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Abstract
In plant and animal breeding studies a distinction is made between the commercial value (additive
+ epistatic genetic effects) and the breeding value (additive genetic effects) of an individual since it
is expected that some of the epistatic genetic effects will be lost due to recombination. In this paper,
we argue that the breeder can take advantage of some of the epistatic marker effects in regions of
low recombination. The models introduced here aim to estimate local epistatic line heritability by
using the genetic map information and combine the local additive and epistatic effects. To this end,
we have used semi-parametric mixed models with multiple local genomic relationship matrices with
hierarchical testing designs and lasso post-processing for sparsity in the final model and speed. Our
models produce good predictive performance along with goodexplanatory information.

Key Words: Genomic selection, Genome wide association, Plant / animalbreeding, Mixed model,
Multiple kernel learning, Heritability

1. Introduction

Selection in animal or plant breeding is usually based on estimates of genetic breeding
values (GEBV) obtained with semi-parametric mixed models (SPMM). In these mixed
models genetic information in the form of a pedigree or markers are used to construct an
additive kernel matrix that describes the similarity of line specific additive genetic effects.
These models have been successfully used for predicting the breeding values in plants and
animals. The studies show that using similarities calculated from sufficient genome wide
marker information almost always lead to better prediction models for the breeding values
compared to the pedigree based models. In both simulation studies and in empirical studies
of dairy cattle, mice and in bi-parental populations of maize, barley andArabidopsismarker
based SPMM GEBVs have been quite accurate.

A SPMM for then× 1 response vectory is expressed as

y = Xβ + Zg + e (1)

whereX is then× p design matrix for the fixed effects,β is ap× 1 vector of fixed effects
coefficients,Z is then×q design matrix for the random effects; the random effects(g′, e′)′

are assumed to follow a multivariate normal distribution with mean0 and covariance
(

σ2
gK 0

0 σ2
eIn

)

whereK is aq × q kernel matrix.
The kernel of the marker based SPMM’s and reproducing kernel Hilbert spaces (RKHS)

regression models have been stressed recently ([8]). In fact, the connection have been
recognized long time ago by [17], [14], [27] and [32]. RKHS regression models use an
implicit or explicit mapping of the input data into a high dimensional feature spacedefined
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by a kernel function. This is often referred to as the ”kernel trick” ([29]). It is possible to
say that RKHS regression extends SPMM’s by allowing a wide variety of kernel matrices,
not necessarily additive in the input variables, calculated using a variety of kernel functions.
The common choices for kernel functions are the linear kernel function,polynomial kernel
function, Gaussian kernel function though many other options are available.

A kernel function,k(., .) maps a pair of input pointsx andx′ into real numbers. It is
by definition symmetric (k(x,x′) = k(x′,x)) and non-negative. Given the inputs for the
n individuals we can compute a kernel matrixK whose entries areKij = k(xi,xj). The
linear kernel function is given byk(x;y) = x

′
y. The polynomial kernel function is given

by k(x;y) = (x′
y + c)d for c andd ∈ R. Finally, the Gaussian kernel function is given

by k(x;y) = 1√
2πh

exp(−(x′ − y)′(x′ − y)/2h) whereh > 0. Taylor expansions of these
kernel functions reveal that each of these kernels correspond to a different feature map.

For the marker based SPMM’s, a genetic kernel matrix calculated using a linear kernel
matrix incorporates only additive effects of markers. A genetic kernel matrix based on the
polynomial kernel of orderk incorporates all of the one tok order monomials of markers
in an additive fashion. The Gaussian kernel function allows us to implicitly incorporate the
additive and complex epistatic effects of the markers.

