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Abstract 

Subgroup analyses are routinely conducted in analyzing data from clinical trials since 

variability in response across subgroups is frequently observed. In this paper we look at 

three two-stage adaptive designs where subgroup analyses are pre-planned as a formal 

component of the efficacy assessment. We apply those designs to a CRT trial data. We 

also compare the performance of the trial designs through simulation studies.  
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1. Introduction 

 

In many clinical trials variability in response across different subgroups is frequently 

observed, and sometimes data showed that the experimental treatments have different 

treatment effect for different subpopulations. For example, one study of a ventricular 

assist device (VAD) showed that female subjects treated with the investigational VAD 

were found to have much higher rate of stroke compared to male subjects. The 

differential findings among different stratum of subpopulation may be caused by random 

chance or true heterogeneity. The heterogeneity is desirable in that the results of the 

clinical trial can be generalized to a wide class of patients.  However, the heterogeneity 

could introduce great challenges in trial design, data analysis and the interpretation of 

trial results, especially in regulatory setting. For example, routine subgroup analyses, 

usually conducted in a post hoc fashion, could identify one subgroup with a favorable 

treatment effect and the complementary subgroup with no or negative treatment effect. 

The decision of whether we should restrict the indication to the favorable subgroup 

would be a regulatory challenge.  

 

For some medical product developers, the main interest of the clinical trial is to find any 

subgroup for which the experimental medical product works so that their product can be 

approved. Under the traditional fixed sample size trial, the sample size of the trial is 

usually estimated to provide just enough power to reject null hypothesis of no treatment 

effect on the overall population, and therefore the trial is usually underpowered to detect 

possible treatment effect on some of the subpopulations.  In regulatory setting, when trial 

data fail to provide significant evidence to reject the null hypothesis for the overall 

population, and the subgroup analysis indicates clinically, but not statistically, significant 

treatment effect on some of the subpopulation, the usual approach trial sponsor takes is to 

design a new trial that is specifically targeting at the promising subpopulation so that the 

new trial is powered to reject the null hypothesis for that subpopulation. Essentially the 

first trial serves as an exploratory study for the second trial that is tailed to the specific 

subpopulation. This two-trial approach is not cost-efficient and can be very time 
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consuming for the industry to seek regulatory approval for their product.  Adaptive 

design has been proposed in the literature to streamline trials to hopefully increase the 

chance of getting a success trial, in addition to shorten the trial time and decrease the 

cost. For example, Follmann (1997) presented a large class of enrichment designs to 

adaptively change subgroup proportions in trials. See Rosenblum and Van der Laan 

(2011) for a relatively comprehensive review of adaptive methodologies in the literature. 

In this paper, we first look at two adaptive designs, where assessment of the treatment 

effect of the experimental product on the overall population, on each of the non-

overlapping subgroups are formally planned in the trial design stage. Then we present a 

new design which is a mild modification of the adaptive strategy proposed by Rosenblum 

and Van der Laan (2011).   The operating characteristics, such as the type I error rate, the 

power and the average sample size, of the three trial designs aforementioned are 

compared through a simulation study.  The three designs are applied to a real trial data 

set, in a post-hoc fashion, to show the possible benefit of the adaptive enrichment designs 

relative to the traditional fixed designs.  

 

 

2. Three Two-stage Adaptive Enrichment Designs  

 

We look at a typical two-arm randomized trial where subjects will be randomized at to 

receiving either the investigational treatment or the active control. The overall population 

consists of two non-overlapping subgroups, subgroup 1 and subgroup2, with p1 as the 

proportion of subjects in subgroup 1. The designs we focus on are two-stage adaptive 

types where, based on stage I data, the planned interim analysis is conducted and 

decisions regarding enrollment plan for stage 2 are assessed. Let n1 and n2 be the planned 

sample sizes for stage I and stage II. 

 

2.1 Design 1:  proposed by Russek-Cohen and Simon 

 

Russek-Cohen and Simon (1997) present a novel two-stage adaptive design that 

incorporates a test for a subpopulation by treatment interaction at interim analysis, which 

is used to determine the sample size, enrollment plan and hypothesis testing of the trial. 

Here we give a brief description of the design and data analysis strategy.  

