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Abstract: 

Least-angle regression (LARS) is an algorithm that regularizes models by 

simultaneously selecting variables and shrinking predictions. It characterizes possible 

models as those for which the residual information about the dependent variable is equal 

for all active independent variables. We show that this algorithm may be generalized to 

regression problems for which the criterion of good fit (such as the log-likelihood) is 

twice differentiable and convex. 
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I. Introduction. The Least Angle Regression (LARS, Efron, et. al. 2004) algorithm 

is a modern regularized version of classical forward selection in the problem of 

parsimonious variable selection in least squares linear regression. By formulating this as 

requiring us to gradually shrink the maximum of a t-statistic for introducing each of the 

variables, we generalize LARS to a much larger class of linear models. 

II. Forward Selection.  We shall consider the usual linear model for predicting an n-

vector of observations y by , where X is an n by k matrix each of whose k 

columns consists of the values of an independent variable possibly useful for prediction 

of y. It is easy to check that finding the usual least-squares solution is equivalent to 

solving the regression problem 

  subject to . 

The k linear constraints are the normal equations. 

When the number of independent variables k is large, there are familiar problems 

with this solution. The predictions tend to have high variance, and the prediction equation 

tends to be uninterpretable. There are two common approaches to regularizing the 

solution: we may shrink the solutions to smaller  to reduce the variability of prediction, 

as in ridge regression; and we may seek a parsimonious solution using only a subset of 

the independent variables, as in step-wise variable selection. Least-angle regression 

(LARS) is an elegant way to pursue the two goals simultaneously. 

So that we shall not have to worry about the overall mean of y, we shall center the 

independent variables by assuming . We shall consider the potential further 

contribution of individual independent variables for a given proposed solution  by 

evaluating the statistics ; where  is the column of the design 

matrix corresponding to independent variable j, and where  is usually estimated from 

the data. Note that we have the least-squares solution when all . When, under the 
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usual error assumptions,  is surprisingly different from 0, we may conclude that the 

value of the coefficient  should be changed. 

For purposes of variable selection, then, our index of how far  is from least squares 

will be ; if it is small enough to be readily explained by chance, then there is 

no statistical case for further adjustments to . For example, the classical method of 

forward selection starts with  = 0, and at each stage selects a variable j so that  

and solves the normal equation for  so that then . We then recalculate 

 at this new solution. The next stage selects another variable l such that 

; and recalculates  and  using the two normal equations. We successively 

add variables in this way until t is small enough to be explained by chance. The result is 

therefore parsimonious; because unselected variables still have 0 coefficients. Our 

experience is that forward selection may be unstable: wildly different solutions may have 

similar values of t. 

II. Least Angle Regression. LARS instead provides solutions to a modified 

regression problem. Choose a value of t and solve 

 such that for all j, . 

Notice that for t > 0, this problem has a shrunken solution; since it relaxes the normal 

equation conditions , and therefore permits the squared length of  to be smaller. 

But in addition 

Proposition 1: If for any variable we have , the solution will have . 

Thus, we may have a parsimonious solution. As a consequence, for all , we have 

. 

Note that each  is proportion to the cosine of the angle between the residual vector 

 and the vector of values of that independent variable . Thus a solution of the 

LARS problem consists of a choice of variables whose angles with the residual vector are 

smallest in size, justifying the name. 

A major appeal of the LARS problem is that its solutions meet the LASSO 

(Tibshirani 1995) criteria.  Another is that there is an algorithm, essentially a forward 

variable selection process, that evaluates all problems for different t simultaneously. It 

constructs a continuous path through  space for decreasing values of t. It will collect 

active variables for which , one at a time, as t decreases, until we reach the least-

squares solution at t = 0. 

(0) Initially set  = 0, and declare all independent variables inactive. 

(1) Calculate , and declare all variables j for which  to be active. 

(Thus for all inactive variables l, .) 
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(2) Move  in a direction d which is a linear combination of the active variables 

determined by the condition that it remains true that for all active variables j, , and 

t decreases. 

(3) At the first point in this process where it becomes true that for some l inactive, 

, go to step (1). 

The algorithm terminates at the point at which your criterion for a good model is 

achieved, or t = 0. 

For LARS, the appropriate direction d is found as follows: let  be a matrix 

consisting of the columns  for the active variables. Then the vector of active ts is 

 where D is a diagonal matrix indexed by j. If we shift the 

active regression coefficients by an amount d, then  changes by ; therefore t 

changes by . Our requirement is that the direction keep all active 

|t|s equal to their maximum value; so we set the previous expression equal to the vector 

, and solve to get . 

