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Abstract

Cross-sectional data based on independent repeated samples do not obviously lend themselves
to longitudinal modeling. We show that when data is clustered (e.g., repeated measures within in-
dividuals, patients nested in clinics, students nested in schools, respondents nested in areas) with
invariant second-level units, longitudinal modeling at the second level is possible and meaningful.
Specifically, we consider a factor analysis model with autoregressive factors whose measurement
structure varies by first-level sample size m, being a 1-factor model when m is very large but a
2nd-order factor model otherwise. We consider issues of consistency, bias, alternative estimators,
chi-square model tests, and factor score estimation, as well as model misspecification and effects
of intraclass correlation. Among other things, we note thatBartletts factor score estimates require
modification for 2nd-order factor models. The models are implemented using standard software,
evaluated via simulations, and illustrated with repeated survey data on information and communi-
cation technology.

Key Words: Longitudinal data, structural equation models, factor analysis, factor score estimation,
consistent estimation, small area estimation

1. Introduction

Sampling over time enables researchers to model the evolution (the change) of economic,
social or behavioral processes in populations (e.g., Duncan and Kalton, 1987). When (part
of the) individuals surveyed overlap during several periods, as in rotating panels, panel
data methods are typically used. A vast literature on panel data methods is available (see
Binder (1998); Kalton and Citro (1993); Kasprzyk, Duncan, Kalton and Singh(1989)). In
contrast to panel surveys, we address issues to the case where the individuals surveyed are
different in each time occasion of the survey1, so we can not use the classical methods
of panel data analysis. To be able to do longitudinal analysis, we assume hierarchical two
-level grouped data where first-level units are nested in second-level units. This is the case
for example, in a multi-stage survey, where primary sample units (PSU) are nested in sec-
ondary sample units (SSU), also in small areas surveys, where the individuals are nested in
small geographical areas (see Ghosh and Rao (1994) and Pfeffermann (2013) for a review
of small-area analysis). In contrast with other work in repeated surveys (e.g., Binder, and
Dick (1989), Blight and Scott (1973), and Fuller (1990), Holt and Skinner, (1983), Jones
(1980)) we consider the general case where the key variablesof the longitudinal model are
latent, observable just through multiple indicators. We believe this a general set-up with
potential multiple applications. We give an example of application to a longitudinal anal-
ysis of household information and communication technology (ICT) for repeated surveys
in a region of Barcelona (Spain). The methods presented willaddress both the estimation
of structural parameters of a longitudinal model, as well the estimation of the levels of la-
tent variables in the secondary sample units. The second aspect makes the work overlap
with small area estimation methods (see the recent survey ofPfeffermann, 2013) which we
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frame in a general context where we have multiple indicator models and repeated surveys.
The basic models to be proposed for the analysis turn out to bespecial models for struc-
tural equation modeling (SEM) and thus can be analyzed usingstandard software widely
available to researchers.

Section 2 describes the data design and models to be used for the analysis; Section 3
investigates the performance of the models proposed in estimating structural parameters
of the longitudinal model; Section 4 does the same for small area estimation of latent
characteristics of interested (factor score estimation);Section 5 discusses an application
with empirical data; Section 6 concludes.

2. Data structure and models

Consider a set ofk variables{Yj , j = 1, . . . , k} and repeated surveys{St, t = 1, . . . , T}
in a stratified/clusteredC = {Cg, g = 1, . . . , G} populationP, whereP = ∪G

g=1Cg and
Cg ∩ Cg′ = ∅ when g 6= g′. Thus, we have data{Yijgt} with Yijgt being the value of
variableYj on individuali of clusterg for the tth survey. Note that notationYijgt is loose
in the sense that individuali is different in the repeated (varyingt) surveys. One example
of this set-up is repeated surveys on several variables of individuals of a population that
is stratified in small areas (thegs). In section below we consider the example where we
have repeated surveys on household usage of information andcommunication technology
(ICT), where each household responds to ICT usage variablesYj, j = 1, . . . , k, and the
aim is to assess the variation across time of the ICT level of the households at a small area
level (in the illustration, the population is clustered in 41 small areas). Assume the survey
is repeated with independent cross-sections along severalyears. In this paper we address
the issue of longitudinal analysis for the areas as well as the estimation of the levels of
ICT usage for the different areas. We will use the ICT exampleto make the discussion of
the model more concrete, but other examples could have been used, e.g. the area (second
level units) could be a hospital (or school, or teacher, etc.) and the first level units could be
patients (or students).