Simulation studies and results from empirical experiments show that the prediction ac-
curacies of models with Gaussian or polynomial kernel are usually better than the models
with linear kernel. However, it is not possible to know how much of the increase in accu-
racy can be transfered into better generations because some of the predicted epistatic effects
that will be lost by recombination. This issue touches the difference between the commer-
cial value of a line which is defined as the overall genetic effect (additive+epistatic) and
the breeding value which is the potential for being a good parent (additive) and it can be
argued that linear kernel model estimates the breeding value where as the Gaussian kernel
estimates the commercial value. In this article, we argue that the breeder can take advan-
tage of some of the epistatic marker effects in regions of low recombination. The models
introduced here aim to estimate local epistatic line heritability by using the genetic map
information and combine the local main and epistatic effects. Since the epistatic effects
that are incorporated are only local there is little chance that these effectswill disappear
with recombination. Heritability is defined as the percentage of total variation that can be
explained by the genotypic component. One can similarly argue that SPMM’s with linear
kernels produce estimates of narrow sense line heritability, and the SPMM’swith Gaussian
Kernel produces estimates of broad sense line heritability.

We propose several approaches for local kernel matrix calculation. Our final models
are SPMM’s with semi-supervised kernel matrix that is obtained as a functionof many
local kernels. They differ mainly in the way the local kernel matrices and their weights are
calculated. One major aim of this article is to measure and incorporate additive and local
epistatic genetic contributions since we believe that the local epistatic effects are relevant
to the breeder. The local heritability models in this article can be adjusted so thatgenetic
contribution of the whole genome, the chromosomes, or local regions can beobtained.

2. Multiple kernel learning with SPMM

In recent years, several methods have been proposed to combine multiplekernel matrices
instead of using a single one. These kernel matrices may correspond to using different no-
tions of similarity or may be using information coming from multiple sources. For example,
genomic kernel + pedigree kernel, chromosome model, linear mixed models with linear co-
variance structure. A good review and taxanomy of multiple kernel learningalgorithms in
the machine learning literature can be found in [11].
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Multiple kernel learning methods use multiple kernels by combining them into a single
one via a combination function. The most commonly used combination function is linear.
Given kernelsK1,K2, . . . ,Kp, a linear kernel is of the form

K = η1K1 + η2K2 + . . .+ ηpKp.

The kernel weightsη1, η2, . . . , ηp are usually assumed to be positive and this corresponds
to calculating a kernel in the combined feature spaces of the individual kernels. We will
also assume that the weights sum to one.

The components ofK are usually input variables from different sources or different
kernels calculated from same input variables. The kernelK can also include interaction
components likeKi⊙Kj , Ki⊗Kj , or perhaps−(Ki−Kj)⊙ (Kj −Ki). For example, if
KE is the environment kernel matrix andKG is the genetic kernel matrix, then a component
KE ⊙KG can be used to capture the gene by environment interaction effects.

The mixed models in [3] useA⊙A to capture interaction effects. The reasoning comes
from c:

”If one assumes no dominance, all terms will vanish except the terms for additive and
additive x additive variances, which will take the formCi′i = 2fi′iσ

2
a + (2fi′i)

2σ2
aa where

fi′i is the COP between individualsi′ andi, σ2
a is the additive genetic variance, andσaa

is the additive x additive genetic variance. Assuming linkage and identity equilibrium, it
seems justified to use(2fi′i)2, which in matrix notation can be represented by(A ⊙ A) =
Ã as the coefficient of the additive x additive component” (where⊙ is the element-wise
multiplication operator).”

Although some multiple kernel approaches use fixed weights for combining kernels, in
most cases the weight parameters need to be learned from the training data.Some prin-
cipled techniques used to estimate these parameters include likelihood based approaches
in the mixed modeling framework like Fisher scoring algorithm or variance leastsquares
approach though these approaches are more suitable to cases where only a few kernels are
being used.