 

Suppose the hypothesis is about a normal distributed endpoint. The first stage of the 

study is planned in the usual way, assuming no important interaction between subgroups 

and treatment, and stage I sample size n1 is calculated with the following formula:  

 

n1=4*(σ/δ)
2
(z1-α/2 + zβ)

2
 

 

where σ is the standard deviation of the endpoint, δ is the smallest difference in means 

clinically acceptable between means of the endpoint in the two treatment groups, α and β 

are the type I and type II error levels, and zt is the t-th percentile of the standard normal 

distribution. At the end of stage I, a test for subgroup by treatment interaction is 

conducted. If no statistically significant interaction is found at a pre-specified significant 

level, then the trial will be terminated and the final sample size for the trial is n1. Under 

this scenario, the two subgroups are deemed as poolable, and the assessment of the 

overall treatment effect is the goal of the study where traditional data analysis method can 

be applied. If the interim data indicate a statistically significant interaction, then the two 

subgroups should be assessed separately. The stage I sample size n1 usually does not 

provide sufficient power to detect a treatment effect separately within each subgroup, so 
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there is need to collect additional data in a second stage that is the same size as the first 

stage. Suppose n11 is the stage I sample size of subgroup 1, if the stage I data for 

subgroup 1 didn’t show significant treatment effect at a level adjusted for multiple looks, 

then the trial needs to enroll n11 subjects from subgroup 1 for stage II, and data analysis 

for subgroup 1 will be conducted in a two-stage group-sequential approach. Estimation 

and hypothesis testing of treatment effect for subgroup 2 will be conducted in a similar 

way. 

 

2.2 Design 2:  proposed by Rosenblum and Van der Lann 

 

Rosenblum and Van der Laan (2011) proposed a general method for constructing two-

stage randomized enrichment designs that allow changes to the population enrolled based 

on interim data using a pre-specified decision rule. The following is a brief description of 

Rosenblum and Van der Laan’s (2011) general adaptive methodology.  

 

Let H01 denote the null hypothesis for subgroup 1, that there is no treatment effect for 

subgroup 1. In an analogous manner, define the null hypothesis H02 corresponding to 

subgroup 2, and the null hypothesis H0a corresponding to the overall population. At the 

end of stage I, three test statistics, Ta
(1)

 , T1
(1)

, and T2
(1)

, corresponding to the overall 

population, subgroup 1 and subgroup 2, respectively;  are calculated. According to a pre-

specified decision rule, enrollment plan for stage II subjects can be decided from the two 

possible choices: (i) continue enrolling n2 subjects from both subpopulations in the same 

way as in stage I or (ii) enroll n2 subjects only from the subgroup s ∈ {1, 2),  

corresponding to the larger of the stage I estimates of the treatment effect. A test statistic
 

Ti
(2) 

, based on stage II data only, can be calculated in a similar way when stage II data are 

available, where i ∈ {a, 1, 2}, depending on the actual enrollment plan for stage II.  At 

the end of the trial, a final test statistic T is computed in the following way: 

  √
  

     
   

   
 √

  

     
   

   
 

T is used for a possible rejection of one of the three null hypotheses {H0a, H01, H02}. If the 

final test statistic T exceeds a threshold c, which turns out to be the usual critical value for 

fixed trial design, null hypothesis corresponding to either the enriched subgroup, or the 

overall population, will be rejected.   

 

2.3 Design 3: proposed by Gao 

One interesting feature of Rosenblum and Van der Laan’s adaptive design is that the 

sample size under their design is fixed, regardless of the enrollment decisions for stage II. 

As re-estimation of sample size is one of the benefits of adaptive design, we propose a 

modified design of Rosenblum and Van der Laan’s method, where the only modification  

is to re-calculate the sample size for stage II when interim data stipulate enrollment 

change for stage II. The sample size re-estimation can be conducted by the conditional 

power approach, so that appropriate power is provided for stage II hypothesis testing for 

the selected subgroup. So under Gao’s design, the total sample size for the trial is 

random, which is different from Rosenblum and Van der Laan’s design. The actual 

sample size for stage II n2
*
could be larger than the originally planned n2, if the interim 

data show a weaker treatment effect, or could be smaller than n2, if the interim data 

present a better than expected result for the selected subgroup. However, regardless the 

new sample size for stage II, the weights used to combine data from stage I and stage II 

are the pre-specified fixed weights: n1/( n1 + n2) and n2/( n1 + n2). This fixed weights 
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approach functions to control the type I error rate under the nominal level when the final 

sample size is data dependent.   

