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Abstract

Group variable selection is a relatively new problem in statistics. When predic-
tor variables can be naturally grouped in the multiple linear regression setting, the
objective is to perform variable selection at the group and within-group levels. Sev-
eral methods have been proposed to perform this type of variable selection, most
of which are adapted from existing methods, including the group lasso. However,
these methods do not perform optimally in the presence of outliers. As a result, a
robust form of the group lasso is presented that is well suited to data with outliers,
while still executing group variable selection. Examples with simulated data are
shown to assess the performance of this newly proposed method versus existing
methods when outliers are present.
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1 Introduction
Suppose the multiple linear regression model is given as:

y = Xβ + ε (1)

where y is an n x 1 vector of responses, X is an n x p matrix of predictors, β is a
p x 1 vector of regression coefficients, and ε is an n x 1 vector of random errors.

In the multiple linear regression setting, selecting a meaningful subset of predictor
variables, known as variable selection, is an important problem, especially with a large
number of predictors. An interesting new problem in statistics is group variable se-
lection, where the predictor variables can be naturally grouped, and important groups
of variables are to be selected. This type of data is common in many scientific appli-
cations. Examples include fMRI data with grouped gene expressions or demographic
data that can be grouped by socioeconomic or physical factors. In such cases, it is com-
mon to have outliers in the data and multicollinearity between the predictor variables.
∗Department of Mathematics & Statistics, Auburn University, 221 Parker Hall, Auburn University, Al-

abama 36849, E-mail: seamokl@auburn.edu
†Department of Mathematics & Statistics, Auburn University, 221 Parker Hall, Auburn University, Al-

abama 36849, E-mail: billone@auburn.edu

JSM 2013 - Section on Statistical Learning and Data Mining

3334



Thus, it is necessary to develop a method to do well in the presence of outliers and with
high correlation between predictors.

With ideal data, least squares estimators (LSE) for the regression coefficients βj
are usually found to numerically describe the model. The assumptions for the LSE in-
clude an approximate linear relationship between the response and predictor variables,
and uncorrelated, normally distributed error terms with mean 0 and constant variance
σ2. As a result, the LSE are sensitive to outliers, leading to estimators with high bias
in the presence of observations that deviate from a majority of the data points. Tra-
ditional variable selection methods, such as forward selection, backwards elimination,
and stepwise regression, are based on the LSE; consequently, these methods are sen-
sitive to outliers and also lead to unstable models, which would cause poor prediction
results. Thus, a robust method must be used in order to build more accurate linear
models to use for prediction or estimation purposes.

Some modern approaches such as LASSO (least absolute shrinkage and selection
operator) [1] have been proposed to obtain stable models with good prediction. In this
study, we will give an evaluation of a basic “group” variable selection method based
on LASSO estimator. Furthermore, a robust group variable selection method, derived
from the LAD (least absolute deviation)-LASSO method, is proposed, and an example
with real data is presented to demonstrate the performance of the group LASSO versus
the group LAD-LASSO methods in the presence of outliers.

2 Group LASSO
For the group LASSO method, assume the predictor variables can be naturally grouped
into k groups for k = 1, . . . ,K, where each group consists of pk predictor variables
such that

∑K
k=1 pk = p. The predictor variables should be standardized so that each

xij has mean 0 and variance 1 for j = 1, . . . , p. The criterion to be minimized is:

n∑
i=1

(yi −
p∑

j=1

(

K∑
k=1

xijkβjk))2 + λ

p∑
j=1

K∑
k=1

|βjk| (2)

where λ ≥ 0 is a tuning parameter [2]. That is, for each group of predictors, min-
imize the sum of the squared distances, while simultaneously shrinking unimportant
groups with the LASSO penalty (L1 norm). The tuning parameter λ controls the rate
of shrinkage and can be chosen using cross-validation.

The LASSO method of simultaneous estimation and selection is ideal for multi-
collinearity, but not for data with outliers. In particular, because it uses the LSE, the
group LASSO performs poorly in terms of robustness.

3 Group LAD-LASSO
To combat the problem of outliers in the response during group variable selection, we
propose a modification to the LAD-LASSO [3] that minimizes the following criterion:
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n∑
i=1

|yi −
p∑

j=1

(

K∑
k=1

xijkβjk)|+ λ

p∑
j=1

K∑
k=1

|βjk| (3)

where λ ≥ 0 is a tuning parameter that controls the shrinkage of the estimators, just
like in the group LASSO. Instead of minimizing the sum of the squared distances, this
method minimizes the least absolute deviation between the response and each group
of predictors, while the second part of the equation will estimate the regression coeffi-
cients for each group or shrink them to 0.

The LAD-LASSO method is optimal for data with deviations in the y-direction and
highly correlated data, because of the least absolute deviation minimization (good for
y-direction outliers) and the LASSO method (good for multicollinearity).

3.1 Computation of the Group LAD-LASSO
The computation of the group LAD-LASSO is based on the shooting algorithm [4].
Originally, this method was proposed for the LASSO method, but was adapted for the
group LASSO [2]. Some slight modifications make it an appropriate computational
method for the group LAD-LASSO.