[24] propose two simple heuristics to select kernel weights in regression problems:

ηm =
r2m∑p
h=1 r

2
h

and

ηm =

∑p
h=1Mh −Mm

(1− p)
∑p

h=1Mh

whererm is the Pearson correlation coefficient between true response and the predicted
response andMm is the mean square error generated by the regression using the kernel
matrixKm alone. Another approach in [24] uses the kernel alignment:

ηm =
A(Km,yy′)∑p
h=1A(Kh,yy′)

where kernel alignment is calculated using

A(K1,K2) =
〈K1,K2〉F√

〈K1,K1〉F 〈K2,K2〉F

and

〈K1,K1〉F =
N∑

i,j=1

(K1)ij(K2)ij .
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2.1 Multiple kernel SPMM models

In the context of the SPMM’s we propose using weights that are proportional to the esti-
mated variances attributed to the kernels. One possible approach is to use a SPMM with
multiple kernels in the form of

y = Xβ + Z1g1 + Z2g2 + . . .+ Zkgk + e (2)

wheregj ∼ Nqk(0, σ
2
gjKj) for j = 1, 2, . . . , k. Let σ̂2

gj for j = 1, 2, . . . , k and σ̂2
e be

the estimated variance components. Under this model calculate heritabilities ash2m =
σ̂2
gm/(

∑k
ℓ=1 σ̂

2
gℓ
+ σ̂2

e) for m = 1, 2, . . . , k.
Another model incorporates the marginal variance contribution for each kernel matrix.

For this we use the following SPMM:

y = Xβ + Zjgj + Z−jg−j + e (3)

wheregj ∼ Nqk(0, σ
2
gjKj) for j = 1, 2, . . . , k. g−j is the random effect corresponding to

the input components other than the ones in groupj. In this case calculate heritabilities as
h2m = σ̂2

gm/(σ̂
2
gm + σ̂2

g−m
+ σ̂2

em) for m = 1, 2, . . . , k. In our illustrations it was always
Z = Z1 = Z2 = . . . = Zk, however the above models apply to more general cases.

A simpler approach is to use a separate SPMM for each kernel. Letσ̂2
gm andσ̂2

em be the
estimated variance components from the SPMM model in (1) with kernelK = Km. Let
h2m = σ̂2

gm/(σ̂
2
gm + σ̂2

em). Note that, in this case, the markers corresponding to the random
effectg−j which mainly accounts for the sample structure can now be incorporated by a
fixed effects via their first principal components.

After heritabilities are obtained, calculate the kernel weightsη1, η2, . . . , ηp as

ηm =
h2m∑p
h=1 h

2
h

. (4)

The estimates of parameters for models in (1), (2) and (3) can be by maximizingthe
likelihood or the restricted (or residual, or reduced) maximum likelihood (REML). There
are very fast algorithms devised for estimating the parameters of the single kernel model
in (1). However, an advantage with the multiple kernel approach in models (2) and (3) is
that they can be used for testing nested models through the likelihood ratio test.Estimating
the parameters of Model (2) gets very difficult with large number of kernels and with large
sample sizes, the single kernel or the marginal kernel models are more suitable in such
cases.

2.2 Hierarchical testing for sparsity and speed

Although somewhat different in all of the above models, the kernel weightsη1, η2, . . . , ηp
can be interpreted as the contribution components to the response variable.In the context
of Model (1) certain tests are devised for testing whetherσ2

g is zero against the one sided
alternative.

Under Model (1), twice the log-likelihood ofy given the parametersβ, σ2
e andλ =

σ2
g/σ

2
e is, up to a constant,

L(β, σ2
e , λ) = −n log σ2

e − log |Vλ| −
(y −Xβ)′V −1

λ (y −Xβ)

σ2
e

(5)

whereVλ = In + λZKZ ′ andn is the size of the vectory.
Twice the residual log-likelihood ([26], [13]) is, up to a constant,
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RL(β, σ2
e , λ) = −(n− p) log σ2

e − log |Vλ|− log(X ′VλX)−
(y −Xβ̂λ)

′V −1
λ (y −Xβ̂λ)

