
Approaches to Estimate Between- and Within-Subject 

Correlation Coefficients in Longitudinal Repeated-Measures 

Studies 

 

Jennifer N. Cooper
1
, Jason P. Sulkowski

1,2
, Katherine J. Deans

1,2 

Peter C. Minneci
1,2

 
1
Center for Surgical Outcomes Research and Center for Innovation in 

Pediatric Practice, The Research Institute at Nationwide Children‟s Hospital, 700 

Childrens Dr., Columbus, OH 43205
 

2
Department of Surgery, Nationwide Childrens Hospital, 700 Childrens Dr., Columbus, 

OH 43205
 

 

 

 

Abstract 
Multivariate repeated-measures data offer a unique opportunity to examine the joint 

progression of multiple variables over time. Several distinct types of correlations between 

variables can be derived from such studies. The overall correlation between two variables 

can be decomposed into within- and between-subject correlations that reflect associations 

at the individual and collective levels. A number of different models are useful for 

estimating these correlations, with bivariate and multivariate linear mixed models being 

most commonly used. Currently, the SAS MIXED procedure has few options for 

Kronecker product covariance structures and all best accommodate equally spaced 

measurements. Univariate mixed models with separate terms for between- and within-

subject associations are an alternative that allows for unequally spaced measurements. 

We explore differences in overall, within- and between-subject correlation coefficients 

derived from multivariate, bivariate, and univariate mixed models under a variety of 

covariance structures. We illustrate these differences using data on markers of 

intravascular hemolysis and nitric oxide consumption in children treated with 

extracorporeal membrane oxygenation.    
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1. Introduction 

 
In most longitudinal studies, subjects have measurements on more than one response over 

time. With such multivariate longitudinal data, there are a number of research questions 

that can be asked regarding associations between the responses. Importantly, however, 

any method used to answer these questions should account for the dependence of the 

observations. Namely, it is expected that repeated measurements on any single response 

will be correlated over time while multiple responses on the same subject will be 

correlated at any given time point.  

 

Bland and Altman were the first to consider the estimation of the correlation between two 

continuous variables with repeated measurements, and they introduced the idea that the 

correlation coefficient between two such variables can be considered to have two 

components: between-subject correlation and within-subject correlation (1, 2). The 
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between-subject correlation indicates the correlation between subject means. It measures 

whether subjects with high values of one variable also generally have high values of the 

other variable over the course of the study. The within-subject correlation describes 

whether an increase in one variable over time within a subject is associated with an 

increase in the other variable. Several researchers have recently investigated this problem 

through the use of maximum likelihood estimation using specialized software (3) or 

bivariate linear mixed models (LMM) fit using SAS PROC MIXED (SAS Institute Inc., 

Cary, NC) (4-6). 

 

In addition to within- and between-subject correlation coefficients, other types of 

correlation coefficients can be estimated from bivariate linear mixed models. Fieuws et 

al. described two other types of correlations as 1) how the evolution of one response is 

related to the evolution of another response („association of the evolutions‟) and how the 

association between responses evolves over time („evolution of the association‟) (7, 8). 

These types of correlations can be estimated from bivariate linear mixed models as well, 

but they seem to be most interpretable if the responses display monotonic, approximately 

linear, changes over time; otherwise it may become difficult to interpret the correlation 

between evolutions in responses over time. Fieuws et al. assumed conditional 

independence of the observations given the random effects, but this is not a necessary 

restriction, and is in fact unreasonable for some datasets (7, 8). 

   

Other types of joint modelling approaches exist for bivariate longitudinal data, such as 

treating one response as a time-varying covariate while modelling the other as the 

dependent variable. This approach is used extensively in the literature, and is particularly 

common for jointly analyzing time-dependent responses and a survival outcome (9). This 

approach does address the correlation between responses in the sense that the direction of 

the corresponding regression coefficient mirrors the direction of the correlation between 

the two variables, and standard significance tests for the coefficients can be used to assess 

the strength of the association. However, it is problematic to use responses as predictors 

because the choice of the response to treat as the dependent variable is often arbitrary, 

and different choices may in fact lead to different conclusions (10). Also, additional 

computations are required to determine marginal responses and marginal associations 

after fitting such models (7). Another possible strategy to analyze bivariate longitudinal 

data is to fit a marginal model for each response, then join these models in some way (11, 

12). However, with this approach, it is not possible to estimate correlations between 

responses because this strategy does not explicitly model the correlation structure of the 

data (10). 

