Weak Law of Large Numbers and Central Limit Theorem in Lorentz-Bochner Spaces

Eddy Kwessi

Department of Mathematics, Trinity University
1 Trinity Place, San Antonio, TX78212, ekwessi@trinity.edu.

Abstract

In this paper, for a Banach space B, we estimate the Lorentz-Bochner norm of a $(L_{p,q}, B)$ -valued random variable in terms of its expected value in B and use that estimation to obtain the Weak Law of Large Numbers and the Central Limit Theorem for (L_{pq}, B) -valued random variables.

Keywords: Lorentz-Bochner spaces, Weak Law of Large Numbers, Central Limit Theorem.

MSC Subject Classification: 46L53; 60F25; 60F10

1 Introduction

The Lorentz spaces $L_{p,q}(\Omega,\mathbb{R},\mu)$ were introduced by G.G. Lorentz in [14, 15] as generalizations of Lebesgue spaces $L_p(\Omega,\mathbb{R},\mu)$ where (Ω,\mathcal{A},μ) is a measure space on \mathbb{R} . The Lorentz-Bochner spaces $L_{p,q}(\Omega, B, \mu)$ differ from original Lorentz spaces in that functions are B-valued where B is a Banach space, and are strongly measurable (or Bochner-measurable) in the sense that each function is a.e the limit of a sequence of countably-valued functions. It is well-established that the Lorentz-Bochner spaces are Banach spaces for $1 , <math>1 \le q < \infty$. The problem of establishing convergence theorems such as the Weak Law of Large Numbers (WLLN) and the Central Limit Theorem (CLT) in Banach spaces is not a new. In particular, Hoffmann-Jorgensen and Pisier in [10], Araujo and Giné in [1], Jain in [11] have given conditions to obtain the WLLN and the CLT in general Banach spaces. The CLT in L_p , 0 was establishedby Giné in [6] and in L_p , $p \geq 2$ by Pisier and Zinn in [17]. Moreover, Theorem 2.9 in [7] establishes a one-to-one and onto correspondence between the WLLN and the CLT in 2-convex Banach lattices. In this paper we establish the WLLN and use the framework of Theorem 2.9 in [7] to obtain the CLT in Lorentz-Bochner spaces. The remaining of the paper is organized as follows: in section 2, we give the necessary preliminary definitions for establishing our results, in section 2, we give the essential results for $L_{p,q}(\Omega, B, \mu)$ -valued random variables and establish the WLLN and the CLT.

2 Preliminaries

Throughout this paper, $(B, \|\cdot\|_B)$ will be considered as a Banach space, Ω as the interval [0, 1], and $(\Omega, \mathcal{A}, \mathbf{P})$ and $(B, \mathcal{B}, \mathbf{P})$ as probability spaces on Ω and B respectively.

Definition 2.1. For a measurable function $f: \Omega \to B$, we define the distribution function of f as

$$D_B(f,y) := \mathbf{P}(\{\omega \in \Omega : ||f(\omega)||_B > y\}).$$

We define decreasing rearrangement of f as the function f^* on Ω by

$$f^*(t) = \inf\{y > 0 : D_B(f, y) \le t\}$$
,

For t > 0, let

$$f^{**}(t) = \frac{1}{t} \int_0^t f^*(s) ds, \quad f^{**}(0) = f^*(0).$$

We also define on Ω the function ||f|| by $||f||(\omega) = ||f(\omega)||$, $\omega \in \Omega$.

Definition 2.2. Given a strongly measurable function f, define

$$|||f|||_{p,q} = \begin{cases} \left(\frac{q}{p} \int_{\Omega} \left((t^{\frac{1}{p}} ||f||^{**}(t))^{\frac{q}{p}} \frac{dt}{t} \right)^{\frac{1}{q}} & \text{if } 1 0} t^{\frac{1}{p}} ||f||^{**}(t) & \text{if } 1$$

The set of all functions f with $||f||_{p,q} < \infty$ is called the Lorentz-Bochner Space with indices p and q and denoted by $L_{p,q}(\Omega, B, \mathbf{P})$. We know that endowed with this norm, the Lorentz-Bochner spaces are Banach spaces. Recall that for $1 < p, q < \infty$, we have $L_{p,q}^*(\Omega, B, \mathbf{P}) = L_{p,q}(\Omega, B^*, \mathbf{P})$ and $L_{p,1}^*(\Omega, B, \mathbf{P}) = L_{p,\infty}(\Omega, B^*, \mathbf{P})$ where p' and q' are the Hölder conjugates of p and q respectively and B^* is the dual space of B. In the sequel, we will refer to $L_{p,q}(\Omega, B, \mathbf{P})$ as $L_{p,q}$ for simplicity.