Rewrite (3):

|Y −
p∑

j=1

K∑
k=1

Xjkβjk|+ λ

p∑
j=1

K∑
k=1

|βjk| (4)

Next, rewrite (4) with respect to the groups:

|Y −
K∑

k=1

Xkβk|+ λ

K∑
k=1

|βk| (5)

where Y ∼ n x 1 vector of responses, Xk ∼ n x pk matrix of predictors from group
k, βk ∼ pk x 1 vector of regression coefficients for group k, and λ ≥ 0 is a tuning
parameter.

Then, the algorithm for the group LAD-LASSO involves applying the following
equation iteratively with the groups for k = 1, . . . ,K:

βk =

(
1−

λ
√
pk

‖Sk‖

)
+

Sk (6)

where Sk = XT
k |Y − Xβ−k| with β−k = (βT

1 , . . . , β
T
k−1,0

T , βT
k+1, . . . , β

T
K),

the β vector without coefficient βk, and ‖η‖ = (ηT η)1/2. Choose initial βk for k =
1, . . . ,K to be the LAD estimators. This algorithm is stable and reaches convergence
tolerance within a few iterations; on the other hand, the computational burden increases
dramatically as the number of predictors increases [2].
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4 Group WLAD-LASSO
The group WLAD-LASSO is a simultaneous estimation and group variable selection
method robust to outliers in both the x- and y-directions. This method is being devel-
oped by combining the group LAD-LASSO method with the WLAD-LASSO [5]. The
group WLAD-LASSO criterion to be minimized is:

n∑
i=1

wi|yi −
p∑

j=1

(

K∑
k=1

xijkβjk)|+ λ

p∑
j=1

K∑
k=1

|βjk| (7)

where λ ≥ 0 is a tuning parameter. Define the robust distance RD(xi) = (xi −
µ̂)T Σ̂−1(xi − µ̂) for i = 1, . . . , n, where µ̂ and Σ̂ are robust location and scale mea-
sures. Large values of RD(xi) indicate leverage points. Then, calculate the positive
weights such that wi = min{1, p

RD(xi)
} for i = 1, . . . , n.

The least absolute deviation restriction from (7) helps to minimize the effects of the
y-direction outliers when fitting the linear model, while the weights counteract the x-
direction outliers. That is, as RD(xi) gets larger, wi gets smaller, giving high leverage
points smaller weights in the model. While the group WLAD-LASSO and group LAD-
LASSO perform almost equivalently for data with outliers in the response, the group
WLAD-LASSO does best out of the two with outliers in both directions, as well as
with multicollinearity between the predictors.

5 Simulation Study
A small simulation study is performed to compare the group LASSO with the group
LAD-LASSO and group WLAD-LASSO. For sample sizes n=50,100, and 200, let ε
be the contamination rate equal to values ε=0.1,0.2,0.3, and 0.4 such that m = [εn]
is the number of contaminated data points. The first n −m data points are generated
from the true model y1 = X1β1 + σε, where X is multivariate normal with 0 mean
and the pairwise correlation between xi and xj equal to cor(xi,xj) = 0.5|i−j|. The
regression parameter vector is set to be β1 = (3, 1.5, 2, 0, 0, 0), such that there are
two groups of three variables. The errors ε are generated from the standard normal
distribution, the t-distribution with 3 degrees of freedom, and the t-distribution with
5 degrees of freedom, while σ will be 0.5 and 1. This will allow for heavy-tail er-
ror distributions and some outliers in the response direction. The m points from the
contaminated data are produced with the following model: y2 = X2β2, where X2 is
multivariate normally distributed with µ2 6= 0 and covariance equal to I . Let β2 6= β1.
For each combination of sample size, contamination rate, sigma, and error distribution,
the simulation is performed 200 times, and the relative prediction error (RPE) will be
calculated from the group LASSO, group LAD-LASSO, and group WLAD-LASSO
fits for comparison purposes.

The grpreg package and rrcov package were both utilized to perform the simula-
tion in R. The results are shown in Tables 1-3. In each case, with the exception of ε = 0,
the group WLAD-LASSO method results in the smallest RPE. Results are similar for
n = 100, 200.
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Table 1: Simulation results for standard normally distributed errors.

n σ ε Method MeanRPE MedianRPE
50 0.5 0 Group LASSO 0.07 0.06

Group LAD-LASSO 0.07 0.06
Group WLAD-LASSO 0.27 0.18

0.1 Group LASSO 10.89 10.25
Group LAD-LASSO 6.11 5.96
Group WLAD-LASSO 0.29 0.20

0.2 Group LASSO 16.57 16.50
Group LAD-LASSO 9.20 9.01
Group WLAD-LASSO 0.15 0.10

0.3 Group LASSO 21.08 21.08
Group LAD-LASSO 11.47 11.28
Group WLAD-LASSO 0.30 0.24

0.4 Group LASSO 24.40 23.71
Group LAD-LASSO 12.93 12.69
Group WLAD-LASSO 0.69 0.64

50 1 0 Group LASSO 0.27 0.24
Group LAD-LASSO 0.24 0.21
Group WLAD-LASSO 0.90 0.79