We assume the following model for first-level unit data

ygti = ΛFgti + ǫgti (1)

Fgti = fgt + wgti (2)

fg(t+1) = ρfgt + vt, t = 1, . . . , T − 1 (3)

whereftg andFtgi are first- and second-order scalar factors (latent variables) respectively,
ǫgti (k× 1), wgti andvt are centered (vector/scalar) variables. In the ICT example, fgt cor-
responds to the true (unobservable) ICT level of the areag at timet, whileFgti correspond
to the true ICT level for individuali interviewed at timet in areag. Assumefgt, ǫigt, wgti

andvt are i.i.d. (in their subindexes) mutually independent random variables. No distribu-
tion is specified, except for existence of fourth-order moments of all the variables involved.
We use the terminology of areas (or small areas) but the approach does not preclude that
the areas could be teachers, schools or other secondary units of analysis.

The data can be viewed as two-level data. Figure 1 gives a schematic representation of
the type of data considered, where we see the two-level structure of first- and second-level
units, the time dimension, as well as the multivariate dimension (of the multiple indicator
model), with independent samples across time.
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Figure 1: Two level repeated cross-section data

The between model: LFMw

We can reduce the data to a time series single-level data by aggregating (taking the mean)
the variables within each areag obtaining what we can call the between (area) model.
Averagingygti acrossi within each area and time, (1) to (3) transforms to

ygt. = ΛFgt. + ǫgt. (4)

Fgt. = fgt + wgt. (5)

fj(t+1) = ρfjt + vt, t = 1, . . . T − 1 (6)

whereygt., Fgt., ǫgt. andwgt. are mean variables. Note that the autoregressive equation (3)
is unmodified by averaging within each area (it is the same as (6 ). In the structural equation
model perspective, the between model is a second-order factor model whereFgt andfgt
are first- and second-order factors, respectively, and there is an autoregressive equation for
the second-order factor. The model is depicted as a path diagram in Figure 2 (where for
the sake of simplicity, only three indicators for each factor are considered). Since this is
longitudinal factor model with first and second order factors, implied by the presence ofw,
the model is noted as LMw.

A simplification of this model arises whenw = 0 at each time point (i.e. the variance
of w is set to zero) The path diagram representation of this modelis the same as in Figure
2 but now with thew’s suppressed and thus thefs are equated to theFs. This is now a
simple first-order factor model. This model is likely to apply when the sample size within
each areag, saymg, is large, since in that case the variance ofwgt. which involves the
factor 1/mg is likely to be small. That is, when sample size within each second sample
unit is fairly large, then the model LFM may be a valid approximative model. A case
where undoubtedly LFM is the correct model is in the case of large sample size in each
area, for example in repeated surveys across countries, where the sample size is typically
fairly large. Then one just uses the approximative model LFMas the model for longitudinal
analysis. In the empirical example below, we will use the fit of model LFMw to verify that
a valid approximative model for that data is in fact LFM.
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Figure 2: LFMw: second-order factor model

SEM representation of LFMw

A structural equation model (SEM) representation of the model can be obtained as follows.
We stack vectors alongt = 1, . . . , T : y = (y′g1., . . . , y

′
gT.)

′, F = (F ′
g1., . . . , F

′
gT.)

′, e =
(e′g1., . . . , e

′
gT.)

′, w = (w′
g1., . . . , w

′
gT.)

′, f = (f ′g1, . . . , f
′
gT )

′, so that

y = ΛF + e (7)

F = f + w

f = Bf + v

v′ = (f1, v2, . . . , vt), e andw are mutually independent with covariance matricesΦv, Φe

andΦw. With this definition, the(T.k) × (T.k) variance matrixΣy = var(y) has the
moment structure

Σy = Λ[(I −B)−1Φv(I −B′)−1 +Φw]Λ
′ +Φǫ.