Definition 2.3. For $1 and for <math>1 \le q < \infty$, we define for a strongly measurable function f two equivalent norms to quantities $|||f|||_{p,q}$ as

$$||f||_{p,q}^* = \left(\frac{q}{p} \int_{\Omega} \left[t^{\frac{1}{p}} (f^*(t)) \right]^q \frac{dt}{t} \right)^{\frac{1}{q}}$$
 (2.1)

and

$$||f||_{p,q} = \left(p \int_{\Omega} \left[tD_B(f,t)^{\frac{1}{p}}\right]^q \frac{dt}{t}\right)^{\frac{1}{q}}.$$
 (2.2)

Proposition 2.4 (Proposition 1.4.9 in [8])). For $1 and for <math>1 \le q < \infty$ we have

$$||f||_{p,q}^* \le |||f|||_{p,q} \le \frac{p}{p-1}||f||_{p,q}$$

and

$$||f||_{p,q} = ||f||_{p,q}^*.$$

In the sequel, we will use the norm defined in (2.2) as it is more appropriate for our objective.

Definition 2.5. Let X be a B-valued random variable defined on $(\Omega, \mathcal{A}, \mathbf{P})$. For $p \geq 1$, we define

 $E(\|X\|_B^p) := p \int_{\Omega} t^{p-1} D_B(X, t) dt.$

Remark 2.6. This definition can be viewed as an extension of the definition of the expected value of a real-valued random variable to normed spaces, see [2, 7]. Indeed, if X is real-valued, then we know classically that for $p \ge 1$,

$$E(|X|^p) = p \int_{\Omega} t^{p-1} \mathbf{P}(\omega : |X(\omega)| > t) dt.$$

Definition 2.7. Let X_1, X_2, \dots, X_n be B-valued random variables defined on $(\Omega, \mathcal{A}, \mathbf{P})$. We define the disjoint sum $\sum_{i=1}^n \oplus X_i$ of X_1, X_2, \dots, X_i as a function on Ω such that

$$D_B\left(\sum_{i=1}^n \oplus X_i, t\right) = \sum_{i=1}^n D_B(X_i, t).$$

Remark 2.8. This definition of the disjoint sum of random variables has been used by authors such as Johnson, Maurey, Schetchtman and Tzafiri in [12], Carothers and Dilworth in [3, 4], Hitzchenko and Montgomery-Smith in [9], mostly in the contest of sums of independent random random variables.

The following definition is a natural extension to Banach spaces of definition 2.1 in [16].

Definition 2.9. A sequence of B-valued random variables $\{X_n\}_{n\in\mathbb{Z}_+}$ is said to be stochastically bounded in B if

$$\lim_{C \to \infty} \sup_{n \in \mathbb{Z}_+} \mathbf{P}(\omega : ||X_n(\omega)||_B > C) = 0.$$

We say that a sequence of $L_{p,q}(\Omega, B, \mathbf{P})$ -valued random variables $\{X_n\}_{n\in\mathbb{Z}_+}$ defined on $(\Omega, \mathcal{A}, \mathbf{P})$ is strongly p-mean stochastically bounded in B if

$$\lim_{n\to\infty} \sup_{C>0} \mathbf{P}(\omega : E(\|X_n(\omega)\|_B^p) > C) = 0.$$

Note that, in terms of distribution function, this amounts to

$$\lim_{n \to \infty} \sup_{C > 0} D_{\mathbb{R}}[E(\|X_n\|_B^p), C] = 0.$$

We say that that Y is a copy of X if X and Y have the same distribution.

Definition 2.10. We say that a random variable is $(L_{p,q}, B)$ -valued if

1. $X:(\Omega,\mathcal{A})\to(L_{p,q},\mathcal{L}_{p,q})$ is measurable, where $\mathcal{L}_{p,q}$ is the Borel σ -algebra of $L_{p,q}$.

2. For all $\omega \in \Omega$, $X(\omega) := X_{\omega} : (\Omega, \mathcal{A}) \to (B, \mathcal{B})$ is measurable.

The next definition is borrowed from [7].