The path is therefore continuous and piecewise linear, and terminates at the least 

squares solution. 

Proposition 2: The algorithm provides the LARS solution for each value of t on the 

path. 

IV. Generalizing LARS. We now wish to extend our selection principal to linear 

regression models evaluated by other criteria than least squares. We will usually require a 

log-likelihood of the form such as generalized linear models. Assume l is 

convex and twice-differentiable. (Note that the algorithm we will develop will also work 

for l any appropriate measure of fit, such as a robust M-estimator.) From the point of 

view of a tentative solution vector , we might measure the potential improvement in the 

fit from modifying a coefficient  as follows: Let  be the solution to the maximum 

likelihood problem when  is allowed to vary but the other  are held constant. Now 

let a (dimensionless) index of improvement be , twice the available 

increase in log-likelihood. 

Our goal here will be to evolve a continuous improvement path, so the fact that this is 

not a statistic defined by local properties of the likelihood at  will be inconvenient. 

Instead, if l is log-concave and twice differentiable, consider the empirical Rao (1948) 

score . If our tentative solution is correct, this has 

asymptotically a standard normal distribution and is asymptotically equal to the signed 

square-root of the log-likelihood ratio suggested in the last paragraph. Note that for the 

classical linear regression model with i.i.d. normal errors, the general t is identical to that 

defined in Section II. 
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We will search for good parsimonious models using a Generalized Least Angle 

Regression (GLARe) algorithm that follows the steps in Section III, with the generalized 

definition of . Since a GLARE path is continuous and piecewise smooth but not (except 

for the least-squares case) piecewise linear, constructing the path is more involved than 

with least-angle regression. We shall here propose an algorithm for updating the path in 

small increments, using partial derivatives. A given point on the path will be 

characterized by the vector  of current estimates of the coefficients of the active 

independent variables. We wish to update it to a further, nearby vector along the path  + 

. The condition for being on the path is that the vector t* = t –  of active scores will 

still meet the condition all  as t* shrinks toward zero. Thus  where 

 is a small decrement. Our procedure will be to select  and approximate the 

corresponding  for each step along the GLARE path. 

We differentiate the vector t with respect to the vector  to get the square matrix U 

where . Then for  small we 

have the approximation . This gives the update rule for the estimated 

 coefficients . 

For sufficiently small decrements to t ( ) this will give a good approximation to the 

GLARE path. It has the disadvantage that errors accumulate as we proceed, so that we 

require a  so small that achieving an accurate final solution may be computationally 

burdensome. A slight modification will lead to an algorithm for which errors do not 

accumulate, and requiring less computation. At a given point on the path the vector t may 

not have precisely all , but close enough for practical purposes. We will 

approximate a step along the GLARE path directed toward a vector t* for which 

, which is slightly decremented, so that t – t* is small. We will approximate that 

solution by . Since for any , t is calculated exactly, errors do not 

accumulate, and the overall computation of the path is stable. 

The modified computation allows us, then, to use longer increments, since they now 

need only be sufficiently small that the endpoint of each step is acceptably close to the 

exact GLARE path. This substantially speeds computation. It raises another issue, 

though. Recall that whenever we reach a point at which for some inactive variable 

, we add it to the active set and begin to increment . In the first version of our 

procedure where increments are tiny, we can do exactly that. But in the improved 

version, increments may be large enough that at some step we will check that for the first 

time  by a small but not negligible amount. We add k to the active set, and use the 

new formula to step to a new point t* on the path for which to sufficient accuracy 

 as well as for earlier enrollees . We then proceed along the new 

segment. 

V. Nuisance Parameters. In the LARS procedure, we would usually be fitting a 

model  where  is a design matrix with centered columns, . 

The mean parameter  is not to be selected, but is present in every tentative fit. This is 

t j

t j
*
= t* j = sgn t j

U jm =

2
l

j

2

1 21 2 2
l

j m

+ 1
2

2
l

j

2

3 23 2

l
j

3
l

j

2

m

U

U
1

t j = t

t j
*
= t*

+ U
1
t t

*

tk = t k

tk > t

tk
*
= t* t j

*
= t*

y = 0 + X
C X

C
X
CT
1 = 0

0

JSM 2013 - Section on Statistical Computing

3442



no problem, because its value never affects the estimates of the slope coefficients, and is 

for least squares always . And though we estimate error variance differently 

for each model, the same estimate is used in the ts at a given point on the path; so 

decisions about the sequence of variable selection are not affected by its value. 

