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Abstract

In plant and animal breeding studies a distinction is madedsen the commercial value (additive
+ epistatic genetic effects) and the breeding value (addgenetic effects) of an individual since it
is expected that some of the epistatic genetic effects wilbbt due to recombination. In this paper,
we argue that the breeder can take advantage of some of statepmarker effects in regions of
low recombination. The models introduced here aim to esérwal epistatic line heritability by
using the genetic map information and combine the localtadind epistatic effects. To this end,
we have used semi-parametric mixed models with multiplaligenomic relationship matrices with
hierarchical testing designs and lasso post-processirgpéosity in the final model and speed. Our
models produce good predictive performance along with goxpianatory information.

Key Words: Genomic selection, Genome wide association, Plant / arbnealding, Mixed model,
Multiple kernel learning, Heritability

1. Introduction

Selection in animal or plant breeding is usually based on estimates of gerestidirioy
values (GEBYV) obtained with semi-parametric mixed models (SPMM). In thesedmixe
models genetic information in the form of a pedigree or markers are useds$trgct an
additive kernel matrix that describes the similarity of line specific additivetieeffects.
These models have been successfully used for predicting the breediieg in plants and
animals. The studies show that using similarities calculated from sufficieohgemwide
marker information almost always lead to better prediction models for theihgeealues
compared to the pedigree based models. In both simulation studies and in elrspidas
of dairy cattle, mice and in bi-parental populations of maize, barleyraabidopsismarker
based SPMM GEBVs have been quite accurate.

A SPMM for then x 1 response vectqy is expressed as

y=Xpf+Zg+e Q)

whereX is then x p design matrix for the fixed effects,is ap x 1 vector of fixed effects
coefficientsZ is then x ¢ design matrix for the random effects; the random effégtse’)’
are assumed to follow a multivariate normal distribution with meamd covariance

< U?K 0 )
0 o2,
whereK is aq x ¢ kernel matrix.

The kernel of the marker based SPMM'’s and reproducing kernel Hidpaces (RKHS)
regression models have been stressed recently ([8]). In fact, theeciion have been
recognized long time ago by [17], [14], [27] and [32]. RKHS regi@ssnodels use an
implicit or explicit mapping of the input data into a high dimensional feature spafieed
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by a kernel function. This is often referred to as the "kernel trick9)2 It is possible to
say that RKHS regression extends SPMM'’s by allowing a wide variety rfdtenatrices,
not necessarily additive in the input variables, calculated using a vafikéyreel functions.
The common choices for kernel functions are the linear kernel fungimgnomial kernel
function, Gaussian kernel function though many other options are aleailab

A kernel function,k(.,.) maps a pair of input points and«’ into real numbers. It is
by definition symmetrick(x,z’) = k(x’, 2)) and non-negative. Given the inputs for the
n individuals we can compute a kernel matfixwhose entries ar&’;; = k(xz;, z;). The
linear kernel function is given b¥(x; y) = =’y. The polynomial kernel function is given
by k(z;y) = (x'y + ¢)¢ for c andd € R. Finally, the Gaussian kernel function is given
by k(z;y) = \éﬂ—hexp(—(:c’ — ) (=’ —y)/2h) whereh > 0. Taylor expansions of these
kernel functions reveal that each of these kernels correspondiffer@dt feature map.

For the marker based SPMM'’s, a genetic kernel matrix calculated usingaa kamel
matrix incorporates only additive effects of markers. A genetic kernelixiadsed on the
polynomial kernel of ordek incorporates all of the one to order monomials of markers
in an additive fashion. The Gaussian kernel function allows us to implicitlyrparate the
additive and complex epistatic effects of the markers.

Simulation studies and results from empirical experiments show that the pradictio
curacies of models with Gaussian or polynomial kernel are usually bettethieanodels
with linear kernel. However, it is not possible to know how much of the irsea accu-
racy can be transfered into better generations because some of tlotqutegistatic effects
that will be lost by recombination. This issue touches the difference battheecommer-
cial value of a line which is defined as the overall genetic effect (additpistatic) and
the breeding value which is the potential for being a good parent (additivek it can be
argued that linear kernel model estimates the breeding value where aaubsi&h kernel
estimates the commercial value. In this article, we argue that the breedekeaadtan-
tage of some of the epistatic marker effects in regions of low recombinatiom mddels
introduced here aim to estimate local epistatic line heritability by using the genetic map
information and combine the local main and epistatic effects. Since the episfatitsef
that are incorporated are only local there is little chance that these effédlctisappear
with recombination. Heritability is defined as the percentage of total variatidrcéimabe
explained by the genotypic component. One can similarly argue that SPMifidimear
kernels produce estimates of narrow sense line heritability, and the SPMi'&aussian
Kernel produces estimates of broad sense line heritability.