 

3. MADIT- CRT Trial  

The MADIT-CRT trial is Boston Scientific’s Multicenter Automatic Defibrillator 

Implantation Trial – Cardiac Resynchronization Therapy study. The goal of this 

randomized study is to determine whether Cardiac Resynchronization Therapy 

Defibrillators (CRT-D) in high-risk heart failure (HF) patients will reduce the combined 

endpoint of all cause mortality or HF intervention when compared to implantable 

cardioverter defibrillator (ICD) therapy. The MADIT-CRT trial enrolled a total of 1820 

patients from 110 centers in 14 countries. Among them 1089 were randomized into CRT-

D arm and 731 in ICD arm. The primary endpoint is all-cause mortality or heart failure 

intervention, whichever occurs first. The following table showed the data from the overall 

population. 

Table 1: Data from Overall Population 

 Test Arm  Control Arm Hazard Ratio (HR), 95% CI for HR 

Subject number 1089 731 HR=0.62 

95% CI of HR: (0.50, 0.75) 

Event number  208 208 

Event Rate 19.1% 28.4% 

The above data demonstrated that early CRT intervention reduces the relative risk of all-

cause mortality or first heart failure event when compared to ICD therapy. Routine 

subgroup analyses for a wide range of different subgroups were conducted and a 

significant interaction between treatment and bundle branch block morphology was 

detected. Left Bundle Branch Block (LBBB) is a marker of an electrical conduction 

disorder in the heart and has been associated with a greater benefit in patients receiving 

CRT. For MADIT-CRT trial, there were 1281 and 539 patients in LBBB subgroup and 

no-LBBB subgroup. The following two tables displayed the primary endpoint results for 

the two non-overlapping subgroups.  

Table 2: Data from LBBB subgroup 

 Test Arm  Control Arm Hazard Ratio (HR), 95% CI for HR 

Subject number 761 520 HR=0.43 

95% CI of HR: (0.33, 0.56) 

Event number  120 162 

Event Rate 15.8% 31.1% 

Table 3: Data from no-LBBB subgroup 

 Test Arm  Control Arm Hazard Ratio (HR), 95% CI for HR 

Subject number 328 209 HR=1.32 

95% CI of HR: (0.85, 2.04) 

Event number  81 41 

Event Rate 24.6% 19.6% 
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The MADIT-CRT data indicated a quantitative interaction between treatment and the 

LBBB subgroup: the LBBB subgroup benefits greatly from CRT-D, but not no-LBBB 

subgroup. And it seemed that the observed statistically significant treatment effect on the 

overall population is largely driven by LBBB subgroup which constituted 70% of the 

enrolled patients in the trial. Due to this finding, Boston Scientific’s CRT-D indication is 

limited to sub-population of MADIT-CRT patients with left bundle branch block 

morphology. An interesting intellectual exercise is to apply the three adaptive designs 

afore mentioned to the MADIT-CRT data and to see how those adaptive designs perform, 

compared against each other and against the fixed design.  

 

4. Application of the Three Adaptive Designs to MADIT- CRT Trial Data  

 

The MADIT-CRT data were randomly split into two halves, with the first half serving as 

stage I data. The following three tables showed the primary endpoint results for overall 

population (908 subjects), LBBB subgroup (658 subjects) and no-LBBB subgroup (250 

subjects) based on the stage 1 data.  