That is,Σy = Σ(θ), whereθ a vector of unconstrained parameters to be estimated that
comprises the free elements of the parameter matrices involved in the moment structure.
For the sake of simplicity of exposition, assume thatΦw = φwIT . This restriction can be
amended when needed by proper specification of the diagonal terms in matrixΦw (when
sample size varies highly across clusters, then we can specify linear equalities of the terms
of the diagonal ofΦw involving the factors of area sample sizemg).

For the example of LFMw in Figure 2, the parameter matrices associated to the SEM
approach are as follows (note thatT = 4 andk = 3)

Λ =















































1 0 0 0
λ1 0 0 0
λ2 0 0 0
0 1 0 0
0 λ1 0 0
0 λ2 0 0
0 0 1 0
0 0 λ1 0
0 0 λ2 0
0 0 0 1
0 0 0 λ1
0 0 0 λ2














































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B =











0 0 0 0
ρ 0 0 0
0 ρ 0 0
0 0 ρ 0











Vector of free parameters:

θ′ = (ρ, λ2, λ3, φe1, φe2, φe3, φe4, φw, φf1 , φv2, φv3, φv4)

The variance ofw is restricted by equality across times.
We distinguish the two models

LFM: φw = 0 (Fgti = fgti). This is a first-order factor model.

LFMw: φw free parameter (Fgti 6= fgti). This is a second-order factor model.

The SEM approach allows estimation and inferences for thestructural parameters
(e.g.,ρ, λ, . . . ) of both LFM and LFMw, with estimates being consistent,asymptotically
normal, etc. Estimation and inferences will be carried using standard software for SEM
analysis. In our illustration, the moment structure is to befitted toS by EQS (Bentler, 2001-
2010), with ML or LS estimation. We use normal theory and distribution free (robust) s.e.
and chi-square goodness of fit test. Other SEM software, e.g., LISREL, Mplus, CALIS,
sem of Stata, AMOS, etc. could have been used. The methods used yield inferences
(asymptotically) free from distributional assumptions (Satorra and Bentler, 1990, 1994).
Robust goodness of fit test of the model are also provided.

We are interested also onfactor score estimates for latent variables at the area (second-
level units) level. In the case of LFM, standard Bartlett’s and Thomson’s factor scores
estimation are readily available in SEM software. In the case of LFMw, we need to develop
specific Bartlett’s and Thomson’s factor scores, since we are dealing with a second-order
factor model.

ML fitting function is:2

F (S,Σ(θ)) = ln | Σ(θ)S−1 | +tr {SΣ(θ)−1} − p

Σ is the covariance structure for either LFM or LFMw,S is the sample covariance matrix of
the second-level unit multivariate vectory. The “sample size” isG. Chi-square goodness
of fit test of the model, testing equality ofρ across time, invariance ofλ’s, etc. are available.
3

3. Illustration with simulated data

This section uses simulated data to assess the performance of the proposed models LFMw
and LFM in analyzing repeated samples with clustering. Two -level data is generated from
the following model equations:

Yjtgi = λjFtgi + ǫjtgi,

Ftgi = ftg + wtgi

whereλj = λ = (1, .6, .1), ψǫ = (I3 − diag(λ ∗ λ)) + diag(0.2, 0.2, 0.2); j = 1, . . . , 3;
t = 1, . . . , 4; i = 1, . . . ,m; andg = 1, . . . G. We consider variation onm (the sample

2
The WLS fitting function isf(θ) = (s − σ)′W (s − σ)

3
For the required asymptotic theory, see e.g. x Satorra, A. and P.M. Bentler (1990). Model Conditions for Asymptotic Robustness in the Analysis of Linear

Relations,Computational Statistics & Data Analysis , 10, 235-249
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size in each second-level units, considered to be constant for all the second-level units, for
simplicity). Hereλ ∗ λ denotes simply element-wise squaring. We further letρ = 0.8,
Ψv = (1− ρ2)× IT−1,

f2 = ρf1 + v2

. . .

fT = ρfT−1 + vT

For this type of data, we can compute the intraclass (intra-area) correlation (ICC) as the
ratio of the variances within-area and total variance; thatis ICC = φf1/(φf1 + φw). The
within versus between variation for the true valuesFig are shown in Figure 3. This is a
plot of the true values ofF (the ordinate scale) against the area number. The plot considers
G=100 areas, and m=60 cases in each area. Big circles in the plot denote the true valuefg
for each area. The graph shows variation of theFig around the values offg than in turn
show variation across the areas. In this graph the ICC = 0.1.