We propose several approaches for local kernel matrix calculatiom.fikal models
are SPMM’s with semi-supervised kernel matrix that is obtained as a functiomany
local kernels. They differ mainly in the way the local kernel matrices anid Weights are
calculated. One major aim of this article is to measure and incorporate additiecal
epistatic genetic contributions since we believe that the local epistatic effectslavant
to the breeder. The local heritability models in this article can be adjusted sgethetic
contribution of the whole genome, the chromosomes, or local regions caintdieed.

2. Multiple kernel learning with SPMM

In recent years, several methods have been proposed to combine nidtipde matrices
instead of using a single one. These kernel matrices may corresporiddalifierent no-
tions of similarity or may be using information coming from multiple sources. Fangia,

genomic kernel + pedigree kernel, chromosome model, linear mixed models eiin ¢tio-
variance structure. A good review and taxanomy of multiple kernel leaadgmyithms in
the machine learning literature can be found in [11].
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Multiple kernel learning methods use multiple kernels by combining them into a single
one via a combination function. The most commonly used combination function &.line
Given kernelsky, K, ..., K, alinear kernel is of the form

K=mK; +772K2+...+77pr.

The kernel weights);, 72, ..., 1, are usually assumed to be positive and this corresponds
to calculating a kernel in the combined feature spaces of the individuaglserWe will
also assume that the weights sum to one.

The components of are usually input variables from different sources or different
kernels calculated from same input variables. The kefnelan also include interaction
components liké(; © K;, K; ® K, or perhaps-(K; — K;) ©® (K; — K;). For example, if
K is the environment kernel matrix atd; is the genetic kernel matrix, then a component
Kg ® Kg can be used to capture the gene by environment interaction effects.

The mixed models in [3] usd ® A to capture interaction effects. The reasoning comes
from c:

"If one assumes no dominance, all terms will vanish except the terms faivadand
additive x additive variances, which will take the fotth; = 2fi;02 + (2fi;)202, where
fii is the COP between individualsand, 02 is the additive genetic variance, ang,
is the additive x additive genetic variance. Assuming linkage and identity exuitib it
seems justified to us@ f;;)?, which in matrix notation can be represented(ly® A) =
A as the coefficient of the additive x additive component” (wheris the element-wise
multiplication operator).”

Although some multiple kernel approaches use fixed weights for combinmeglkein
most cases the weight parameters need to be learned from the trainindgsdata. prin-
cipled techniques used to estimate these parameters include likelihood barsathpp
in the mixed modeling framework like Fisher scoring algorithm or variance kzpsires
approach though these approaches are more suitable to cases wheréeankernels are
being used.

[24] propose two simple heuristics to select kernel weights in regressidaems:

__Tm
e het Th
and
_ 22:1 My — My,
- S, My
wherer,, is the Pearson correlation coefficient between true response andettieted
response and/,, is the mean square error generated by the regression using the kernel
matrix K, alone. Another approach in [24] uses the kernel alignment:

i = A YY)
o A(ER, yy)

where kernel alignment is calculated using

o <K17K2>F
A(K17K2> a \/<K17K1>F <K27K2>F
and
N
(K1, Ki)p = > (K1)ij(Ka2)ij.
2,j=1
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2.1 Multiplekernel SPMM models

In the context of the SPMM’s we propose using weights that are propaitio the esti-
mated variances attributed to the kernels. One possible approach is to B8&\&\8ith
multiple kernels in the form of

y=XB+ 219, + Z2gy+ ...+ Zxg, + € (2)

whereg; ~ qu(O,angj) forj = 1,2,...,k. Let &3], forj = 1,2,...,k andé? be
the estimated variance components. Under this model calculate heritabiliti€s as
62 [ 62 + 62 form=1,2,... k.