 

All of the above concepts can be easily extended to the analysis of multivariate rather 

than bivariate longitudinal data (10). Because there is no consensus on the best strategy 

for the analysis of multivariate longitudinal data, and the chosen strategy to estimate 

correlations between multiple longitudinal responses will naturally depend on the 

research question, the aim of this study was to estimate and explore differences in overall, 

within- and between-subject correlations, as well as correlations representing the 

„association of the evolutions‟ from multivariate, bivariate, and univariate linear mixed 

models under a variety of variance covariance patterns. 
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2. Methods 

 

2.1 Bivariate and multivariate linear mixed modelling strategies 

 
For a bivariate (q=2 responses) or multivariate (q>2 responses) LMM, with a maximum 

of p successive time points for each subject, we represent each subject‟s responses y by a 

vector of length qp x 1 by stacking first all responses at each time point, then stacking the 

consecutive time points. It is assumed that y follows a multivariate normal distribution 

with mean vector μ and qp x qp positive definite variance covariance matrix Ω. For an 

individual subject, denoted subject i of N total subjects, with measurements at mi number 

of time points, where mi<p, the dimensions of the response vector and variance 

covariance matrix will be qmi and qmi x qmi respectively.  

 

The general form of a LMM is: 

 

Yi = Xiβ + Zibi + εi , 

bi ~ N(0, D) , 

εi ~ N(0, Ri) 

 

where b1, b2,…, bN, ε1, ε2,…,εN are independent. Xi and Zi are design matrices of known 

covariates, β is a vector containing the fixed effects, bi is a vector containing the random 

effects, εi is a vector of residual components, D is the variance covariance matrix of the 

random effects, and Ri the variance covariance matrix of the residuals, which depends on 

i only through its dimension. This general linear mixed model implies that the marginal 

density function of Yi is an ni-dimensional normal distribution with mean E(Yi) = Xiβ, and 

with variance covariance matrix Cov(Yi) = ZiDZi
’
 + Ri. For the estimation of within- and 

between- subject correlation coefficients, we assume random intercepts only and a 

Kronecker product structure for Ri  (Ri = dimqmi ( ⨂  ), such that the q x q block 

diagonal of Ri provides estimates of the within-subject correlations between responses 

and D provides estimates of the between-subject correlation between responses. With this 

specification of Ri, it is assumed that V, which is a p x p correlation matrix of the 

repeated measures on a given response, is the same for all response variables. It is also 

assumed that Σ, which is a q x q dimensional positive definite matrix representing the 

variance covariance matrix between the responses at a given time point, is the same for 

all time points. SAS PROC MIXED (13) allows for the specification of three different 

error structures for V, namely unstructured, compound symmetry, and first-order 

autoregressive. Lastly, the overall correlation coefficient can be estimated from the 

overall covariance matrix Ω. 

 

The bivariate or multivariate LMM can also be specified in such a way that correlations 

indicating the association of the evolutions can be estimated instead of the above 

described within- and between-subject correlations. This is accomplished by allowing 

both random intercepts and random slopes in the model; the correlation of the evolutions 

is then simply the correlation between the random slopes. Additionally, by not assuming 

independence of the observations given the random effects, correlations between the 

residual errors can also be estimated by specifying a Kronecker product structure for Ri. 

With this specification, Ri yields estimates of the residual within-subject correlations that 

remain after accounting for the subject-specific time trends in each response.   
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2.2 Univariate linear mixed modeling strategy 

 
As noted, bivariate and multivariate LMMs are preferred over univariate LMMs for the 

estimation of correlations between responses measured repeatedly over time. However, 

univariate LMMs are frequently used to estimate such associations, and it is of interest to 

note how the results of these models differ from those of bivariate and multivariate 

LMMs. Within- and between-subject correlation coefficients between two responses can 

be calculated from univariate LMMs; however, the inclusion of more than one response 

as a covariate yields estimates of association that are typically not the target quantities of 

interest. To compute within- and between-subject correlation coefficients, the following 

univariate LMM can be fit (14, 15): 

 

Yij = αj + βWj(Xij -  ̅j) + βB ̅j + εij 

αj = α + u0j , βwj = βw + u1j 

(   
   

)   *( 
 
) (

  
      

     
   

 ) + , εij ~ N(0,   
 ) 

 

 

where j = 1…J indexes individual subjects; i = 1…nj indexes repeated measurements 

within subject j, and  ̅j is subject j‟s mean X over all measurements. In this model, βB 

reflects the between-subject association between Y and X and βW reflects the within-

subject association (15). In general, when only one term for the association between Y 

and X is included in the model, its coefficient reflects a weighted average of the within- 

and between-subject associations, and when the two differ, it is best to specify a model 

with separate within- and between-subject terms (15). By fitting additional univariate 