Definition 2.11. Let X be an mean zero $(L_{p,q}, B)$ random variable and $\{X_i\}$ be a sequence of independent copies of X.

1. We say that $X \in \text{CLT}$ or that the sequence $\{X_i\}$ satisfies the Central Limit Theorem if there is a Gaussian p.m. γ on B such that

$$\mathcal{L}\left(\sum_{i=1}^{n} X_i/n^{\frac{1}{2}}\right) \to_w \gamma,$$

where \to_w denote the weak convergence and \mathcal{L} the law of $\sum_{i=1}^n X_i/n^{\frac{1}{2}}$.

2. We say that $X \in \text{WLLN}$ in $L_{p,q}$ or that the sequence $\{X_i\}$ satisfies the Weak Law of Large numbers in $L_{p,q}$ if for any $\epsilon > 0$,

$$\lim_{n \to \infty} \mathbf{P}\left(\omega \in \Omega : \left\| \frac{1}{n} \sum_{i=1}^{n} X_i(\omega) \right\|_{p,q} > \epsilon \right) = 0.$$

3 Results

Our first result, is lemma that will pave the way for most of our results.

Lemma 3.1. Given two positive real numbers a, b and a B-valued random variable X defined on $(\Omega, \mathcal{A}, \mathbf{P})$, we have, for $t \in \Omega$,

- 1. If $a, b \ge 1$, then $D_B(X, t^{\frac{1}{a}})^b \le D_B(X, t)^b \le D_B(X, t^a)$.
- 2. If $a \ge 1$ and $b \le 1$, then $D_B(X, t^{\frac{1}{a}}) \le D_B(X, t) \le D_B(X, t)^b$.

Theorem 3.2. Let $1 \le p, q < \infty$ be two reals and let $X \in L_{p,q}$ be a B-valued random variable. Then there is exist an absolute constants C = C(p,q) such that

1. If $p \leq q$, then

$$||X||_{p,q} \le CE^{\frac{1}{q}}(||X||_B^p).$$

2. If $q \leq p$, then

$$||X||_{p,q} \ge CE^{\frac{1}{q}}(||X||_B^p).$$

Remark 3.3. Note that if $B = \mathbb{R}$, then

1. for $p = q \ge 1$, we have the classical result

$$||X||_{pp} = ||X||_p = E^{\frac{1}{p}}(|X|^p).$$

- 2. We also have that
 - (a) For $p \le q$, $||X||_{p,q} \le C||X||_p^{\frac{p}{q}}$.
 - (b) For for $q \le p$, $||X||_{p,q} \ge C||X||_p^{\frac{p}{q}}$.

From this remark, it follows the following result, a different version of Corollary 5.6 in [4].

Corollary 3.4. Let $1 \le p, q < \infty$ be two reals.

- 1. If $1 \leq p \leq q$, then $L_{p,q}(\Omega, \mathbb{R}, \mathbf{P})$ contains a complete metric subspace of $L_q(\Omega, \mathbb{R}, \mathbf{P})$.
- 2. If $1 \leq q \leq p$, then $L_{p,q}(\Omega, \mathbb{R}, \mathbf{P})$ is contained in a complete metric subspace of $L_p(\Omega, \mathbb{R}, \mathbf{P})$.

Corollary 3.5. Let $1 be two reals and let <math>X_i \in L_{p,q}(\Omega, B, \mathbf{P})$, $i = 1, \dots, n$ be B-valued random variables. Then there is C = C(p,q) such that

$$\left\| \frac{1}{n} \sum_{i=1}^{n} \oplus X_{i} \right\|_{p,q} \leq C \left[\sum_{i=1}^{n} E\left(\left\| \frac{X_{i}}{n} \right\|_{B}^{p} \right) \right]^{\frac{1}{q}}.$$

3.1 Weak Law of large Numbers

Theorem 3.6. Suppose $2 \leq p \leq q < \infty$, and let and let X be a mean zero $(L_{p,q}, B)$ -valued random variable and let $\{X_i, i \geq 1\}$ be independent copies of X. If for all $\omega \in \Omega$, $X_n(\omega)/n^{1-\frac{1}{p}}$ is strongly p-mean stochastically bounded in B, then

$$X \in \mathit{WLLN}$$
.