Another model incorporates the marginal variance contribution for eactekmatrix.
For this we use the following SPMM:

y=XB+7Z9;+7Z-9_;+te 3

whereg; ~ Ny, (O, o—ngj) forj=1,2,...,k g_; is the random effect corresponding to
the input components other than the ones in grpdp this case calculate heritabilities as
ha, =62 /(62 + 65 4 62,) form =1,2,... k. Inourillustrations it was always
7 =71 =12y =...= Z, however the above models apply to more general cases.

A simpler approach is to use a separate SPMM for each kerne&ilq.@mnd&ﬁm be the
estimated variance components from the SPMM model in (1) with keknet K,,. Let
ha, =6, /(67 +062 ). Notethat, in this case, the markers corresponding to the random
effectg_; which mainly accounts for the sample structure can now be incorporated by a

fixed effects via their first principal components.

After heritabilities are obtained, calculate the kernel weightsy,, . .., n, as
h2
Nm = pimhg' (4)
h=1"h

The estimates of parameters for models in (1), (2) and (3) can be by maxintt&ng
likelihood or the restricted (or residual, or reduced) maximum likelihood (RENhere
are very fast algorithms devised for estimating the parameters of the simgkd keodel
in (1). However, an advantage with the multiple kernel approach in modetn(2(3) is
that they can be used for testing nested models through the likelihood ratiBs@stating
the parameters of Model (2) gets very difficult with large number of Keraled with large
sample sizes, the single kernel or the marginal kernel models are moreesintauch
cases.

2.2 Hierarchical testing for sparsity and speed

Although somewhat different in all of the above models, the kernel weightg, ..., 7,
can be interpreted as the contribution components to the response valrathle.context
of Model (1) certain tests are devised for testing Whetfgeis zero against the one sided
alternative.

Under Model (1), twice the log-likelihood a@j given the parameters, o2 and\ =
ag/ag is, up to a constant,

v—1
(y — XpB) ‘22 (y — XB) 5)

e

L(B,ag,)\) = —nlogag —log|Vi| —

whereV, = I, + AZK Z' andn is the size of the vectaqy.
Twice the residual log-likelihood ([26], [13]) is, up to a constant,
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(y — XB)'Vy My — XBy)

2

(6)

From both of these likelihoods, a test statistic for the significance of thenearieom-
ponent

RL(p, ag, A) = —(n—p)log ag —log |Vi| —log(X'V, X) —

g

Hy : A=0 (0}=0)
Hy @ A>0 (0] >0)

can be obtained by calculating the likelihood ratio statistic ([4]).

Under standard regularity conditions the null distribution of the likelihood rtsh
statistic has a2 distribution with degrees of freedom given by the difference in the number
of parameters between the null and alternative hypothesis. HoweQggH8wed that the
asymptotic distribution is a weighted mixture ¢f distributions. For the SPMM in (1)
they have recommended using a equally weighted mixtusg @f) andy?(1) distribution
wherex?(0) distribution refers to a distribution degenerat®.an simulation studies [23],
[22] found that equal contributions work well with residual log-likelihogtlere as &.65
to 0.35 mixture works better for the log-likelihood. A finite sample null distribution was
recommended for the SPMM in (1) in [5] and it was shown that the mixturequtioms
depended on the kernel matrix.

In many practical cases a thresholding method can be sufficient for thegas of iden-
tifying regions that contribute to phenotype variation. Relevant regiondiaided further
subregions and the procedure is repeated to a desired detail levelrthede®s, suitable
hierarchical testing procedures have been developed. [2] pro@oskanalyzed several
hierarchical designs in terms of their cost / power properties. Multiple teptiocedures
where coarse to fine hypotheses are tested sequentially have beeagurdp control the
family wise error rate or false discovery rate ([25], [20]). Thesecpdures can be used
along the "keep rejecting until first acceptance” scheme to test hypatireaa hierarchy.

Meinshausen’s hierarchical testing procedure controls the family wise ey adjust-
ing the significance levels of single tests in the hierarchy. The procethrts testing the
root nodeH, at levela.. When a parent hypothesis is rejected one continues with testing all
the child nodes of that parent. The significance level to be used at edelihis adjusted
by a factor proportional to the number of variables in that node:

-]
| Ho|
where|.| denotes the cardinality of a set. This means that larger penalty is incuffiadrat
levels. The inheritence procedure in [10] provides a uniform improveémen the method
by Meinshausen. Two hypothetical hierarchical tests are displayedimdsi@. and 9.

