
Using Log-linear and Logistic Regression for Inferences on Adjusted Estimates of Relative 

Risk in Randomized Comparative Trials 
 

William D. Johnson
1
, William H. Replogle

2
 and Hongmei Han

1 

 

1. Pennington Biomedical Research Center, 6400 Perkins Rd, Baton Rouge, LA 70808 USA 

2. University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216 USA 

  

ABSTRACT 

Randomized comparative trials are often used to assess the relative merits of two or more interventions 

aimed at having beneficial effects on the incidence of categorical outcomes.  In simple applications chi-

square tests can be used to analyze contrasts among proportions of incident events or risk ratios (relative 

risks). However, assessment of intervention differences may be obscured by outcome variations 

attributable to covariates.  There are advantages to using logistic regression analysis to assess intervention 

effects in terms of odds ratios (OR) adjusted for covariates. The limitation of using OR rather than relative 

risk (RR) estimates in making statistical inferences about incidence rates is well documented.  Subject-

specific estimates of probabilities for a specified covariate profile are readily obtained by logistic and log-

linear regression models. Functions of the marginal probabilities provide estimates of incident risk and 

RR for each intervention.  We illustrate novel applications of the inferential methods in this paper.      
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1. INTRODUCTION 

 

In studying the occurrence of dichotomous events, a fundamental concept is the probability a person 

randomly selected from a well-defined population has a characteristic of interest. In randomized 

controlled trials, it is often of interest to compare the probability an event occurs (i.e., incidence) among 

subjects who are in an active treatment group to the probability it occurs in a control (e.g., placebo) group. 

Thus, if A is a dichotomous outcome and incidence in the comparative groups is expressed, respectively, 

as P(A|Active) and P(A|Control), statistical inferences are often made in terms of the risk difference: 

Riskdiff = P(A|Active)   P(A|Control); in terms of summary statistics such as the relative risk: RR = 

P(A|Active) P(A|Control); or in terms of the odds ratio: OR = Odds(A|Active)   Odds(A|Control). For 

example, if = P(A|Active) = 0.085 and P(A|Control) = 0.025 then Riskdiff = 0.085   0.025 = 0.060, RR = 

(0.085   0.025) = 3.40,      ( |      )                           ( |       )         
             and OR = 0.093              Various versions of the chi-square test are widely used 

to test hypotheses relevant to the research that give rise to use of these summary statistics. In 

investigations where the outcome is a dichotomous random variable, as in those where the outcome is 

continuous, concomitant variables that are related to the outcome variable may be used as covariates in an 

appropriate statistical model to reduce residual variability and enable more sensitive statistical testing 

significance of differences between treatments. For dichotomous outcomes, statistical modeling is often 

performed employing logistic regression analysis where the logarithm of the odds of the outcome is 

modeled in terms of intervention effects coupled with one or more covariates that are potential effect 

modifiers. The results are typically reported as the covariate-adjusted odds ratio defined as the odds of a 

favorable outcome given a trial participant received the active treatment relative to the odds of a favorable 

outcome given the participant received the intervention control. Logistic regression analysis had its origin 

in the development of analytic models that are suitable for analyzing dichotomous outcomes in 

retrospective case-control studies. In these studies, a “random” sample of persons with a disease (cases) 

was investigated to estimate the probability of having a characteristic (exposure) given a person is a case. 

Similarly a “random” sample of persons who do not have the disease was investigated to estimate the 

probability of having previously acquired the characteristic given a person is from the control population. 
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It was shown that if the disease is rare in the general population, the odds ratio provides a robust estimate 

of the relative risk of disease given a randomly selected person has the characteristic. Widespread 

historical use of logistic regression models in case-control studies led to development of user friendly 

statistical software that subsequently became widely employed for the analysis of dichotomous outcomes 

in prospective follow-up studies. Although relevant software has improved substantially in the last 

decade, there continues to be a preponderance of literature reporting research results in terms of odds 

ratios estimated from logistic regression analysis. However, the precise interpretation of an odds ratio is 

not always transparent. For example, if a patient with a health impairment is told the probability of 

improvement is 2.8 times greater if he/she takes a specified medication, he/she is likely to understand 

better than if he/she is told the odds for improvement are 3.3 greater with the treatment compared to 

placebo (i.e., OR = 3.3). 

 

In this paper, we give three examples to illustrate use of prevalence ratios and probability ratios (relative 

risk) analogously use of least square means in the analysis of continuous random variables. In this 

context, the focus of the analysis is on inferences pertaining to estimating (i.) prevalence of a specified 

attribute relevant to cross-sectional probability samples from well-defined populations and (ii.) 

probability (incidence) of a specified event relevant to comparing interventions in randomized controlled 

trials. We employ the SAS procedure PROC GLIMMIX to illustrate the analytical details. 