Table 4: Stage I Data from Overall Population 

 Test Arm  Control Arm Test Statistic 

Subject number 555 355 Ta
(1)

 =4.042 

 

Event number  80 90 

Event Rate 14.4% 25.35% 

Table 5: Stage I Data from LBBB Subgroup 

 Test Arm  Control Arm Test Statistic 

Subject number 402 256 T1
(1)

 =5.323 

 

Event number  45 71 

Event Rate 11.19% 27.73% 

Table 6: Stage I Data from no-LBBB Subgroup 

 Test Arm  Control Arm Test Statistic 

Subject number 153 97 T2
(1)

 = - 0.458 

 

Event number  35 19 

Event Rate 22.87% 19.59% 

 

The interim data indicate sizable interaction between treatment and subgroup. A test 

statistic for testing interaction is calculated as the following: 

   
  

   
   

   

√ 
       

Zp is asymptotically normal distributed under the null hypothesis of no interaction, and is 

significant at 10% significance level. Therefore the two subgroups are deemed as non-

poolable based on stage I data. Under the three designs we considered here, the 
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estimation and testing of the treatment effect on the overall population is not considered 

when the two subgroups are not poolable.  

 

4. 1 Application of Design 1 to MADIT- CRT Trial Data 

The decision under design 1, after the non-poolability conclusion, is to assess the 

treatment effect for two subgroups separately.  

For LBBB subgroup, test statistic is T1
(1)

=5.323 , which is larger than 2.797,  the OB-

boundary for a total of two looks, therefore we can reject H01 at interim and conclude that 

CRT-D demonstrated significant treatment effect for LBBB subgroups. So for LBBB 

subgroup, there is no need to collect more data, and the total sample size for LBBB 

subgroup is n11=658. 

The test statistic is T2
(1)

=-0.458 for non-LBBB subgroup, indicating possible treatment 

benefit of the control device, and therefore the stage I data fail to reject H02. Under design 

1, the trial needs to move on to stage II for non-subgroup. Additional n12=250 non-LBBB 

subjects should be enrolled for stage II. We randomly draw 250 non-LBBB subjects from 

the 287 available non-LBBB subjects left in the second half of the MADIT data, and the 

result on the primary endpoint is the following: 

Table 7: Stage II Data from non-LBBB Subgroup, design 1 

 Test Arm  Control Arm Test Statistic 

Subject number 153 97 T2
(2)

 =-0.3087 

 

Event number  37 21 

Event Rate 24.18% 21.65% 

Non-LBBB Data from two stages are combined with the traditional group sequential 

approach:  

   √       
   

   
   

            

and the OB-boundary  of 1.977 for the second look, at significant level of 5%, is used to 

compare against T2. Since T2 is less than 1.977, the two-stage data failed to reject H02 for 

non-LBBB subgroup, based on a total of 500 non-LBBB subjects.  

So under design 1, the trial conclusion would be that CRT-D demonstrates significant 

treatment effect for LBBB subgroup only, based on a total of 1160 subjects, 910 of them 

from stage I and 250 of them from stage II.  

4. 2 Application of Design 2 to MADIT- CRT Trial Data 

The decision under design 2, after the non-poolability conclusion, is to continue to enroll 

n1 subjects from the better subgroup and to assess the treatment effect for that subgroup 

only.  The stage I data indicate the LBBB as the better subgroup as T1
(1)

 is larger than 

T2
(1)

,  so we need to enroll 910 LBBB subjects for stage II. Bootstrap technique is used 
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here to draw 910 LBBB subjects from the 623 available LBBB subjects left in the second 

half of MADIT dataset. The following table shows the results of the primary endpoint: 

Table 8: Stage II Data from LBBB Subgroup, design 2 

 Test Arm  Control 

Arm 

Test Statistic 

Subject number 520 390 T1
(2)

 =5.729 

 

Event number  85 128 

Event Rate 16.35% 32.82% 

At the end of the stage II, testing of hypothesis H01 is conducted, based on data from both 

stage I and stage II, even though stage I data consist of non-LBBB subjects. The 

following formula calculates the overall test statistic for hypothesis H01.  

   √       
   

   
   

  √                      

Since the final test statistic T1 is larger than the conventional critical value of 1.96, we 

can reject H01 at the 5% significance level and concluded that CRT-D provided more 

benefit than the control ICD for the LBBB subgroup. So under design 2, the trial 

conclusion would be that CRT-D demonstrates significant treatment effect for LBBB 

subgroup only, based on a total of 1820 subjects, 910 of them from stage I and 910 of 

them from stage II.  