2.3 A multiple kernel model with lasso penalty for sparsity

Although we can include sparsity in our multiple kernel model by use of hibieal testing
procedures described in the previous section, we can also accompligly timsans of a
general additive model with lasso penalty post-processing formulation.

Each multiple local kernel SPMM model discussed in previous section catilized
to obtain EBLUPs from the specific regions. Letbe thep vector of fixed effects and
m = (my1,ma,...,my) be the vector of markers partitioned into k regions. §gim)
denote the EBLUPs of random effect components that correspond Addbel kernels for

3588



JSM 2013 - Section on Statistical Learning and Data Mining

regionsj = 1,2, ...,k and individual with markersn. Consider a final prediction model
in the following form:

k k+p
fl@,m;B,a) =P+ Y ajgi(m)+ > Bz (7
=1 okt

Estimate the model coefficients using the following loss function

N k k+p k
(8, &) = argmin Z(yl — (Bo + Z a;g;(my;) + Z Bizi))* + A Z lajl.  (8)
(Ba) =1 j=1 j=k+1 j=1

A > 0is the shrinkage operator, larger values\afecreases the number of models included
in the final prediction model.

Whenk is large compared to the sample siXe we should use the following loss
function

k+p k

N k k
(B,a) = aﬁgminZ(yi_(BO+Zaj§j(mi)+ D B2 A D g+ Y () (9)
j=1

Ba) o1 j=k+1 j=1 j=1

to allow for more thanV non zero coefficients in the final estimation modg|, A\, > 0
are the shrinkage operators.
In matrix notation, we can rewrite the model in (7) as

F(X,M;B,0) = X8+ Ga

whereG = (91,92, - - -, r)- In our examples, we have uséth as the estimated genotypic
values.

It is very important that we note that when using the model in (7) with the ltleical
structure formed by the nested arrangement of genome regions it is almags detter to
use all levels at once.

The authors are also aware that there are other methods which can detsittinkage
in the parameters like subset selection, partial least squares, princippboents regres-
sions, Bayesian lasso, etc... But in essence all these algorithms shaukingilar results.

2.4 Kernelsfor genomic variables

In most GWAS studies the focus is on estimating the effects of individual meakef lower
level interactions. However, in the genomic era, the number of SNP marhkarsasily
reach millions and the methods used in GWAS for large samples become comligtion
exhaustive. The local kernel approach developed in this article remtdgeproblem by
reducing the number of hypothesis by focusing on regions and testingstedrhypothesis
in an hierarchy.

The simplest way we can obtain local kernel matrices is by defining regiotigein
genome and calculating a separate kernel matrix for each group and.rddie regions
can be overlapping or discrete. If the some markers are associated elitbtbar in terms
of linkage or function it might be useful to combine them together. The whelhege can
be divided physically into chromosomes, chromosome arms or linkage grieurker di-
visions could be based on recombination hot-spots, or just merely basachbproximity.
We could calculate a separate kernel for introns and exons, non cpdamgyoter or repres-
sor sequences. We can also use a grouping of markers based orfféed @n low level
traits like lipids, metabolites, gene expressions, or based on their allelefreigs. When
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some markers are missing for some individuals, we can calculate a kertie¢foresence
and absence states for these markers. When no such guide is preseainouse a hier-
archical clustering of the variables. It is even possible to incorporatepgmemberships
probabilities for markers so the markers have varying weights in diffgyenips.
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Figure 2. When there is no apriori in-
Figure 1: An hypothetical hierarchical formation about the markers, we can use
test set up for an organism with 3 chro-hjerarchical variable clustering. This is
mosomes. The first test is at the WhOleemonstrated by the C|ustering on the
genome level. It continues by testing theyertical coordinate of above figure for a

significance of each chromosome and recandom subset of markers and individu-
gions of the chromosome. als of the FMM data set.
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The second approach which we refer to as kernel scanning requingsage map of the
markers. This approach is similar to the one in [12] where the chromosomeasanned
with windows of 5 consecutive markers. L&f be theq x p matrix of p markers ory
lines, which is partitioned with respect to the chromosomeg\as M, ..., M.) where
My, hasp,, columns. Let the cumulative distances based on LD between markers in each
chromosome be provided in a veciar for £ = 1,2, ..., c. Based orp, we can to obtain
a kernel matrix for markers in each chromosome using a kernel functosbbyaoombining
these chromosome specific kernel matrices in block diagonal form we @htairp kernel
matrix S for markers. Let thé& column of this matrix be representedss A local kernel
matrix K, at positionk involves usingliag(s;)'/?M in kernel matrix calculations. Kernel
scanning approach involves calculation of a kernel matrix for selectekemacross the
genome at each marker location. By adjusting the kernel width parameterevable to
determine the smoothness and locality of these kernel matrices. In Figurell@strate
kernel scanning on a single chromosome with a few markers.