LMMs, it is possible to estimate within- and between-subject coefficients (14) as follows: 

 

              ̂ √
 ̂   

 

 ̂   
  

 

             ̂ √
 ̂   

 

 ̂   
  

 

where the variance components for X and Y are estimated in the following LMMs: 

 

Aij = αj,A +  εAij 

αj,A = αA + u0j,A 

u0j,A ~ N(0,     
   , ε0j,A ~ N(0,     

   
 

where A = Y, X. The overall correlation coefficient can be estimated as 

 

            ̂     √*
 ̂   

    ̂   
 

 ̂   
    ̂   

 + 

 

where  ̂      can be estimated from a univariate LMM for Y in which only one 

coefficient is estimated for the association between Y and X (14).  
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3. Example Data 

 
We illustrate the estimation of the various types of correlations between longitudinal 

responses using data from a prospective observational study of 23 infants and children 

treated with extracorporeal membrane oxygenation (ECMO). Animal studies have 

demonstrated that cell-free plasma oxyhemoglobin (OxyHgb), resulting from the rupture 

of red blood cells within the blood vessel (intravascular hemolysis), rapidly reacts with 

intravascular nitric oxide (NO), leading to endothelial dysfunction and end-organ 

dysfunction (16). Patients on ECMO provide a setting in which to evaluate this 

phenomenon in humans because intravascular hemolysis occurs secondary to the sheer 

forces associated with the pump and circuit of these life-support machines. In this study, 

serial blood samples were collected before, during, and after ECMO in these patients. 

Plasma was isolated and evaluated for cell-free hemoglobin (Hgb) levels, hemoglobin 

species (oxyhemoglobin, methemoglobin), and plasma NO consumption using 

absorbance spectrophotometry, spectral deconvolution and NO chemiluminescence 

assays, respectively. For this analysis, we used data on Hgb, OxyHgb, and NO 

consumption from samples that were collected at 2, 4, and 6 hours after the start of 

ECMO, daily for the remainder of the child‟s first week on ECMO, and at least one 

time/week during the remainder of the child‟s time on ECMO. Only data from the first 21 

days of each ECMO course were included in analyses. This cut-off was chosen because 

only 2 patients had ECMO courses longer than 21 days and we wished to minimize the 

loss of data and any undue influence these patients might have had on the results while 

maximizing the likelihood of convergence of the bivariate and multivariate models. For 

the bivariate and multivariate LMMs, because the Kronecker product covariance 

structures available in SAS PROC MIXED require a categorical time variable, the time 

points were grouped into the minimum number of periods such that no patient had more 

than one measurement per period, yielding 19 time periods.  

 

4. Results 
 

 Figure 1 shows the trends in all factors over time, averaged over all patients and 

modelled using LMMs with time effects fit using restricted cubic splines with a knot at 

each decile. Figure 2 shows individual patients‟ trends in each factor over time for 4 

randomly selected patients. These figures visually suggest the presence of positive overall 

and within-subject correlations between NO Consumption and both Hgb and OxyHgb. 

 

JSM 2013 - Section on Statistics in Epidemiology

3327



 
Figure 1: Average trends in all factors over time 

 

 
Figure 2: Individual patient trends in all factors over time for 4 randomly selected patients 

 

Due to the skewed distribution of the responses, each was log transformed prior to fitting 

the models used to calculate correlations. The default restricted error maximum 

likelihood method (REML) and the Kenward and Roger method for computing the 

denominator degrees of freedom of the fixed effects were used. The V and Vcorr options 

were used to output the Ω variance-covariance matrix and its corresponding correlation 

matrix. The G and Gcorr options were used to output the D variance-covariance matrix 

and its corresponding correlation matrix. Finally, the R and Rcorr options were used to 

output the Ri variance-covariance matrix and its corresponding correlation matrix. The 

following SAS code was used to fit the bivariate and multivariate LMMs for the 

estimation of within- and between-subject correlation coefficients. In this example, a 

Kronecker product variance covariance structure for Ri with V having a compound 
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symmetry structure was specified. For the bivariate models, “where” statements were 

used to restrict the analyses to only the two variables of interest. 

 

proc mixed data=ecmo_data_long; 

class patient mvar replicate; 

model logresponse = mvar / solution ddfm=kr; 

random mvar / type=un subject=patient V Vcorr G Gcorr;  

repeated mvar replicate / type=un@cs subject=patient R Rcorr; 

run; 

 

These bivariate and multivariate LMMs yielded the overall, within- and between-subject 

correlation coefficients shown in Table 1. 