 

2. GENERALIZED LINEAR MODEL 

In the generalized linear model, the dependent variable Y is assumed to have a distribution that is a 

member of the exponential family (e.g., the normal, binomial and Poisson distributions).  It is further 

assumed that the expected value of Y, denoted E(Y) = µ, is linked to the independent X through  

 ( )       (  ) 

where g is the link function (e.g., log, logistic),   is a vector of unknown parameters. This model enables 

using a unified approach to the analysis of a wide class of applied statistical problems. The examples in 

this paper assume the distribution of Y is binomial and either the logistic or log link is appropriate. 

3. ILLUSTRATIVE APPLICATIONS 

The first two illustrative examples used herein are based on data from Stokes, Davis and Koch (2012). 

Example 3 is an extension of an example of logistic regression for random intercepts given in SAS 9.22 

User’s Guide.   

Example 1.1 Inferences on Odds Ratio 

PROC GLIMMIX performs estimation and statistical inference for generalized linear mixed models. This 

procedure can be used to calculate probabilities, odds ratios, and relative risks. The following example 

was based on a study of coronary artery disease and was used here to demonstrate how to fit a generalized 

linear mixed model for binomial data and estimate odds ratios with the GLIMMIX procedure.  

The study population consisted of people who visited a clinic on a walk-in basis and required a 

catheterization. Investigators were interested in determining whether electrocardiogram (ECG) 

measurement was associated with disease status.  

The following DATA step creates the data set for the analysis.  
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Data CAD; 

input sex ecg cad count; 

datalines; 

0 0 0  11 

0 0 1   4 

0 1 0  10 

0 1 1   8 

1 0 0   9 

1 0 1   9 

1 1 0   6 

1 1 1  21; 

 

The variable CAD is the response variable indicating the presence or absence of disease. Variables SEX 

and ECG (ST segment depression) are explanatory variables. First consider the SAS code below:  

PROC GLIMMIX data = CAD order=data; 

   CLASS sex ecg; 

   MODEL cad(event = '1')  = sex ecg / dist = binomial link = logit solution; 

   LSMEANS  sex ecg / ilink oddsratio cl; 

   estimate ‘OR sex' sex 1 -1 / exp cl; 

   estimate ‘OR ecg' ecg 1 -1 / exp cl; 

RUN; 

 

The PROC GLIMMIX statement invokes the procedure. CLASS defines SEX and ECG as classification 

variables. MODEL defines the model, DIST = Binomial indicates CAD is assumed to have a binomial 

distribution, LINK = LOGIT specifies the logistic model and SOLUTION requests a listing of estimates 

of fixed effects parameters. The LSMEANS statement requests the least squares means of the fixed 

effects on the logit scale. The CL option requests confidence limits for least square means. The ILINK 

option adds estimates, standard errors, and confidence limits on the mean scale. The results are displayed 

in Table 1 and Table 2.   

 

Table 1: Summary of model estimates - least squares means 

Parameter Estimate Standard Error Pr > ChiSq 

Intercept -1.1747 0.4854 0.0155 

Sex 1.2770 0.4980 0.0103 

ECG 1.0545 0.4980 0.0342 

Table 2: Summary of model estimates - odds ratio  

Effect Odds Ratio 

95% Wald 

Confidence Limits 

M v F 3.586 1.351 9.516 

Abn v Norm 2.871 1.082 7.618 
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Both variables SEX and ECG are significant (p < 0.05). The model equation can be written as follows: 

  (    ) =     (   )    (   ) 

              = -1.1747 + 1.2770 SEX + 1.0545 ECG 

The odds ratio for males compared to females is the ratio of the predicted odds of CAD for males versus 

females, as shown below.  This odds ratio is significant indicating the odds for having CAD is higher for 

males. Similarly, the significant odds ratio for abnormal ECG versus normal ECG indicated the odds of 

having CAD is higher for an abnormal ECG reading.  

  (   |    )     (      )       

  (   |         )      (      )       

Example 1.2 Inferences on Prevalence Ratio 

Prevalence Ratio (PR) can be requested in the GLIMMIX procedure by simply changing the link “logit” 

to “log” to specify he log-linear model, as shown below. The results are displayed in Table 3 – 5.    