One argument for why we would like to focus on short segments of thengeras
distinct structures comes from the "building blocks” hypothesis in the evolatiotheory.
The schema theorem of Holland [15] predicts that a complex system whasteuslution-
ary mechanisms such as fitness, recombination and mutation tend to generzdedhvell
fit structures, these basic structures serve as building blocks. Fopéxavhen the alleles
associated to an important fitness trait are scattered all around the germfagdiable
effects can easily be lost just by independent segregation, theief@nsions that clump
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Figure 3. Kernel scanning on a single chromosome with a few markers. At eachemark
location a relationship matrix is calculated with markers weighted by the kerrightse
obtained from the kernel centered at this marker location. The weightsualethat the
marker at the center gets the highest weight and the markers get lessaneklghts as
they get away from this center. This is done at each marker location.

these alleles together physically would be strongly selected for.

2.5 Shrinkage of relationship matrices

When the number of markers in a region is less than the number of individuéls frain-
ing set the kernel matrix for this region becomes singular or ill conditionethdse cases
we can use shrinkage approaches to obtain well conditioned positiveteléirnel. The
shrinkage estimators of [28] and [18] that were advocated in [33] @hdlpich involves
shrinkage towards the identity matrix are not suitable to use with the SPMM siixce th
involves allocating a fixed proportion of the error variance to the variafiche random
effects. We instead propose and use shrinkage estimators which aim thucgrsparsity
in the off diagonal elements of the kernel matrix. Many algorithms have bexdset! for
learning sparse covariance matrices in the recent years. A penalizéthunaiikelihood
estimation was developed in [7], a penalized regression method was usz.ifrhese
and some other sparse covariance estimation techniques are implementedpacaée
"huge” ([34]).

In addition to possible decrease of computational burden and increaseuraay by
use of sparse matrix methods in mixed model parameter estimation, we canggodpb-
ical representations of the kernel matrices. For a normally distributednanector, the
independence between two components is implied by zero covariance betveeeom-
ponents, more interestingly, the conditional independence between twmoentp is im-
plied by the zero components in the inverse covariance matrix. In Figure display the
graphical representation of the sparse realized relationship matrix.

3. lllustrations

In this section, we will compare the methods introduced in this article to some okthe e
isting ones. Our first example uses simulated markers and phenotypes toredtauth is
known. The remaining examples are reserved for barley data sets wedbewloaded
from the Triticaea Toolbox web portal at https://triticaeatoolbox.org.

Example 3.1. The data in this example was generated by a whole genome simulator
"hypred” [19] which is an R package that simulates high density genoraia.dMarkers

for each of the 7 chromosomes of length 1M are simulated for individual$wiece pro-
duced randomly mating two founder lines for 20 generations. The total mwhb®arkers

was 3000. On each chromosome 20 QTL positions and additive effeetsamelomly gen-
erated. Residual variance was set to adjust the heritability of the trait to. (AiBnarker
effects are additive. The number of individuals is set to 1000. 750 of ithdis&uals were
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Figure 4. Barley CAP. The different plants are represented by the dots andotieero
relationship coefficients are represented by the lines between them. dpleiaa repre-
sentation of the shrunk relationship matrix gives us an idea about the s&rofthe Barley
CAP population.

randomly chosen to the training set and remaining to the test data set. IreFigwe com-
pare the accuracies in the test data using the correlation scores betwe@tserved and
predicted trait values for the linear and Gaussian kernel models with the reukgrnel
models that divide the genome into pieces differing number of regions. éfuhiegions
were set t2? = 4, 32 = 9,...,15% = 225 (two levels of hierarchy). The experiment was
repeated 30 times.

In Figure 7, we displayed the local heritability values from the kernel swanap-
proach. Finally, in Figure 6, we display the results from a hierarchical tesprocedure.