σ2
e

(6)
From both of these likelihoods, a test statistic for the significance of the variance com-

ponent

H0 : λ = 0 (σ2
g = 0)

HA : λ > 0 (σ2
g > 0)

can be obtained by calculating the likelihood ratio statistic ([4]).
Under standard regularity conditions the null distribution of the likelihood ratiotest

statistic has aχ2 distribution with degrees of freedom given by the difference in the number
of parameters between the null and alternative hypothesis. However, [30] showed that the
asymptotic distribution is a weighted mixture ofχ2 distributions. For the SPMM in (1)
they have recommended using a equally weighted mixture ofχ2(0) andχ2(1) distribution
whereχ2(0) distribution refers to a distribution degenerate at0. In simulation studies [23],
[22] found that equal contributions work well with residual log-likelihoodwhere as a0.65
to 0.35 mixture works better for the log-likelihood. A finite sample null distribution was
recommended for the SPMM in (1) in [5] and it was shown that the mixture proportions
depended on the kernel matrix.

In many practical cases a thresholding method can be sufficient for the purposes of iden-
tifying regions that contribute to phenotype variation. Relevant regions aredivided further
subregions and the procedure is repeated to a desired detail level. Nevertheless, suitable
hierarchical testing procedures have been developed. [2] proposed and analyzed several
hierarchical designs in terms of their cost / power properties. Multiple testing procedures
where coarse to fine hypotheses are tested sequentially have been proposed to control the
family wise error rate or false discovery rate ([25], [20]). These procedures can be used
along the ”keep rejecting until first acceptance” scheme to test hypotheses in an hierarchy.

Meinshausen’s hierarchical testing procedure controls the family wise error by adjust-
ing the significance levels of single tests in the hierarchy. The procedure starts testing the
root nodeH0 at levelα. When a parent hypothesis is rejected one continues with testing all
the child nodes of that parent. The significance level to be used at each nodeH is adjusted
by a factor proportional to the number of variables in that node:

αH = α
|H|

|H0|

where|.| denotes the cardinality of a set. This means that larger penalty is incurred atfiner
levels. The inheritence procedure in [10] provides a uniform improvement over the method
by Meinshausen. Two hypothetical hierarchical tests are displayed in Figures 8. and 9.

2.3 A multiple kernel model with lasso penalty for sparsity

Although we can include sparsity in our multiple kernel model by use of hierarchical testing
procedures described in the previous section, we can also accomplish thisby means of a
general additive model with lasso penalty post-processing formulation.

Each multiple local kernel SPMM model discussed in previous section can beutilized
to obtain EBLUPs from the specific regions. Letx be thep vector of fixed effects and
m = (m1,m2, . . . ,mk) be the vector of markers partitioned into k regions. Letĝj(m)
denote the EBLUPs of random effect components that correspond to thek local kernels for
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regionsj = 1, 2, . . . , k and individual with markersm. Consider a final prediction model
in the following form:

f(x,m;β, α) = β0 +

k∑

j=1

αj ĝj(m) +

k+p∑

j=k+1

βjxj . (7)

Estimate the model coefficients using the following loss function

(β̂, α̂) = argmin
(β,α)

N∑

i=1

(yi − (β0 +
k∑

j=1

αj ĝj(mi) +

k+p∑

j=k+1

βjxji))
2 + λ

k∑

j=1

|αj |. (8)

λ > 0 is the shrinkage operator, larger values ofλ decreases the number of models included
in the final prediction model.

When k is large compared to the sample sizeN, we should use the following loss
function

(β̂, α̂) = argmin
(β,α)

N∑

i=1

(yi− (β0+

k∑

j=1

αj ĝj(mi)+

k+p∑

j=k+1

βjxji))
2+λ1

k∑

j=1

|αj |+λ2

k∑

j=1

(αj)
2 (9)

to allow for more thanN non zero coefficients in the final estimation model.λ1, λ2 > 0
are the shrinkage operators.

