specified according to subject-
matter knowledge. The model uncertainty in single-variant analysis is associated with the
choice of the genetic model rather than with covariate selection. Therefore, in the work
presented here we do not include other covariate in the model.

The rest of this paper is organized as follows. In Section 2, we describe the formulation
of the regression model and the data structure from a multi-stage two-phase design. In
Section 3, we present the Bayesian methods for the inference of genetic association under
genetic model specification as well as under model averaging. In Section 4, we conduct
simulation studies to assess the validity of the two-phase sampling design and the Bayesan
model averaging approach. Section 5 includes concluding remarks.

2. General Model and Data

2.1 Genetic models

Let Y denote the status of a complex disease, Y = 1 if diseased and = 0 otherwise. We
assume that Y is Bernoulli distributed with probability of success P (Y = 1) = µ. Let
X count the number of risk/minor allele in the functional variant genotype. Without loss
of generality we consider single-variant regression models for Y . The most widely used
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genetic model is the additive model

logit(µ) = β0 + β1X,

where logit(u) = exp(u)/{1+exp(u)} is the logit link function relating the linear predic-
tor to the risk of disease, β1 measures the increase or disease in the value of the trait with
each additional copy of the risk allele at the functional variant.

Although the additive model is frequently used in GWAS with tag SNPs, the genetic
model at the functional variants may not be truly additive. An extension of the the simple
additive model is to include an extra parameter that models the deviation from the simple
additivity at the heterozygote. Following Vukcevic et al. (2011), we use the general three-
parameter model

logit(µ) = β0 + β1X + γ1X=1,

where 1X=1 is an indicator function that takes value 1 for heterozygotes and 0 for homozy-
gotes, and γ models the deviation from an additive model at the heterozygote and is referred
to as the dominance parameter. In this paper we specifically consider two other commonly
used models: dominant and recessive models, in additional to the additive model. All three
genetic models are special cases of the general codominant model and can be recovered by
setting the dominance parameter to specific values. For example, γ = 0 gives the additive
model, γ = β1 gives the dominant model, and γ = −β1 gives the recessive model. One
can see that all three genetic models involve only a single genetic effect size parameter
β1. We denote the additive, dominant, and recessive genetic models as M1, M2 and M3,
respectively. Let θ = (β0, β1)

T denote a vector of model parameters.

2.2 Phase 2 sequential sampling

Because of the low density of GWAS SNPs relative to seq variants, the GWAS hit identified
in phase 1 is very likely a spurious association resulted from high LD with a true functional
seq variant. Let N be the number of phase 1 subjects. Let G denote the genotype of a
GWAS tag SNP, with minor allele a and reference allele A, that appears as a hit and has
drawn attention to the region harbouring the functional variant. For subject i in phase 1
sample, a pair of observed values (Gi, Yi) is available, i = 1, . . . , N . The sample is then
divided into three strata according to the three categories of G: common homozygote AA,
heterozygoteAa, and rare homozygote aa. At phase 2, subjects are sampled randomly from
each strata. Fine mapping of the interesting region is then conducted using the sequence
data from the phase 2 sample.

Let K be the total number of stages (periods) specified for phase 2 sampling. For
simplicity, we assume that the same number ofm subjects are sampled without replacement
at each sampling period. Nevertheless, the proposed method can be generalized to cases
with varying sample size. Let n = Km (n < N ) be the total phase 2 sample size one
can collect, which is usually predetermined by budget limits. Let Y (k) and X(k) denote the
response and seq genotype data at kth sampling stage, k = 1, . . . ,K.

The goal of the sequential sampling is to gradually localize the function seq variant by
analyzing all variants in the region and draw reliable conclusion about the genetic associ-
ation. Although valid results can be obtained by analyzing available data, the variability
in the inference of the association, however, is influenced by the number of minor alleles
at the functional seq variant in phase 2 sample. To distinguish among genetic models, we
require that the sequence data obtained in the first period contain a reasonable amount of
information on all three genotypes particularly the heterozygote. This amounts to select
subjects such that the first period sample contains approximately equal number of subjects
carrying 0, 1 and 2 copies of the minor alleles at the function seq variant. In practice, if a
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tag SNP has drawn attention to a specific region, it is reasonable to assume that the tag SNP
is in high LD with the functional seq variant in the same region. Therefore, one sampling
scheme is to select the same number of subjects from each of the three tag genotype-defined
strata.