But in the non-least-squares case, estimates of  interact with estimates of the , 

and centering does not resolve the problem. The GLARE algorithm readily adapts to this 

circumstance: treat  as always active, with the following differences: For each 

tentative model, starting with the null model  = 0, estimate  by requiring the 

maximum likelihood condition . Thus, it will always be the case that , 

anywhere along the GLARE path. In our update algorithm for the next step along the 

path, we augment the vector  with an index-0 coordinate whose value is  (since 

 should not change). The U matrix now has one more row and column, and the 

estimate of  is updated to approximately its new maximum likelihood solution. The 

stable modification of our algorithm is extended in the same way.  

Centering of the design matrix is still useful here, (though unnecessary) because it 

allows  to have a consistent interpretation, and to change slowly. 

This modification also applies to control variables, which our design requires always 

to be in any tentative model. We fit them by maximum likelihood at  = 0 for the 

variables available for selection, and update their coefficients at each step as we did for 

. 

VI. Example. Harry Khamis reports Alcohol, Cigarette, and Marijuana usage of 

Dayton high school seniors (reported in Agresti (2013), p. 381). The table has been 

collapsed over Race, because so few non-Whites appeared, and their reports were 

consistent with Whites: 

  Female  Male  

 Cig/Mar Yes No Yes No 

Yes Yes 428 291 483 247 

Alcohol No 15 237 29 219 

No Yes 1 18 2 25 

 No 1 129 1 150 
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 We attempt to build a Poisson loglinear model using parametrization 1/–1 for the 

two levels of each variable. The variables available for selection were then all possible 

main effects and associations, for a total of p = 15. 

At the null point, t = 136, the main effect A(lcohol) became active. 

At the point t = 24.8, the association AC(igarettes) became active. 

At the point t = 21.4, the association CM(arijuana) became active. 

At the point t = 9.4, the main effect M became active. 

At the point t = 3.3, the main effect C and the association MAS(ex) became almost 

simultaneously active. 

At the point t = 2.7, the association MA became active. 

At the point t = 2.1, the association MAC became active. 

Stopping at the naïve stopping point t = 1.0, we had found the log-linear model 

Log(count)  = 4.13 + 1.00A + .60AC + .57MC – .57M + .11C – .05MAS + .20MA + 

.05MAC.  

 Appendix. 

Proof of Proposition 1: Let l be an inactive variable so that . Then we can 

decompose  where y* is in the linear span of the active variables and  is 

the projection of  into the linear space orthogonal to the active variables. We may 

assume that  (because otherwise l is redundant for constructing a parsimonious 

model). Now consider the vector . This corresponds to a possible model for 

which  still hold for all active variables, by the orthogonality of the  to . 

Furthermore, we may choose  small enough in absolute value that it remains true 

for all inactive variables that . Then we let the sign of  be opposite that of ; by 

the Pythagorean theorem, . Then  cannot be a solution to the LARS 

problem. To avoid a contradiction, it is necessary that . QED 

Proof of Proposition 2: First note that, because we centered the ys, the starting point 

of the LARS path  = 0 has ; therefore it is a solution to our optimization 

problem. Furthermore, at any point on the LARS path for which there is only a single 

active variable (of index j), we find ourselves on the linear segment in  space from 

 to the least squares solution for that variable. All points for which  are 

orthogonal to the LARS path, so by the Pythagorean theorem, all have larger . Thus 

any such point is a solution to our optimization problem. 

Now consider any point on the LARS path with t > 0, and with more than one active 

variable. Assume it is a solution to our optimization problem. We will reason that further 

progress along the path can only construct further solutions. The reasoning for 

Proposition 1 shows that slightly modifying the s for inactive variables can only 
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increase the length of . Therefore, we will consider nearby points that do not change t 

that involve adjustment to some active coefficient . Then necessarily since we must 

have , since the point at which we started was a solution,  has increased. We 

now know the sign of the corresponding adjustment to .  

Now make a small step forward along the LARS path. It will therefore decrease all 

the active  by an amount small enough not to create any new active variables. But 

then the earlier argument says that further small adjustments to the coefficients that leave 

the new t unchanged must increase . Therefore, small steps along the path create new 

solutions to our optimization problem. Therefore the entire path consists of solutions. 
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