4. 3 Application of Design 3 to MADIT- CRT Trial Data 

The decision under design 3 is to continue to enroll n2
*
 subjects from the better subgroup 

and to assess the treatment effect for that subgroup only. The stage II sample size n2
*
is 

determined by the observed treatment effect at stage I for the better subgroup. The stage I 

data indicate the LBBB as the better subgroup, and the observed treatment effect for 

LBBB at stage I is T1
(1)

 =5.32. Using conditional power approach, the new sample size 

n2
*
is calculated as 365, in order to provide 80% conditional power for testing H01. Among 

the 623 available LBBB subjects left in the second half of MADIT dataset, 365 of them 

are randomly chosen and serve as the stage II data. The following table shows the results 

of the primary endpoint for stage II, under design 3.  

Table 9: Stage II Data from LBBB Subgroup, design 3 

 Test Arm  Control 

Arm 

Test Statistic 

Subject number 204 161 T1
(2)

 =2.979 

 

Event number  31 46 

Event Rate 15.19% 28.57% 

The final test statistic for testing hypothesis H01 is the weighted average of the test 

statistics for the two stages. Note that the weights are the originally planned fixed 

weights, which are 0.5 and 0.5 for this case, even though the actual weights for the two 

stages are 0.71 and 0.29. The following formula calculates the overall test statistic for 

hypothesis H01.  
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   √       
   

   
   

  √                      

As in design 2, the final test statistic T1 is larger than the conventional critical value of 

1.96, therefore we can reject H01 at the 5% significance level and concluded that CRT-D 

provided more benefit than the control ICD for the LBBB subgroup. So under design 3, 

the trial conclusion would be that CRT-D demonstrates significant treatment effect for 

LBBB subgroup only, based on a total of 1275 subjects, 910 of them from stage I and 

365 of them from stage II.  

 

5. Simulation Study 

 
From section 4 we see that the three designs lead to the same conclusion for MADIT-

CRT trial data while requiring different sample sizes. To compare the performance of the 

three designs under broader circumstances, simulation studies are conducted under a  

range of assumptions of the treatment effects for the two subgroups. Suppose the primary 

endpoint is a continuous variable which has a normal distribution with known variance, 

and there are four balanced independent groups that corresponding to subgroup1-control, 

subgroup1-experimental, subgroup2-control, subgroup2-experimental.  Let µ, µ1 and µ2 

denote the true treatment effects for the overall population, subgroup1 and subgroup2, 

respectively, the following six scenarios are considered in the simulation study: 

1) Poolable, complete null hypothesis: µ=µ1=µ2=0,  

2) Poolable, but treatment is effective: µ=µ1=µ2=0.2,  

3) Mild non-poolable, treatment is effective at different degree  for two subgroups:  

µ=0.2, µ1=0.3, µ2=0.1, 

4) Mild non-poolable, treatment is effective for only one subgroup:µ=.2, µ1=0.4 

µ2=0, 

5) Highly un-poolable, treatment is effective for only one subgroup and there is no 

treatment effect for the overall population: µ=0, µ1=0.2 µ2=-0.2, 

6) Highly un-poolable, treatment is effective for only one subgroup and there is 

treatment effect for the overall population: µ=0.2, µ1=0.5 µ2=-0.1. 

For our simulation study, significance level of 0.10 is used for poolability assessment at 

interim analysis, 5% significance level is used in the two-sided test of significant 

treatment effect for overall population and for the subgroups. For design 1, the two-look 

OB-Fleming group sequential boundaries are used. For design 3, 80% conditional power 

is used to calculate the new sample size for stage II if there is change in enrollment plan. 

Sample size of 140 for stage I is planned to provide adequate power for testing the overall 

treatment effect of 0.2, and 10,000 repetition is used in our simulation for all scenarios. 

For each of the six scenarios, we compute the following probabilities 

1) Pp: declaring poolable for the two subgroups,  

2) Pf: rejecting any null among the three null hypotheses, 

3) P0: rejecting null hypothesis for the overall population, 

4) P1: rejecting null hypothesis for subgroup 1, 

5) P2: rejecting null hypothesis for subgroup 2. 