3. Bayesian Inference

3.1 Model-specific inference

Let p(Mj) be the prior probability for genetic model Mj , j = 1, 2, 3. Let p(θ |Mj) be the
prior distribution of the population parameters θ under modelMj . Often, independence be-
tween the priors for θ and the underlying genetic model is assumed, i.e., p(θ |Mj) = p(θ).
The priors specified for θ can undesirably tilt the prior distribution for disease prevalence.
Under a cohort design at phase 1, the marginal probability of an event is specified to follow
a uniform distribution in the interval (0,1), representing a non-informative prior belief on
the prevalence of disease (see Evans and Jang, 2012; Baskurt and Evans, 2011, for addi-
tional details). For the logit link, this is equivalent to specifying an approximate standard
logistic distribution for the linear predictor.

GWASs of complex diseases that have low prevalence in the population often employ
case-control designs, because cohort designs may require long observation periods in or-
der to observe enough number of cases and may be undesirable. Implementing the same
Bayesian prospective analysis used for a cohort study may not be equivalent to the appro-
priate retrospective analysis if the same priors are specified. This is unfortunate as ret-
rospective analyses tend to pose greater computational challenges in case-control logistic
models (e.g., Craiu et al., 2011). One possible escape route has been found by Seaman and
Richardson (2004) who showed that a case-control Bayesian analysis involving a prospec-
tive likelihood and a uniform prior for the log odds parameter is equivalent to an analysis
that uses a retrospective likelihood along with a Dirichlet prior distribution for the exposure
probabilities in the control group. To properly model the genetic association at the seq vari-
ant within a Bayesian 2 phase framework, we adopt the Seamam and Richardson approach
by specifying a uniform prior for β0 (the population log odds of disease at baseline geno-
type) and a normal prior for the log odds parameter β1 associated with the genetic effect.
The equivalence is valid for the inference about β1 only but not for β0.

The selection of phase 2 subjects involves a sample allocation scheme that determines
the probability of each phase 1 subject being included. Note that the inclusion probabilities
or sampling weights can be ignored in the Bayesian analysis. Specifically, the tag SNP
genotype, the factor used for stratifying the phase 1 sample, is conditionally independent
of the response given the functional variant despite that the tag SNP is correlated with
the functional variant. Let Ri be the phase 2 sampling indicator for subject i. Then, the
observed genetic model-specific likelihood contributed by subject i is

p(Yi, Xi, Ri | Gi, θ,Mj) = p(Yi | Xi, Gi, θ,Mj) p(Xi | Gi, θ,Mj) p(Ri | Gi),

where p(Ri | Gi) is the inclusion probability which is free of θ and the underlying genetic
model. Disease status is independent of the tag SNP given that data on the seq variant is
observed. Thus, the above equation becomes p(Yi, Xi, Ri | Gi, θ,Mj) = p(Ri | Gi) p(Yi |
Xi, θ,Mj) p(Xi | Gi). Because both p(Ri | Gi) and p(Xi | Gi) are free of θ and Mj and
do not contribute to the calculation of the posterior for θ, the analysis is simplified by
ignoring sampling weights and treating the observed data as from a cross-sectional study.

At each phase 2 sampling period, cumulated data up to and including current period are
analyzed and the posterior for θ and the posterior weights of genetic models are updated.
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To avoid excessive notation induced by sequential sampling design, we focus on describing
the computation using phase 2 data from the first sampling period. The analysis can be
generalized to subsequent sampling stages.