3.2 Central Limit Theorem

Theorem 3.7. Suppose $4 , and let X be a mean zero <math>(L_{p,q}, B)$ -valued random variable and let $\{X_i, i \geq 1\}$ be independent copies of X. Then if for all $\omega \in \Omega$, $X_i^2(\omega)/n^{1-\frac{1}{p}}$, $i \leq n$ is strongly p-mean stochastically bounded in B, then

$$X \in CLT$$
.

Remark 3.8. Note that Theorem 3.6 is true when the indices $2 \le p \le q$ where as Theorem 3.7 is true for indices 2 . This is due to the result on types and cotypes of Lorentz spaces in Creekmore [5].

3.3 Concluding remarks

We have established that for X a $(L_{p,q}, B), 2 \leq p < q$ random variable, $X \in WLLN$ if $X_i/n^{1-\frac{1}{p}}, i \leq n$ are p-mean stochastically bounded. This condition appears to be a generalization of the condition (iii) of Theorem 4.3 in [7] (or Theorem 5.1 in [17]). This condition yields the CLT, and thus by Theorem 2.9 in [7] implies the WLLN. Indeed, for p > 2, and $X_i/n^{1-\frac{1}{p}}$ is p-stochastically bounded implies (iii) in [7]:

$$\lim_{n \to \infty} n \mathbf{P}(\omega : ||X(\omega)||_B > n^{\frac{1}{2}}) = 0.$$

References

- [1] A. Araujo, E. Giné The central limit theorem for real and Banach valued random variables. New-york: Wiley 1890.
- [2] P. Bezandry, T. Diagana, S. Elaydi, On the Stochastic Beverton-Holt Equation with Survival Rates Quart. J. Math, Oxford Ser. 2 (1986), 355-365. Journal of Difference Equations and Applications 14, No.2 (2008): 175-190.
- [3] N.L. Carothers, S.J. Dilworth, *Inequalities Sums of Independent Random Variables*, Proc. amer. math. soc. **104**, No.1 (1988).
- [4] N.L. Carothers, S.J. Dilworth, Equidistributed Random Variables in $L_{p,q}$, J. Funct. Anal. 84, (1987), 146-159.
- [5] J. Creekmore, Type and Cotype in Lorentz L_{pq} Spaces, Bederl. Akad. Wetensch. Indag. Math. 43 no.2, 145-152 (1981).
- [6] E. Giné, The Levy-Lindenberg Central Limit Theorem in L_p , 0 , Proc. Amer. Math. Soc.. 88 no.1, 147-153 (1983).
- [7] E. Giné, J. Zinn, Central Limit Theorem and Weak Laws of Large Numbers in Certain Banach Spaces, Z.Wahrscheinlichkeitstheorie verw. Gebiete, 62, 323-354 (1983).
- [8] L. Grafakos, Classical Fourier analysis, Graduate Texts in Mathematics, 249 (2008) 2nd. Edition.
- [9] P. Hitzchenko, S. Montgomery-Smith, Measuring the Magnitude of Sums of Independent Random Variables, Annals of Probability, 29, No.1 (2001).
- [10] J. Hoffman-Jorgensen, G. Pisier, The Law of large numbers and the central limit theorem in Banach Spaces, Annals of Probability, 4, 587-599 (1976).
- [11] N. Jain, Central limit theorem and related question in Banach Spaces, Proc. Symp. in Pure Math. XXXI, 55-65, Amer. Math. Soc., Providence, R.I. (1977).
- [12] W.B. Johnson, B. Maurey, G. Sketchtman, L. Tzafiri, Symmetric Structure in Banach Spaces, Mem. Amer. Math. Soc., 217.

- [13] A. Kami'nska, L. Malingranda, Order Convexity and Concavity of Lorentz Spaces, Studia Mathematica, 160, (3) (2004).
- [14] G. G. Lorentz, Some New Function Spaces, Ann. of Math. 51 (1950), 37-55.
- [15] G. G. Lorentz, On the theory of spaces, Pacific Journal of Mathematics, 1 (1951), 411-429.
- [16] J. Luo, Stochastically Bounded Solutions of a Nonlinear Stochastic differential Equations, J. of Computational. and Applied mathematics, 196, 87-93.
- [17] G. Pisier, J. Zinn, On the limit theorem for random variable with values in L_p , $p \ge 2$, Z.Wahrscheinlichkeitstheorie verw. Gebiete, 41, 289-304 (1978).