 

 

Table 1: Overall, within-, and between-subject correlation coefficients from bivariate and 

multivariate linear mixed models fit using un@cs and un@ar(1) variance covariance 

structures for Ri 

Structure of V and 

type of correlation 

Total cell-free hemoglobin and 

NO Consumption 

Oxyhemoglobin and NO 

Consumption 

 

Bivariate model 
Multivariate 

model 

Bivariate 

model 

Multivariate 

model 

 

r P r P r P r P 

CS 
        

Overall 0.37 <.0001 0.37 <.0001 0.62 <.0001 0.62 <.0001 

Between-subject 0.22 0.75 0.22 0.25 0.88 0.06 0.88 0.054 

Within-subject 0.41 <.0001 0.42 <.0001 0.56 <.0001 0.57 <.0001 

AR(1) 
        

Overall 0.44 <.0001 0.42 <.0001 0.63 <.0001 0.64 <.0001 

Between-subject Inestimable -0.08 1.0 0.94 0.002 1.0 0.07 

Within-subject 0.52 <.0001 0.50 <.0001 0.57 <.0001 0.60 <.0001 

         

 

These results suggest, as we could predict from the plots, that the within-subject 

correlations between NO consumption and both total cell-free hemoglobin and 

oxyhemoglobin were highly statistically significant. Due to the small number of patients 

and the greater variability within-subjects than between-subjects in the factors, the 

between-subject correlation coefficients were found to be nonsignificant in all models 

except the bivariate model for oxyhemoglobin and NO consumption with Ri having an 

un@ar(1) structure. In the bivariate model for total cell-free hemoglobin and NO 

consumption with Ri having an un@ar(1) structure, the between-subject correlation 

coefficient was inestimable because the between-subject variance estimate in D was zero 

for NO consumption. In addition, the bivariate and multivariate LMMs with Ri specified 

as un@un did not converge. Likelihood ratio tests were used to test the statistical 

significance of each correlation. For example, the following code was used to fit a model 

in which the within-subject correlation coefficient was set equal to zero; the difference 

between twice the log-likelihood of this model and that of the model with this correlation 

allowed to vary was compared to a chi-squared distribution with one degree of freedom 

to yield the p-value shown in Table 1 for this correlation. 
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proc mixed data=ecmo_data_long; 

class patient mvar replicate; 

model logresponse = mvar / solution ddfm=kr; 

random mvar / type=un subject=patient V Vcorr G Gcorr;  

repeated mvar replicate / type=un@cs subject=patient R Rcorr; 

parms (1) (0) (1) (1) (0) (1) (0.5) / hold= 5; 

run; 

 

The following SAS code was used to fit multivariate LMMs for the estimation of the 

correlations of the evolutions in the responses over time. In this example, a Kronecker 

product variance covariance structure was specified for Ri with V having a compound 

symmetry structure; this yielded estimates of the residual within-subject correlations that 

remained after accounting for the subject-specific linear changes over time in each factor. 

Continuous time on ECMO was treated as a separate random effect for each response in 

this model. 

 

proc mixed data=ecmo_data_long; 

class patient mvar replicate; 

model logresponse = mvar mvar*days_on_ECMO / solution ddfm=kr; 

random mvar mvar*days_on_ECMO / type=un subject=patient V Vcorr G Gcorr;  

repeated mvar replicate / type=un@cs subject=patient R Rcorr; 

run; 

 

These multivariate LMMs yielded the correlations of the evolutions and the residual 

within-subject correlations shown in Table 2. 

 

Table 2: Correlations between linear trends over time and residual within-subject correlations from 

multivariate linear mixed models 

 

 
Ri with un@cs structure Ri with un@ar(1) structure 

 
r P r P 

Correlation of the evolutions 
    

Hemoglobin and NO Consumption 0.25 0.58 0.07 1.00 

Oxyhemoglobin and NO Consumption 0.28 0.58 0.47 0.24 

Residual within-subject correlations     

Hemoglobin and NO Consumption 0.53 <.0001 0.51 <.0001 

Oxyhemoglobin and NO Consumption 0.63 <.0001 0.63 <.0001 

     
 

These models show that the residual within-subject correlations are much stronger than 

the correlations of the evolutions, which is not surprising given the clearly nonlinear 

changes in all factors over time. If a better fitting functional form had been chosen for the 

evolutions in the responses over time, their correlations likely would have been stronger. 