The posterior for θ given data (Y (1), X(1)) at the first period and a specific genetic
model, say, Mj , is

p(θ | Y (1), X(1),Mj) =
p(Y (1) | X(1), θ,Mj) p(θ |Mj) p(Mj)

p(Y (1) | X(1),Mj)
,

where p(Y (1) | X(1),Mj) =
∫
p(Y (1) | X(1), θ,Mj) p(θ | Mj) p(Mj) dθ is the nor-

malizing constant of the posterior distribution. Let µ(1)j = E(θ | Y (1), X(1),Mj) be the

posterior mean of θ, which is given by µ(1)j =
∫
θ p(θ | Y (1), X(1),Mj) dθ. The posterior

variance is

var(θ | Y (1), X(1),Mj) =

∫
{θ − µ(1)j } {θ − µ

(1)
j }

T p(θ | Y (1), X(1),Mj) dθ,

respectively.
Posterior weights of genetic models can be computed by comparing between genetic

models. The Bayes factor between genetic models Mj′ and Mj is defined by

BF
(1)
j′j =

p(Y (1) | X(1),Mj′) p(Mj′)

p(Y (1) | X(1),Mj) p(Mj)
,

where Mj is treated as the reference. Whenever p(Mj′) = p(Mj), i.e., in the case of
each model being equally likely a priori, the Bayes factor is simply the ratio of the two
normalizing constants of the posteriors under Mj and Mj′ . Let π(1)j = p(Mj | Y (1), X(1))
be the posterior weight for Mj . It can be readily shown that

π
(1)
j ∝ 1

1 +
∑

j′ 6=j BF
(1)
j′j

.

There is no closed form for π(1)j , however, due to the absence of conjugate priors. Markov
chain Monte Carlo sampling techniques are typically required for the calculation of Bayes
factor, as detailed in the Section 3.3.

For k > 1, the cumulated data up to and including the kth period of phase 2 sampling
can be analyzed using our Bayesian approach as if all data were obtained in a single period.
For instance, analysis using only data obtained in the second period but with an updated new
priors, derived from the first period, is equivalent to the analysis that uses data from both
periods with the initial priors. That is, information about θ obtained from previous periods
can be conserved through updating the prior, a feature exactly what Bayesian inference is
well known for. It allows us to make inference about the genetic association parameter and
the genetic model in a simpler way.

3.2 Bayesian model averaging

In cases where the genetic effect at the seq variant is believed to follow one particular
genetic model, one may choose the genetic model corresponding to the highest posterior
weight. However, posterior weights of the genetic models are greatly influenced by prior
weights in general. Even for equal prior specification, the underlying genetic model for the
seq variant may not be identified if data support the three genetic models equally. Making
decisions without accounting for model uncertainty may be risky, and making inference
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about genetic effect size based on a single best genetic model may result in underestimation
of the uncertainty in genetic association (e.g., Raftery et al., 1997), which leads to inflated
type 1 error.

Instead of choosing a best genetic model, we employ a Bayesian model averaging
(BMA) approach that allows uncertainty in the genetic model for the seq variant. With
model averaging, the posterior for θ given the phenotype and genotype data observed in
the first sampling period is p(θ | Y (1), X(1),Mj) =

∑3
j=1 p(θ | Y (1), X(1),Mj)π

(1)
j . Let

µ
(1)
BMA = E(θ | Y (1), X(1)). It is shown that µ(1)BMA =

∑3
j=1 µ

(1)
j π

(1)
j (e.g., Hoeting et al.,

1999). The BMA posterior variance is given by

var(θ | Y (1), X(1)) =
3∑

j=1

(
πj

[
µ
(1)
j {µ

(1)
j }

T + var(θ | Y (1), X(1),Mj)
])

+ µ
(1)
BMA{µ

(1)
BMA}

T .

One of the attractive features with this approach is that only one hypothesis test for associ-
ation is needed. Unlike when separate tests are conducted with each genetic model, there
is no need for multiplicity adjustment (e.g., Biswas and Papachristou, 2010).

Because the BMA approach aggregates results from analyses under the specification of
individual genetic models, the BMA posterior mean can be seen to be close to the the one
with the specification of model corresponding to the highest posterior weight. However, by
taking uncertainty into account the BMA posterior variance can be seen to be larger than
the posterior variances under individual models. Therefore, the BMA approach typically
reduces association signals at all seq variants in the region.

3.3 MCMC algorithms

The posterior mean and variance of the genetic association parameter β1 are intractable
because the normalizing constant for the posterior cannot be computed exactly. We use
a Markov chain Monte Carlo algorithm to obtain draws from the posterior distribution
of θ. Specifically, we use the Data Augmentation (DA) algorithm (e.g. Albert and Chib,
1993; van Dyk and Meng, 2001) to sample from the posterior distributions corresponding
to each genetic model. At the first sampling period, the logistic model is augmented with
the auxiliary variables Z(1) = (Z1, . . . , Zm)T such that Zi ∼ Logistic(β0 +Xiβ1, 1), and
Yi = 1 if Zi > 0 and Yi = 0 otherwise, for all i = 1, . . . ,m.