0.1 Group LASSO 16.68 16.28
Group LAD-LASSO 10.94 10.75
Group WLAD-LASSO 0.16 0.14

0.2 Group LASSO 16.28 15.92
Group LAD-LASSO 9.39 9.11
Group WLAD-LASSO 0.26 0.22

0.3 Group LASSO 20.96 20.52
Group LAD-LASSO 11.82 11.33
Group WLAD-LASSO 0.43 0.39

0.4 Group LASSO 23.30 23.10
Group LAD-LASSO 13.63 13.57
Group WLAD-LASSO 0.78 0.75
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Table 2: Simulation results for t3 errors.

n σ ε Method MeanRPE MedianRPE
50 0.5 0 Group LASSO 0.18 0.13

Group LAD-LASSO 0.19 0.15
Group WLAD-LASSO 0.82 0.43

0.1 Group LASSO 14.83 14.55
Group LAD-LASSO 10.44 9.09
Group WLAD-LASSO 0.56 0.57

0.2 Group LASSO 15.92 15.91
Group LAD-LASSO 9.44 9.13
Group WLAD-LASSO 0.23 0.16

0.3 Group LASSO 20.88 20.89
Group LAD-LASSO 11.65 11.49
Group WLAD-LASSO 0.40 0.36

0.4 Group LASSO 23.53 23.37
Group LAD-LASSO 13.62 13.39
Group WLAD-LASSO 0.73 0.68

50 1 0 Group LASSO 0.27 0.25
Group LAD-LASSO 0.65 0.46
Group WLAD-LASSO 0.72 0.66

0.1 Group LASSO 17.28 16.86
Group LAD-LASSO 11.33 11.23
Group WLAD-LASSO 0.37 0.28

0.2 Group LASSO 16.48 16.20
Group LAD-LASSO 11.59 9.20
Group WLAD-LASSO 0.48 0.38

0.3 Group LASSO 21.17 21.16
Group LAD-LASSO 11.82 11.33
Group WLAD-LASSO 0.73 0.60

0.4 Group LASSO 23.67 23.43
Group LAD-LASSO 13.62 13.39
Group WLAD-LASSO 0.71 0.62

JSM 2013 - Section on Statistical Learning and Data Mining

3339



Table 3: Simulation results for t5 errors.

n σ ε Method MeanRPE MedianRPE
50 0.5 0 Group LASSO 0.09 0.07

Group LAD-LASSO 0.11 0.10
Group WLAD-LASSO 0.42 0.28

0.1 Group LASSO 4.74 4.46
Group LAD-LASSO 2.06 2.01
Group WLAD-LASSO 0.44 0.28

0.2 Group LASSO 16.58 16.16
Group LAD-LASSO 9.51 9.31
Group WLAD-LASSO 0.86 0.46

0.3 Group LASSO 23.38 23.17
Group LAD-LASSO 13.48 13.36
Group WLAD-LASSO 0.35 0.28

0.4 Group LASSO 23.38 23.71
Group LAD-LASSO 12.93 12.69
Group WLAD-LASSO 0.71 0.65

50 1 0 Group LASSO 0.41 0.33
Group LAD-LASSO 0.49 0.42
Group WLAD-LASSO 0.82 0.81

0.1 Group LASSO 16.30 15.91
Group LAD-LASSO 10.71 10.36
Group WLAD-LASSO 0.24 0.21

0.2 Group LASSO 16.44 16.40
Group LAD-LASSO 9.15 9.02
Group WLAD-LASSO 0.32 0.28

0.3 Group LASSO 21.15 21.12
Group LAD-LASSO 11.81 11.42
Group WLAD-LASSO 0.62 0.52

0.4 Group LASSO 23.47 23.31
Group LAD-LASSO 13.30 12.96
Group WLAD-LASSO 0.86 0.80
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6 Conclusion
Three group variable selection methods were discussed, the group LASSO, the group
LAD-LASSO, and the group WLAD-LASSO with the intention of selecting important
groups of predictor variables and estimating the regression coefficients of the groups.
While the group LASSO is useful for highly correlated data, it does not work well for
data with outliers, in general. The proposed group LAD-LASSO does work well for
outliers in the y-direction, but has some problems with outliers in the x-direction. The
group WLAD-LASSO method is designed to work well for outliers in both directions.
The example highlighted the differences in the two methods with available code for a
real data set with outliers.

A more in-depth examination of the group LASSO, group LAD-LASSO, and group
WLAD-LASSO with a simulation study, as well as comparing the two methods ana-
lytically, is recommended. Then, applying other robust methods to the group variable
selection problem to see how they compare to the methods discussed here is a natural
next step. Ideally, a method robust to all types of outliers while estimating and selecting
groups of variables in the group variable selection setting can be derived from existing
robust methods not sensitive to outliers.
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