Figure 3: Two level variation when ICC = 0.1, G = 100, mg=60

SEM analysis can provide correct asymptotic inferences fornormal and non-normal
data. This leads us to consider simulated data that hasfg non-normally distributed. We let
data arise from the scaled variablefg ∼ (χ2

1−1)/
√
2. The distribution ofνt, t = 2, . . . , T ,

as well as the distribution of the first-level variableswtgi andǫjtgi, was chosen to be normal.
The histogram shown in Figure 4 corresponds to the distribution of f with G = 1200.

A data set of the form described is simulated and the models LFM and LFMw are
fitted using EQS. Results on estimates and standard errors (both the NT and robust ones)
are collected into tables 1 to 3 that varym and ICC. The value ofG is set constant equal
to 1200 (a small value ofG was also used but without observing difference in the results
that will be reported). The tables have two parts, the first half is devoted to LFMw, the
second to LFM. The first column of the table shows the parameters involved in the model;
the second column shows the estimates obtained using ML estimation; the third column
shows the normal theory standard errors (se); the fourth column shows the robust se (rse).
A chi-square normal theory likelihood ratio test is also computed for each of the models.
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Figure 4: Histogram of true values of f (G = 1200)

Table 1: Estimates for LFM and LFMw whenm = 3 and ICC = 0.1.

parameter true value ρ̂ se robust se
LFMw:
ρ .8 .807 .048 .052
λ1 1 1 - -
λ2 .5 .496 .016 .016
λ3 .1 .107 .010 .010
φf .111 .094 .021 .023
φw .333 .351 .033 .034
φv .36 .356 .038 .041
Goodness of fit: χ2

69 = 88.78 p – value = 0.0546
LFM:
ρ .8 .445 .021 .021
λ1 1 1 - -
λ2 .5 .520 .016 .015
λ3 .1 .112 .010 .010
φf .111 .394 .026 .026
φw - - - -
φv .36 .779 .031 .030
Goodness of fit: χ2

70 = 127.984 p – value = 0.00028
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Table 1 considers the case where area sample size is small,m = 3, and ICC is also
small, ICC = 0.1. This is a case that one can expect high small area effect, in the sense
that LFMw will perform differently than LFM. The autoregressive parameterρ whose pop-
ulation value is0.8 seems to be correctly estimated by model LFMw, but there is severe
bias on the SEM estimates ofρ when using the approximative model LFM: the estimate is
.445 when the true value is 0.8 (and the confident bounds,± twice 0.021, do not compen-
sate for this bias). The chi-square goodness of fit test showsa good fit for the LFMw (a
p–value greater than5%) but a very poor fit for LFM (p–value = 0.00028). Note also that
the estimate ofφw, the variance of the termw is large; thus, setting its value to zero, as
done by LFM, incurs a severe misspecification. Note also confidence bounds of parameter
estimates of the LFMw model encompass the true values of parameters. To be noted also
is very minor difference between the s.e. of parameter estimates, the normal theory (se) or
the robust se (rse). One curious issue to note is that in estimating ρ̂ the model LFMw gives
a much larger standard error than when using LFM. We encounter what is the payoff of
using a correct model, is that bias decreases but also the se increase. Note that in this the se
of a very poor estimator ofρ, the one of LFM, is half the one of the correct estimator based
on LFMw.