 

PROC GLIMMIX data = CAD order=data; 

   CLASS sex ecg; 

   MODEL cad(event = '1')  = sex ecg / dist = binomial  

                 link = log solution; 

   LSMEANS  sex ecg / ilink oddsratio cl; 

   estimate ‘PR sex' sex 1 -1 / exp cl; 

   estimate ‘PR ecg' ecg 1 -1 / exp cl; 

RUN; 

 

The variables SEX is significant (p < .05) and the variable ECG is marginally significant (p = 0.05). The 

model equation can be written as follows: 

  (    ) =     (   )    (   ) 

                = -1.2830 + 0.5774 SEX + 0.4565 ECG 

Table 3: Summary of model estimates - least squares means 

Effect Estimate Standard Error DF t Value Pr > |t| 

Intercept -1.2830 0.2777 75 -4.62 <.0001 

Sex 0.5774 0.2464 75 2.34 0.0218 

ECG 0.4565 0.2306 75 1.98 0.0514 

 

 

The prevalence of CAD is clearly higher in males than in females and within sex groups it’s higher for 

those with abnormal ECG (Table 4). 
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Table 4: Prevalence of CAD by SEX and ECG status 

 

Sex ECG n Obs Pred LCB UCB 

F Normal 15 0.267 0.236 0.107 0.444 

F Abnormal 18 0.444 0.470 0.281 0.668 

M Normal 18 0.500 0.526 0.328 0.715 

M Abnormal 27 0.778 0.761 0.590 0.875 

 

 

A preliminary model indicated SEX by ECG interaction was not significant and therefore the main effect 

model provides a good summary of the data (Table 5). The main effect prevalence of CAD for males is 

0.621 and for females it is 0.348.  

Table 5: Prevalence of CAD by SEX 

 

Sex Beta SE DF t-test p Lower Upper Mean SEM LCB UCB 

M -0.477 0.123 75 -3.87 0.0002 -0.723 -0.232 0.621 0.077 0.485 0.793 

F -1.055 0.230 75 -4.58 <.0001 -1.513 -0.596 0.348 0.080 0.220 0.551 

 

For males vs. females, the prevalence ratio for CAD is 1.781. The 95% confidence intervals for the 

prevalence ratio are 1.090 to 2.911 (Table 6).  

 

Table 6: Prevalence Ratio (PR) for CAD: males vs. females 

 

Beta(diff) SE  DF t-test  p  Alpha Lower Upper PR  LCB  UCB  

0.577 0.246 75 2.34 0.022 0.05 0.086 1.068 1.781 1.090 2.911 

 

 

Example 2.1 Relationship between Prevalence of CAD and Age 

Age was added to the previous dataset to investigate the overall relationship between prevalence of CAD 

and age.  As a first step, AGE was tested for significance in predicting the prevalence of CAD. 

 

PROC GLIMMIX data = CAD; 

      MODEL cad(event = '1')  = age/  

                     dist = bin link = log solution oddsratio; 

RUN; 

 

As shown in Table 7, AGE is a significant predictor of the prevalence of CAD (p < 0.05). The prevalence 

is increasingly higher in the older age groups (Table 8 and Figure 1).  
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Table 7: Summary of model estimates 

Effect Estimate Std Error DF t Value Pr > |t| 

Intercept -2.7328 0.7506 76 -3.64 0.0005 

AGE 0.04338 0.01430 76 3.03 0.0033 

 

                        (                   ) 

Table 8: Estimated Prevalence of CAD 

Age (yr) Est Prev CAD 

30 0.238 

40 0.369 

50 0.569 

60 0.878 

 

 

Figure 1: The relationship between estimated prevalence (probability) of CAD and age (yrs). 
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Example 2.2 Prevalence Ratio with Age as a Covariate 

Adding AGE as a covariate in the previous model, SEX was significant in the unadjusted model and ECG 

was borderline so results were virtually the same after adjusting for AGE. However, some useful insights 

into the role of AGE are provided by the results summarized in Table 9. Specifically, prevalence of CAD 

increases incrementally with AGE and AGE is a significant predictor of CAD irrespective of sex and 

ECG status; prevalence of CAD is significantly higher in males than females irrespective of ECG status 

or age (PR=1.727); and prevalence of CAD is significantly higher in persons with ECG status ‘2’ versus 

those with ECG status ‘1’ irrespective of sex or age (PR=1.766).   

PROC GLIMMIX data = CAD order=data; 

   CLASS sex ecg; 

   MODEL cad(event = '1')  = sex ecg age/  

      dist = binomial link = log solution ; 

   LSMEANS  sex ecg / ilink diff oddsratio cl ; 

   estimate 'Sex' sex 1 -1 / exp cl; 

   estimate 'ECG 2 vs 1' ecg 1 -1 0 / exp cl; 

   estimate 'ECG 2 vs 0' ecg 1 0 -1 / exp cl;   

   estimate 'ECG 1 vs 0' ecg 0 1 -1 / exp cl; 

   estimate 'Age 1 yr' age 1 -1 / exp cl; 

   estimate 'Age 10 yrs' age  1 -1 / exp cl  ; 

RUN; 

 

Table 9: Prevalence Ratios and Model Estimates 

 