In matrix notation, we can rewrite the model in (7) as

F (X,M ;β, α) = Xβ + Ĝα

whereĜ = (ĝ1, ĝ2, . . . , ĝk). In our examples, we have used̂Gα̂ as the estimated genotypic
values.

It is very important that we note that when using the model in (7) with the hierarchical
structure formed by the nested arrangement of genome regions it is almost always better to
use all levels at once.

The authors are also aware that there are other methods which can introduce shrinkage
in the parameters like subset selection, partial least squares, principal components regres-
sions, Bayesian lasso, etc... But in essence all these algorithms should give similar results.

2.4 Kernels for genomic variables

In most GWAS studies the focus is on estimating the effects of individual markers and lower
level interactions. However, in the genomic era, the number of SNP markerscan easily
reach millions and the methods used in GWAS for large samples become computationally
exhaustive. The local kernel approach developed in this article remedies this problem by
reducing the number of hypothesis by focusing on regions and testing the nested hypothesis
in an hierarchy.

The simplest way we can obtain local kernel matrices is by defining regions inthe
genome and calculating a separate kernel matrix for each group and region. The regions
can be overlapping or discrete. If the some markers are associated with each other in terms
of linkage or function it might be useful to combine them together. The whole genome can
be divided physically into chromosomes, chromosome arms or linkage groups.Further di-
visions could be based on recombination hot-spots, or just merely based onlocal proximity.
We could calculate a separate kernel for introns and exons, non coding,promoter or repres-
sor sequences. We can also use a grouping of markers based on their effects on low level
traits like lipids, metabolites, gene expressions, or based on their allele frequencies. When
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some markers are missing for some individuals, we can calculate a kernel for the presence
and absence states for these markers. When no such guide is present one can use a hier-
archical clustering of the variables. It is even possible to incorporate group memberships
probabilities for markers so the markers have varying weights in differentgroups.

Figure 1: An hypothetical hierarchical
test set up for an organism with 3 chro-
mosomes. The first test is at the whole
genome level. It continues by testing the
significance of each chromosome and re-
gions of the chromosome.
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Figure 2: When there is no apriori in-
formation about the markers, we can use
hierarchical variable clustering. This is
demonstrated by the clustering on the
vertical coordinate of above figure for a
random subset of markers and individu-
als of the FMM data set.

The second approach which we refer to as kernel scanning requiresa linkage map of the
markers. This approach is similar to the one in [12] where the chromosomes are scanned
with windows of 5 consecutive markers. LetM be theq × p matrix of p markers onq
lines, which is partitioned with respect to the chromosomes as(M1,M2, . . . ,Mc) where
Mk haspk columns. Let the cumulative distances based on LD between markers in each
chromosome be provided in a vectorpk for k = 1, 2, . . . , c. Based onpk we can to obtain
a kernel matrix for markers in each chromosome using a kernel function and by combining
these chromosome specific kernel matrices in block diagonal form we obtainap×p kernel
matrixS for markers. Let thek column of this matrix be represented assk. A local kernel
matrixKk at positionk involves usingdiag(sk)1/2M in kernel matrix calculations. Kernel
scanning approach involves calculation of a kernel matrix for selected marker across the
genome at each marker location. By adjusting the kernel width parameter, weare able to
determine the smoothness and locality of these kernel matrices. In Figure 3 weillustrate
kernel scanning on a single chromosome with a few markers.

One argument for why we would like to focus on short segments of the genome as
distinct structures comes from the ”building blocks” hypothesis in the evolutionary theory.
The schema theorem of Holland [15] predicts that a complex system which uses evolution-
ary mechanisms such as fitness, recombination and mutation tend to generate short and well
fit structures, these basic structures serve as building blocks. For example, when the alleles
associated to an important fitness trait are scattered all around the genome the favorable
effects can easily be lost just by independent segregation, thereforeinversions that clump
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Figure 3: Kernel scanning on a single chromosome with a few markers. At each marker
location a relationship matrix is calculated with markers weighted by the kernel weights
obtained from the kernel centered at this marker location. The weights aresuch that the
marker at the center gets the highest weight and the markers get less and less weights as
they get away from this center. This is done at each marker location.

these alleles together physically would be strongly selected for.