The DA algorithm requires alternate sampling from the conditional distribution of the
auxiliary variables given the parameter and the observed data, and from the conditional
distribution of the parameter vector given the observed and augmented data. The full con-
ditional distribution for Zi is

Zi | θ, Y (1), X(1),Mj ∼ Truncated Logistic(β0 +Xiβ1, 1),

which can be sampled directly. The full conditional for θ is

p(θ | Z(1), Y (1), X(1),Mj) ∝ p(θ)
m∏
i=1

p(Zi | Xi, θ),

which is not of standard form.
We use the random-walk Metropolis algorithm and specify the proposal density to be a

bivariate normal density N(0, τ2( 1 0
0 1 )). The initial value for the chain is the ML estimate

of θ obtained from fitting a standard logistic regression model. At each iteration, we first
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generate θ∗ from the proposal density and calculate, given the current draw θ(t) and the
simulated vector {Z(1)}(t+1), the acceptance probability

α = min

{
1,
p(θ∗ | {Z(1)}(t+1), X(1),Mj)

p(θ(t) | {Z(1)}(t+1), X(1),Mj)

}
.

Then, with probability α we accept the proposed value and set θ(t+1) = θ∗ and otherwise
we set θ(t+1) = θ(t). Note that the unknown normalizing constants for the conditional
distributions used to compute α are in fact equal and cancel out.

The firstB generated samples are discarded as the burn-in samples. Remaining samples
are then used to compute the posterior mean and variance of model parameters under each
of the three genetic models. Because there are no analytic forms for the posterior distribu-
tions, we cannot directly obtain the posterior weight for each genetic model. Nevertheless,
the required ratios of normalizing constants can be computed using the bridge sampling es-
timator (e.g., Meng and Wong, 1996; Gelman and Meng, 1998), and posterior weights for
all three genetic models can be estimated based on the MCMC samples. Since the bridge
sampling estimator is derived under the independence assumption, we suggest subsampling
the MCMC output at a reasonable lag to reduce the serial correlation between draws. For
instance, in our simulations we used every 20th sample produced by the algorithm.

4. Simulation Studies

4.1 Design of simulation

We conducted simulation studies to evaluate the performance of the multi-stage sampling
strategy for the phase 2 fine mapping. We assumed that the phase 1 sample consisted of
2500 cases and 2500 controls. The MAF for the tag and the seq variants were specified by
Pd = Pa = 0.4. Based on the suggestion by Vukcevic et al. (2011) that the value of r2 will
be quite high when the tag SNP has been identified in a GWAS of the same sample but may
be smaller if the tagSNP was identified in a previous independent study, we specified the
correlation between the two SNPs by r2 = 0.01, 0.80, corresponding to an uninformative
and a highly informative tag, respectively.

After generating the tag-seq haplotypes for all phase 1 subjects using a specific tag-seq
r2, we simulated phenotypes under the additive, dominant and recessive genetic models.
Then, a small subset of the phase 1 sample was selected and sequence data in the region
suggested by the tag SNP are collected on these phase 2 subjects. We assumed K = 5
sequential sampling periods for phase 2, each resulting in a subsample of size 200, for a
total sample of 1000. We used equal prior weight for each genetic model, i.e., p(Mj) =
1/3, j = 1, 2, 3.

Regression parameters in the logistic model were specified by β0 = −3 and β1 = 0.25.
The log-odds parameter β0 gave a disease prevalence of 4.7% in the baseline genotype
group. The positive value of the association parameter β1 implied deleterious effect of the
minor allele of the functional variant. Based on the arguments in Seaman and Richardson
(2004) for case-control Bayesian analysis, we specified a uniform prior and a normal prior
with mean 0 and standard deviation 1 for β0 and β1, respectively.