Keeping all the conditions the same, Table 2 shows the results when area sample size
increases tom = 60. Table 2 shows that the increase on sample sizem reduces drastically

Table 2: Estimates for LFM and LFMw whenm = 60 and ICC = 0.1 .

parameter true value ρ̂ se robust se
LFMw:
ρ .8 .754 .024 .024
λ1 1 1 - -
λ2 .5 .498 .003 .003
λ3 .1 .101 .003 .003
φf .111 .112 .010 .012
φw .017 .003 .010 .009
φv .36 .381 .017 .0160
Goodness of fit: χ2

69 = 68.423 p – value = 0.497
LFM:
ρ .8 .749 .017 .017
λ1 1 1 - -
λ2 .5 .498 .003 .003
λ3 .1 .101 .003 .003
φf .111 .114 .005 .009
φw - - - -
φv .36 .386 .009 .009
Goodness of fit: χ2

70 = 68.500 p – value = 0.528

the inconsistency of the estimate ofρ when using LFM (even though a slight bias still
persist since the 95% coverage interval0.749±2∗0.0167 misses 0.8 slightly. The estimate
of ρ based on LFMw seems to perform on target. Note that the se for the LFM model are
still slightly smaller than for the LFMw. The chi-square goodness of fit now does not reject
LFM (p-value = 0.528). Again the LFMw provides accurate estimates for all the parameter
of the model (all true values under the the 95% confidence bounds of parameter estimates).
The estimate of the varianceφw has now been reduced drastically, as the population value
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of this variance is indeed reduced since it has been multiplied by the factor1/m where m
is large. Slight differences are observed between the normal theory and robust se. We thus
conclude that the increase ofm makes LFM a valid model representation for the data. In
the ICT data example to be discussed below,m = 75 so it is likely we are falling in that
situation where LFM is the appropriate model. The exact correct model is LFMw , but
settingφw = 0 in that data context does not lead to misspecification.

For both the LFMw and LFM and the data context of the simulations, theory of asymp-
totic robustness (AR) as described in Satorra and Bentler (1990) ensures asymptotic cor-
rectness of the se for all the parameters except for the variance of the non-normal compo-
nent. Thus, we should expect the se and rse to be very similar (since they are asymptotically
equal, adhering to the AR mentioned) except possibly for these for the estimate ofφf . We
see that discrepancy between robust and normal theory se is minor for all the parameters.
We also see small discrepancy between the se and rse of estimate of φf in both tables.
We will see that the discrepancy among se and rse will appear in the next table to be dis-
cussed. The theory of asymptotic robustness of Satorra and Bentler (1990) attests also to
the asymptotic correctness of the goodness of fit tests shownin the tables, for both models
and given the data generated process, despite non-normality.

We have seen the effect of increasing the area sample sizem. We will now keepm = 3
small, but we will increase ICC to a large value, ICC = 0.833. This case is illustrated in
Table 3 The results of this table show that increasing ICC hasthe same effect as increasing
the area sample sizem. LFM is now again a valid approximative model performing simi-
larly as the true model LFMw. The only difference with Table 2is the large difference in
se and rse for the estimate ofφf . This is in accordance to the AR theory of Satorra and
Bentler (1990), where now we see the distortion of the normaltheory se of estimator ofφf
now made prominent given the high ICC value. So, with regard to parameter estimation,

Table 3: Estimates for LFM and LFMw whenm = 3 and ICC = 0.833

parameter true value ρ̂ se robust se
LFMw:
ρ .8 .812 .017 .016
λ1 1 1 - -
λ2 .5 .486 .010 .010
λ3 .1 .107 .009 .009
φf .833 .852 .041 .088
φw .056 .067 .020 .020
φv .36 .372 .027 .025
Goodness of fit: χ2

69 = 69.399 p – value = 0.463
LFM:
ρ .8 .775 .014 .013
λ1 1 1 - -
λ2 .5 .495 .009 .009
λ3 .1 .111 .009 .009
φf .111 .897 .010 .087
φw - - - -
φv .36 .445 .019 .019
Goodness of fit: χ2

70 = 79.636 p – value = 0.202

we conclude that
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1. LFMw produces consistent estimates ofρ (and the other parameters of the model)
even for smallm and small ICC;

2. Analysis based on LFM suffers from (severe) bias when estimating ρ (and other
parameters) whenm and ICC are small;

3. Estimates of LFMw and LFM converge to each other whenm and/or ICC increase.

4. Factor score estimation

We now consider factor score estimation. We will develop estimates for the realized values
of the (latent) variablesf1 andv1, . . . , vT for each areag = 1, . . . , G.