Note that Pf is the family-wise type I error rate of the trial under scenario 1, and family-

wise power for scenarios 2, 3, 4, 5 and 6. P0 is the type I error rate for the overall 

population testing under scenarios 1 and 5, and power under scenarios 2, 3, 4 and 6. P1 is 

the type I error rate for the subgroup 1 testing under scenario 1, and power under 

scenarios 2, 3, 4, 5 and 6. In addition to those probabilities, average sample sizes of the 
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trials under the three designs are calculated also in our simulation study. For following 

tables present the simulation results.  

Table 10: Simulation Result, Scenario 1 

Design P(poolable) Pf P0 P1 P2 Avg. Sample size 

Design 1 0.8978 0.0393 0.0219 0.0097 0.0077 154 

Design 2 0.9011 0.0251 0.0228 0.0016 0.0007 280 

Design 3 0.8954 0.0258 0.0223 0.0012 0.0023 309 

 

Table 11: Simulation Result, Scenario 2 

Design P(poolable) Pf P0 P1 P2 Avg. Sample size 

Design 1 0.9015 0.6832 0.5887 0.0583 0.0622 148 

Design 2 0.8995 0.9185 0.8265 0.0471 0.0449 280 

Design 3 0.8981 0.9168 0.8203 0.0473 0.0492 278 

 

Table 12: Simulation Result, Scenario 3 

Design P(poolable) Pf P0 P1 P2 Avg. Sample size 

Design 1 0.6752 0.7620 0.4399 0.3212 0.0217 169 

Design 2 0.6835 0.9365 0.6240 0.3114 0.0011 280 

Design 3 0.6788 0.9398 0.6203 0.3185 0.0010 275 

 

Table 13: Simulation Result, Scenario 4 

Design P(poolable) Pf P0 P1 P2 Avg. Sample size 

Design 1 0.2405 0.9146 0.1554 0.7592 0.0078 202 

Design 2 0.2380 0.9796 0.2182 0.7614 0.0000 280 

Design 3 0.2372 0.9791 0.2180 0.7611 0.0000 252 

 

Table 14: Simulation Result, Scenario 5 

Design P(poolable) Pf P0 P1 P2 Avg. Sample size 

Design 1 0.2288 0.5694 0.0056 0.5638 0.0000 239 

Design 2 0.2370 0.3014 0.0067 0.2947 0.0000 280 

Design 3 0.2355 0.5624 0.0063 0.5561 0.0000 425 

Table 15: Simulation Result, Scenario 6 

Design P(poolable) Pf P0 P1 P2 Avg. Sample size 

Design 1 0.0283 0.9900 0.0184 0.9716 0.0000 213 

Design 2 0.0285 0.9975 0.0261 0.9714 0.0000 280 

Design 3 0.0292 0.9960 0.0261 0.9699 0.0000 217 

JSM 2013 - Biopharmaceutical Section

3534



 

6. Conclusion and Discussion 

 

From tables 10 -15, we can see that the family-wise type I error rate is inflated under 

design 1 (see table 10) while both design 2 and design 3 maintain the type I error rate in 

the nominal level of 2.5%.  We believe that is because only design 1 allows hypothesis 

testing on the two subgroups after declaring unpoolability of the two subgroups.  

Regarding the power of the design, design 2 and design 3 provide higher overall power 

than design 1 when the two subgroups are poolable or mild non-poolable. The price for 

the higher power is the larger sample size, as the average sample size for design 2 and 

design 3 are larger than that of the design 1 under scenarios 2, 3, and 4. When the two 

subgroups are highly unpoolable, corresponding to scenarios 5 and 6, design 1 and design 

3 outperform design 2 in the overall power and in detecting success for the effective 

subgroup. Design 2 and design 3 have similar operating characteristics when the two 

subgroups are similar. However when the two subgroups are highly unpoolable, design 2 

and design 3 have different operating characteristics, especially in terms of the average 

sample size. Design 3 requires smaller sample size than design 2 if one subgroup has 

large treatment effect without sacrificing power; and design 3 requires larger sample size 

than design 2 when the two subgroups are highly unpoolable and one subgroup has 

modest treatment effect. In conclusion, each design has its advantage and disadvantage, 

different trial scenario calls for different design. It is important to study the prior 

evidence of subgroup differences and choose the right design accordingly for the trial.  
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