We generated independent candidates for β0 and β1 using the random walk Metropolis
algorithm with a normal proposal density and standard deviation 0.25

√
K/k. That is, the

proposal’s standard deviation decreased as the accumulated phase 2 sample size increased,
yielding a relatively stable acceptance rate of about 27%. We specified the number of
MCMC iterations to be 205,000, and discarded the first 5000 draws as burn-in. For the
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calculation of the ratio of normalizing constants via bridge sampling, we retained every
20th draw so that the correlations within the Monte Carlo sample were less than 0.1.

To ensure good mixing properties of the MCMC sampling for a binary trait, in our
simulations we drew samples from the posterior distribution using nine parallel chains that
started at different places in the parameter space. We performed diagnostics on the samples
using the method proposed by Gelman and Rubin (1992), which relies on parallel chains to
test whether they all converge to the same posterior distribution.

4.2 Result

Here, we report results based on 100 independent data sets. For a random data set, the trace
and autocorrelation plots show good mixing properties for the MCMC sampling from the
posterior distribution of β1 (Figure 1). The Gelman-Rubin diagnostic plots. The autocor-
relation function does show a reduction of the effective sample size, but we compensate
by letting the chain run longer. After about 1000 iterations in the chain, the potential scale
reduction factor converged to 1, and both the estimate of the shrinkage factor and the upper
limit of its 95% confidence interval were essentially 1 (Figure 2).

The posterior mean of β1 under the true genetic model gradually approaches the nom-
inal value but was biased when obtained under incorrect models (Figure 3). The dominant
and recessive models quickly achieved the highest posterior probabilities when they were
specified as the true genetic models (data not shown). When the additive model was the
generating model, however, it appeared to be close to dominant and recessive models and
did not emerge as the best genetic model until late sampling periods.

The proportion of simulations in which the true genetic models were identified as the
best at the final sampling point is about 40% for the additive model and 75% for the dom-
inant and recessive models. One explanation is that the phase 2 sample size and the as-
sociation parameter value at the seq variant are relatively small, leading to low power to
detect the difference in the disease proportions among the three seq genotype categories.
As a result, the dominant or recessive model appeared to fit the data better than the additive
model, even though the genetic model for the seq variant was truly additive.

Finally, we note that the main contribution of the tag-seq LD correlation to inference
about the magnitude of the association is obtained through a more informative phase 2
sample that benefits the true genetic model. When correlation is high, e.g., r2 = 0.8,
the minor allele at the functional seq variant could be enriched in phase 2 sample through
oversampling from the tag rare homozygote stratum. When correlation is low, e.g., r2 =
0.01, the tag SNP was not informative for the seq variant, and the tag-based sampling
would perform no better than a simple random sampling. The advantages of using a tag-
based informative sampling included the reduction of variability in the posterior of genetic
association, which was confirmed by a comparison between the standard deviations of β1
obtained under high and low r2 values. In general, standard deviations were smaller for
r2 = 0.8 than for r2 = 0.01, regardless of the true underlying genetic model and the
genetic model that was specified in the analysis (Table 1). The result for BMA also showed
reduction of the variability in the association when an informative tag was used.

5. Discussion

In this paper we consider the fine mapping of a region identified by case-control GWAS by
sequencing the whole region in a subsample of GWAS subjects. We consider the case in
which the two-phase stratified sampling design is conducted sequentially using information
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Figure 1: Trace and autocorrelation plots of the MCMC sample from the posterior distri-
bution of β1. (The number of MCMC iteration is 205000.)

from GWAS tag SNPs. We adapt a Bayesian approach to analyzing the seq variants and
propose to use model averaging that deals with genetic model uncertainty.

In the absence of knowledge of the genetic model for a true functional variant, the ef-
fect of a candidate genetic variant is often coded additively, leading to underestimation of
the association parameter when this assumption is incorrect. If a true underlying genetic
model exists, adaptive sample size allocation strategy may be employed to obtain a more
informative phase 2 sample with the aim of improving the localization of the functional seq
variant and the inference of the genetic association parameter by accumulating evidence in
favour of the true genetic model. Investigation of stopping criteria in the sequential sam-
pling procedures appears warranted, for example, early stopping of the sampling process
when sufficient evidence for association at a seq variant has accumulated or a genetic model
with high posterior probability has emerged.
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additive. Nine MCMC chains were used with each chain consisting of 25000 draws. The
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