However, due to the heterogeneity in all factors‟ changes over time within subjects, we 

preferred to compare the structures available in SAS PROC MIXED for the variance 

covariance matrix of the residuals rather than to search for an ideal functional form for 

the fixed time effects. 

 

JSM 2013 - Section on Statistics in Epidemiology

3330



Finally, univariate LMMs were used to estimate within- and between-subject correlations 

between total cell-free hemoglobin and NO Consumption using the following SAS code. 

 

PROC mixed data= all_ecmo_data; 

class patient;  

model logNO_Cons = logHgbdiff meanlogHgb / s ddfm=kr; 

random intercept logHgbdiff / type=un subject=patient; 

run; 

 

PROC mixed data= all_ecmo_data; 

class patient;  

model logNO_Cons =   / s ddfm =kr; 

random intercept / type=un subject=patient; 

run; 

 

PROC mixed data= all_ecmo_data; 

class patient;  

model logHgb=   / s ddfm =kr; 

random intercept / type=un subject=patient; 

run; 

 

The significance of the within- and between-subject effects in the first model indicated 

the statistical significance of the corresponding correlation coefficients. The second and 

third models were required to estimate the variance parameters needed to calculate the 

within- and between-subject correlation coefficients. These variance parameters, along 

with the parameter estimate for total cell-free hemoglobin as a single effect in a separate 

univariate LMM, were used to estimate the overall correlation coefficient. Identical 

models were fitted for NO Consumption with oxyhemoglobin as the predictor. These 

correlation coefficients are shown in Table 3. 

 

Table 3: Overall, within-, and between-subject correlation coefficients from 

univariate linear mixed models 

Type of correlation 
Total cell-free hemoglobin 

and NO Consumption 

Oxyhemoglobin and 

NO Consumption 

 
r P r P 

Overall 0.37 <.0001 0.60 <.0001 

Between-subject 0.25 0.28 0.79 <.0001 

Within-subject 0.41 <.0001 0.56 <.0001 

     
 

All point estimates are similar among the univariate, bivariate, and multivariate models. 

However, the main difference between the correlation coefficients produced by the 

univariate LMMs and those produced by the bivariate and multivariate LMMs is the 

greater statistical significance of the between-subject correlation between oxyhemoglobin 

and NO consumption in the univariate model. This difference is mainly because the 

univariate model does not account for the variability of the estimate of the subject‟s 

average oxyhemoglobin over their entire ECMO course; this is treated as an independent 

variable in the model and is thus assumed to be measured without error.  
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4. Conclusions 

 
In this study, we have compared several different types of correlation coefficients that 

can be estimated from univariate, bivariate, and multivariate linear mixed models for 

longitudinal data on multiple responses. With such data, the Pearson correlation 

coefficient is not an appropriate estimator because it ignores the correlation structure of 

the repeated measures. We showed that the various types of correlations that can be 

calculated from longitudinal data can be quite different, but that generally the three types 

of models yield similar point estimates for overall, within-, and between-subject 

correlation coefficients. It is important to understand the types of correlations that one 

wishes to estimate and the correct interpretation of those correlations prior to model 

fitting. 

 

There are several limitations inherent in the models fit in this study. Firstly, the 

Kronecker product variance covariance structure for Ri requires the restrictive assumption 

that the intra-response correlations are equal for all responses. Although a fully 

unstructured variance covariance matrix could be specified for Ri, this model would not 

converge in our dataset and likely would not converge in most datasets with highly 

unbalanced data. Additionally, all of the Kronecker product variance covariance 

structures currently available in SAS PROC MIXED best accommodate equally spaced 

time points. In the future, we would like to investigate structures more appropriate for 

unequally spaced time points. In this study we did not compare goodness of fit criteria 

such as Akaike‟s information criterion (AIC), AIC corrected (AICC), or Bayesian 

information criterion (BIC) between models. We chose not to examine these criteria 

because 1) they could not have distinguished the best fitting model of all the models that 

were fit and 2) the goal of this study was to compare and contrast the different types of 

correlation coefficients estimable from univariate, bivariate, and multivariate LMMs 

rather than to find the best fitting model. Finally, we did not discuss all of the diagnostic 

analyses that should typically be incorporated into any analysis of repeated measures 

data. However, we did assess the normality assumption of the outcomes and residuals as 

well as the effects of influential points and outliers. In conclusion, multivariate 

longitudinal data provide a unique opportunity to examine the joint progression of 

multiple responses over time. Since several distinct types of correlations can be estimated 

from such data, it is important to understand which correlation is of interest prior to 

model fitting. Subsequently, the best fitting bivariate or multivariate linear mixed model 

that answers this question should be identified. 
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