We rewrite LFMw in factor model form

y = Πv + r (8)

whereΠ = Λ(I − B)−1, r = Λw + ǫ andv′ = (f1, v2, . . . , vT ). LetΨr, Φv, Ψw andΨe

denote the variance matrices ofr, v, w ande respectively. Clearly,Ψr = ΛΨwΛ
′ + Ψe.

Now applying to (8) the classical theory of factor score estimation in factor analysis, we
obtain the two factor score estimators

Bartlett’s:
ṽB = (Π′Ψ−1

r Π)−1Π′Ψ−1
r (y − µy)

and
Thomson’s:

ṽT = ΦvΠ
′Σ−1

y (y − µy)

whereΣy = (ΠΦvΠ
′ +Ψr) andµy = E(y) .

1. Thomson’s correspond to BLUP (best linear unbiased predictor)4

2. FeasiblêvB and v̂T are obtained by replacing population values of parameters by
consistent estimates. The feasible Thomson’s is the (empirical) BLUP (i.e., an EBLUP).

WhenT = 1 andk = 1 then

ygi = fg + wgi

sinceΛ = 1, ǫig = 0. Let Φw = φw (= σ2w) be the variance within area, andΦf1 = φf1
(= σ2b ) the between area variance. It is interesting to note that in that case (T = 1 and
k = 1 ), Thomson’s factor score estimator takes the form

f̃g =
Φf

Φf + n−1
g Φw

(y.g − y.g) (9)

an expression that coincides with the classical (combined)small-area estimator for a cen-
tered variable (for an overview on the theory of small area estimation, see Ghosh and Rao,
1994). Our Thomson’s factor score estimation formula generalizes thus to multivariate
analysis (k > 1) and/or longitudinal data (T > 1), classical formulae for small area esti-
mation. As naive estimator of the factor score, to be compared with the ones developed in
the present paper, we consider the direct and combined estimators proposed in the literature
for small area estimation (e.g., Rao, 2003 ).

To assess the comparative performance of the alternative estimators of the area charac-
teristics, we consider also simulated data. The true value is known due to the simulation

4 Neudecker, H. and A. Satorra (2003), ‘On best affine prediction”, Statistical Papers, 44, 257-266
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scheme, and the quality of the alternative estimators are evaluated by computing the mean
square error

RMSE=

√

∑

g

(f̂g − fg)2/G

of the corresponding estimator̂fg of the realized and known true valuefg. We consider
several data sets that vary on the conditions of the data withrespect the size of the area
samplem and the intraclass correlation coefficient ICC. The estimators considered are the
following:

tLFMw, bLFMw: Thomson’s and Bartlett’s arising from LFMw specification

tLFM, bLFM: Thomson’s and Bartlett’s arising from LFM specification

D, csae: Small area estimators arising from considering the single variableyig = 1′kyig1/k,
where1k a k × 1 vector of1s (i.e. yig is the simple average of all the indicators).
D is the direct estimatory.g and case is the composite small area estimator (9) with
variances between replaced by consistent estimates. In this case, we only consider
estimation of the factor scoref1 for each areag. We do not consider small area
estimation of the time change variablesvt.

The table below show the results of the simulations under different data conditions. Note
that the columns forD andcsae contains only information for the factor scoref1.

tLFMw† bLFMw‡ tLFM bLFM D csae
estimating f1

f1 0.241 0.254 0.248 0.254 0.503 0.531
estimatingν ’s

ν2 0.275 0.309 0.291 0.307
ν3 0.271 0.305 0.288 0.304
ν4 0.272 0.300 0.286 0.300
† t of Thomson’s

‡ b of Barlett’s

Table 4: The RMSE of different estimators when G= 1200, m = 40 and ICC=0.33

In the data context of Table 4, where area sample size is relatively large and also ICC
is moderate, we see that the both Bartlett and Thomson estimators for f1 have a similar
performance, irregardless of whether we use the LFMw or LFM specifications. The same
occurs for the estimators of the change variablesv2 to v4. The RMSE of the small area
estimators (D and csae) double approximately those of the estimators based on a model,
with both D and csae performing similarly. Note that the datacontext considered, where
both m and ICC are relatively large, amounts to a set-up wherethe direct estimator performs
similarly as the composite small area one. We now investigate the case where we decrease
the area sample size to m=3, so that it is likely that the smallarea formulation produces
gains relatively to the standard approach.