2.5 Shrinkage of relationship matrices

When the number of markers in a region is less than the number of individuals inthe train-
ing set the kernel matrix for this region becomes singular or ill conditioned. In these cases
we can use shrinkage approaches to obtain well conditioned positive definite kernel. The
shrinkage estimators of [28] and [18] that were advocated in [33] and [6] which involves
shrinkage towards the identity matrix are not suitable to use with the SPMM since this
involves allocating a fixed proportion of the error variance to the varianceof the random
effects. We instead propose and use shrinkage estimators which aim to introduce sparsity
in the off diagonal elements of the kernel matrix. Many algorithms have been devised for
learning sparse covariance matrices in the recent years. A penalized maximum likelihood
estimation was developed in [7], a penalized regression method was used in [21]. These
and some other sparse covariance estimation techniques are implemented in an Rpackage
”huge” ([34]).

In addition to possible decrease of computational burden and increase in accuracy by
use of sparse matrix methods in mixed model parameter estimation, we can produce graph-
ical representations of the kernel matrices. For a normally distributed random vector, the
independence between two components is implied by zero covariance between the com-
ponents, more interestingly, the conditional independence between two components is im-
plied by the zero components in the inverse covariance matrix. In Figure 4, we display the
graphical representation of the sparse realized relationship matrix.

3. Illustrations

In this section, we will compare the methods introduced in this article to some of the ex-
isting ones. Our first example uses simulated markers and phenotypes and so the truth is
known. The remaining examples are reserved for barley data sets we have downloaded
from the Triticaea Toolbox web portal at https://triticaeatoolbox.org.

Example 3.1. The data in this example was generated by a whole genome simulator
”hypred” [19] which is an R package that simulates high density genomic data. Markers
for each of the 7 chromosomes of length 1M are simulated for individuals which were pro-
duced randomly mating two founder lines for 20 generations. The total number of markers
was 3000. On each chromosome 20 QTL positions and additive effects were randomly gen-
erated. Residual variance was set to adjust the heritability of the trait to 0.75. All marker
effects are additive. The number of individuals is set to 1000. 750 of theseindividuals were
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Figure 4: Barley CAP. The different plants are represented by the dots and the nonzero
relationship coefficients are represented by the lines between them. The graphical repre-
sentation of the shrunk relationship matrix gives us an idea about the structure of the Barley
CAP population.

randomly chosen to the training set and remaining to the test data set. In Figure 5, we com-
pare the accuracies in the test data using the correlation scores between the observed and
predicted trait values for the linear and Gaussian kernel models with the multiple kernel
models that divide the genome into pieces differing number of regions. Number of regions
were set to22 = 4, 32 = 9,...,152 = 225 (two levels of hierarchy). The experiment was
repeated 30 times.

In Figure 7, we displayed the local heritability values from the kernel scanning ap-
proach. Finally, in Figure 6, we display the results from a hierarchical testing procedure.

Example 3.2. In an experiment carried out by USDA-ARS during the years 2006-2007, the
alpha-tocopherol levels for 1723 barley lines were recorded in total of 4environments (2
years and 3 locations). Along with the phenotypic information 2114 markerson 7 chromo-
somes (unmapped markers were assigned to an arbitrary 8th chromosome) were available
for the analysis. The whole genome was divided in a similar fashion as displayed in Figure
1. We have sampled 500 lines for training the models and we have used the rest of the lines
to evaluate the fit of our models. In particular, we have calculated the correlation between
the phenotypic values in the test data and the corresponding estimated genotypic values
from our models. This was repeated 30 times and the models are comparedin Figure 8.
The lasso importance scores obtained for the genome regions from modelsat 4 hierarchical
levels is given in Figure 9 (the displayed weights are averaged over the 30 replications of
the experiment).