Mean 

Estimate 

Mean L'Beta 

Estimate 

Standard 

Error 
Alpha L'Beta Chi-

Square 

Pr > 

ChiSq 
Confidence 

Limits 

Confidence 

Limits Sex 1.727 1.090 2.734 0.546 0.235 0.05 0.086 1.006 5.42 0.020 

Exp(Sex) 
   

1.727 0.405 0.05 1.090 2.734 
  

ECG 2 vs 1 1.107 0.758 1.616 0.102 0.193 0.05 -0.277 0.480 0.28 0.599 

Exp(ECG 2 vs 1) 
   

1.107 0.214 0.05 0.758 1.616 
  

ECG 2 vs 0 1.766 1.042 2.995 0.569 0.269 0.05 0.041 1.097 4.46 0.035 

Exp(ECG 2 vs 0) 
   

1.766 0.476 0.05 1.042 2.995 
  

ECG 1 vs 0 1.596 0.970 2.625 0.467 0.254 0.05 -0.031 0.965 3.39 0.066 

Exp(ECG 1 vs 0) 
   

1.596 0.405 0.05 0.970 2.625 
  

Age 1 yr 1.034 1.011 1.058 0.034 0.011 0.05 0.011 0.056 8.76 0.003 

Exp(Age 1 yr) 
   

1.034 0.012 0.05 1.011 1.058 
  

Age 10 yrs 1.400 1.120 1.749 0.336 0.114 0.05 0.114 0.559 8.76 0.003 

Exp(Age 10 yrs) 
   

1.400 0.159 0.05 1.120 1.749 
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Example 3. Relative Risk in Multicenter Randomized Trials  

In this example, researchers investigated the performance of two medical procedures in a multicenter 

study. They randomly selected 15 centers for inclusion. Patients were randomly assigned to one of the 

two procedures to compare the occurrence of their side effects. 

 

The following DATA step creates the data set for the analysis. 

 

data multicenter; 

input center group$  n SideEffect @@; 

datalines; 

1 A 32 14   1 B 33 18   2 A 30 4    2 B 28 8 

3 A 23 14   3 B 24 9     4 A 22 7    4 B 22 10 

5 A 20 6     5 B 21 12   6 A 19 1    6 B 20 3 

7 A 17 2     7 B 17 6     8 A 16 7    8 B 15 9 

9 A 13 1     9 B 14 5    10 A 13 3  10 B 13 1 

11 A 11 1  11 B 12 2   12 A 10 1  12 B 9 0 

13 A 9 2    13 B 9 6     14 A 8 1     14 B 8 1 

15 A 7 1    15 B 8 0 

; 

 

The variable group identifies the two procedures; n is the number of patients who received procedure A or 

B each center, and SideEffect gives the number of patients who reported side effects. The random 

variable SideEffect/n is assumed to have a binomial distribution. The random option specifies a random 

intercepts model. The SAS code is listed below: 

 

proc glimmix data=multicenter; 

      class center group; 

      model sideeffect/n = group / dist = binomial link =  log solution; 

      random intercept / subject=center; 

      lsmeans group /ilink diff cl; 

      estimate 'RR' group 1 -1 / exp cl; 

RUN; 

 

The probability of side effects was significantly lower in group A (0.221 vs. 0.298) (Table 10) with 

relative risk 0.741, p = 0.034 (Table 11).   

Table 10: Estimates of probabilities of side effects by procedures.  

Group Beta SE DF t-test p Lower Upper Mean SEM LCI UCI 

A -1.509 0.180 14 -8.37 <.0001 -1.896 -1.122 0.221 0.040 0.150 0.326 

B -1.210 0.170 14 -7.12 <.0001 -1.574 -0.845 0.298 0.051 0.207 0.429 
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Table 11: Relative Risk (RR) of side effects in procedure A vs. procedure B. 

Beta(diff) SE  DF t-test  p  Alpha Lower Upper RR  LCI  UCI  

-0.300 0.128 14 -2.35 0.034 0.05 -0.573 -0.026 0.741 0.564 0.974 

 

 

4. CONCLUDING REMARKS 

The practice of using odds ratios as the primary summary statistics in reporting results from comparative 

studies where the outcome is dichotomous appears to have been largely driven in the past by lack of 

convenient software to easily conduct relevant statistical analyses. The software has improved in recent 

years but odds ratios continue to be reported frequently in the scientific literature. Nevertheless, reporting 

prevalence or incidence of events in studies with dichotomous outcomes has great heuristic appeal and it 

is inevitable that the analytical focus will shift to prevalence and incidence. The somewhat rudimentary 

examples presented here are intended to demonstrate ease of use in rudimentary applications rather than 

in a range of complex study designs.   
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