Example 3.2. In an experiment carried out by USDA-ARS during the years 2006-26¢e
alpha-tocopherol levels for 1723 barley lines were recorded in total ehvironments (2
years and 3 locations). Along with the phenotypic information 2114 madgerschromo-
somes (unmapped markers were assigned to an arbitrary 8th chaong)svere available
for the analysis. The whole genome was divided in a similar fashion as disiglajrgure
1. We have sampled 500 lines for training the models and we have usedttbéttee lines
to evaluate the fit of our models. In particular, we have calculated theetation between
the phenotypic values in the test data and the corresponding estimatetypienalues
from our models. This was repeated 30 times and the models are conipdipire 8.
The lasso importance scores obtained for the genome regions from rabddigerarchical
levels is given in Figure 9 (the displayed weights are averaged over the@i@ations of
the experiment).

4. Conclusions

The approaches introduced allows us to use the input variables in natacallyring
blocks. In the context of the SPMM in (1) there are very fast algorithmsdhaa take
advantage of this dimension reduction. For the linear kernel function,rttex of calcu-
lations to solve a SPMM with one kernel matrix is proportionahton(n, m) wherem
here is the number of features in that kernel. No matter what the input dimesss®MM
parameter estimation involves matrices of ordefFherefore, the multiple kernel approach
overcomes the memory problems that we might incur when the number of merkery
large.
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Figure5: Cross validated accuracies measured in terms of correlation scosesfdated
data described in Example 1.

The local kernels use information collected over a region in the genoméaodiise
of linkage, will not be effected by a few missing or erroneous data paotthis approach
is also robust to missing data and outliers.

For QTL identification, we have recommended a nested sequential apghaadevels
of views of the genome which might lead to faster exploration of the wholergerfor
gquantitative trait loci. Recently popular deep learning algorithms try to leamidesf
attributes and hypothesis [1]. Also active learning algorithms search éopdits of the
data to obtain information in a stepwise fashion [31]. "Testing along a tregputheses”
approach to association studies is related to these main stream methods ofrtesiniimg.

Sexual gene transfer methods have been used successfully in @adiriy for thou-
sands of years. More recently, nonsexual methods have also begpdrated. The multi-
ple kernel mixed model approach allow us to evaluate the utility of genome medidis,
in turn, allow us to build models with good prediction accuracy and, more imptytan
aides us in our action: Which plants, chromosomes or genome regions &kt in
our breeding program? Which crosses are most useful? Which gengimrsshould be
transfered between individuals? Success with genomic selection partipéindeon good
prediction models and partially on utilization of this kind of information and new gingr
technologies.

Although we have focused our attention to classical breeding with cressesg se-
lected parents, a short cut to breeding better plants and animals is possibtadtion
and fusion of individual chromosomes or genomic regions. This typeesding, which
we call chromosomal breeding, involves to breeding better chromosomdesoarbining
them. The authors believe that the plants obtained by passing chromosomesp4ities
or families involve minimal genetic manipulation.
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Figure 6: The figure on the left illustrates the sparsity pattern obtained using thedtiera
cal testing procedure for one instance of the experiment describecaimiide 1 We have
used the hierarchical testing procedure of Meiwaussen to identify theargleegions of
the genome for the data in Example 1. Only the regions with significant effexts wsed
to build the multiple kernel model (regions with 0 value are not included in therfindel).
This model (M) is compared with the SPMM’s with linear and Gaussian kerh&isafd
Gauss) with the boxplots on the right. All the models have approximately the saaiep
tion ability, but the multiple kernel model is definitely more parsimonious (parteonbme
included in the final prediction model are indicated by ones on the left yraph
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Figure 7: The local heritability values from the kernel scanning approach. Tue@TL
and effect sizes are superimposed on the estimated regional effedtzoftial bars for true
effects, colored points for estimated effects in chromosomes).
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Figure 8: Three models (1-SPMM with .
linear kernel, 2-SPMM with Gaussian i
kernel, 3- lasso model in 7 using es-
timated random effects from all levels)Figure 9: The lasso importance scores
are compared based on the correlationbtained for the genome regions from
between the phenotypic values in themodels at 4 hierarchical levels (the dis-
test data and the corresponding estimatgalayed weights are averaged over the 30
genotypic values from our models. replications of the experiment).
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