4. Conclusions

The approaches introduced allows us to use the input variables in naturallyoccurring
blocks. In the context of the SPMM in (1) there are very fast algorithms that can take
advantage of this dimension reduction. For the linear kernel function, the order of calcu-
lations to solve a SPMM with one kernel matrix is proportional tomin(n,m) wherem
here is the number of features in that kernel. No matter what the input dimension is SPMM
parameter estimation involves matrices of ordern. Therefore, the multiple kernel approach
overcomes the memory problems that we might incur when the number of markersis very
large.

JSM 2013 - Section on Statistical Learning and Data Mining

3592



4 9 16 25 36 49 64 81 100 121 144 169 196 225 linear

0.
4

0.
5

0.
6

0.
7

0.
8

Figure 5: Cross validated accuracies measured in terms of correlation scores forsimulated
data described in Example 1.

The local kernels use information collected over a region in the genome and,because
of linkage, will not be effected by a few missing or erroneous data points,so this approach
is also robust to missing data and outliers.

For QTL identification, we have recommended a nested sequential approach that levels
of views of the genome which might lead to faster exploration of the whole genome for
quantitative trait loci. Recently popular deep learning algorithms try to learn levels of
attributes and hypothesis [1]. Also active learning algorithms search for the parts of the
data to obtain information in a stepwise fashion [31]. ”Testing along a tree of hypotheses”
approach to association studies is related to these main stream methods of machine learning.

Sexual gene transfer methods have been used successfully in plant breeding for thou-
sands of years. More recently, nonsexual methods have also been incorporated. The multi-
ple kernel mixed model approach allow us to evaluate the utility of genome regions. This,
in turn, allow us to build models with good prediction accuracy and, more importantly,
aides us in our action: Which plants, chromosomes or genome regions shouldbe kept in
our breeding program? Which crosses are most useful? Which genome regions should be
transfered between individuals? Success with genomic selection partially depends on good
prediction models and partially on utilization of this kind of information and new emerging
technologies.

Although we have focused our attention to classical breeding with crossesamong se-
lected parents, a short cut to breeding better plants and animals is possible by isolation
and fusion of individual chromosomes or genomic regions. This type of breeding, which
we call chromosomal breeding, involves to breeding better chromosomes and combining
them. The authors believe that the plants obtained by passing chromosomes within species
or families involve minimal genetic manipulation.
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Figure 6: The figure on the left illustrates the sparsity pattern obtained using the hierarchi-
cal testing procedure for one instance of the experiment described in Example 1 We have
used the hierarchical testing procedure of Meiwaussen to identify the relevant regions of
the genome for the data in Example 1. Only the regions with significant effects were used
to build the multiple kernel model (regions with 0 value are not included in the final model).
This model (M) is compared with the SPMM’s with linear and Gaussian kernels (Lin and
Gauss) with the boxplots on the right. All the models have approximately the same predic-
tion ability, but the multiple kernel model is definitely more parsimonious (parts of genome
included in the final prediction model are indicated by ones on the left graph).
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Figure 7: The local heritability values from the kernel scanning approach. The true QTL
and effect sizes are superimposed on the estimated regional effects (Horizontal bars for true
effects, colored points for estimated effects in chromosomes).
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Figure 8: Three models (1-SPMM with
linear kernel, 2-SPMM with Gaussian
kernel, 3- lasso model in 7 using es-
timated random effects from all levels)
are compared based on the correlation
between the phenotypic values in the
test data and the corresponding estimated
genotypic values from our models.
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Figure 9: The lasso importance scores
obtained for the genome regions from
models at 4 hierarchical levels (the dis-
played weights are averaged over the 30
replications of the experiment).
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