In the data context of Table 5, where m has been reduced to 3, wesee that the use of a
proper small area sample model as LFMw clearly wins over the approximative LFM. We
see that Bartlett’s yields a higher RMSE than Thomson’s. Forthe Thomson’s estimator,
LFMw is associated to a clear RMSE gain with respect the LFM: compare the RMSEs
0.586 versus 0.784 when comparing the Thomson’s estimatorsfor the LFMw and LFM
specifications. Similar gains are attained for Thomson’s estimators of the change variables
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tLFMw† bLFMw‡ tLFM bLFM D csae
estimating f1

f1 0.586 0.895 0.784 0.892 0.741 0.753
estimatingν ’s

ν2 0.504 1.185 0.882 1.060
ν3 0.500 1.217 0.901 1.097
ν4 0.512 1.197 0.879 1.049
† t of Thomson’s ;‡ b of Barlett’s

Table 5: RMSE for different models and estimators. G=1200, m = 3 and ICC=0.33

vts. To be noted is that Bartlett factor score estimators are unaffected for whether we use
the LFMw or LFM. Table 6 gives a variation of the data set-up, where now the ICC has
been decreased to ICC = 0.1. The results are similar as the ones of Table 5, except that
now csae wins over D. This is a case where estimators based on small area clearly win
over the ones that ignore the small area formulation, and onecould say that LFMw is a
small areas model with respect to LFM. When ICC is large, we see an increase of 67%
( 0.494/0.296=1.668919) of the RMSE of LFM relatively to LFMw. This increase was
smaller in the case of ICC = 0.33, where we observed only a 34% increase on RMSE
(0.784/0.586=1.337884) when comparing RMSE of LFM versus LFMw.

tLFMw† bLFMw‡ tLFM bLFM D sae
estimating f1

f1 0.296 0.684 0.494 0.681 0.492 0.376
estimatingν ’s

ν2 0.424 0.880 0.594 0.756
ν3 0.466 0.900 0.648 0.799
ν4 0.458 0.854 0.630 0.764

Table 6: RMSE for different models and estimators, G = 1200, m= 3 and ICC = 0.1

On factor score estimation, we thus conclude: (1) The Thomson’s tLFMw (a genuine
small area estimator) wins over the alternatives for all thedata contexts considered; (2) The
gains of tLFMw with respect to tLFM increase with the decrease of the area sample size
and/or the decrease of the ICC; (3) RMSE of Thomson’s estimator outperforms the ones
of the Bartlett’s estimator in general, but they tend to the same size when m is large and/or
ICC is large. (4) Estimates of the change variablesvt can be obtained similarly as the
factor estimators off1. Those estimators may allow specific characterization of the areas
g = 1, . . . , G.

5. Empirical analysis: ICT data

Statistical offices worldwide invest resources on Information and Communication Technol-
ogy (ICT) surveys. For policy purposes, interest is in the level of ICT at small area levels.
We are interest also in changes of level of ICT. We use ICT for small areas: four repeated
surveys, 41 counties,m = 75, population of Catalonia, Spain.

Synthetic variables extracted from theTerritorial Survey on Information and Commu-
nication Technologies of the Households (ICT)’ of 2008-2011, conducted by the Statistics
Institute of Catalonia, IDESCAT, Barcelona, Spain, and theestimated loadings for the de-
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scribed LFMw model are shown in Table 7. The data consist on empirical data for 12
variables, 41 counties (“comarques”, small areas), with a sample size m = 75 for each area.
We consider 4 repeated surveys, years 2008–2011.5

Table 7: 12 synthetic ICT variables and the loading’s estimates corresponding to LFMw.
Numbers in brackets are the standard errors (robust) of estimates.

Variable Description λ̂ rse
econ Level of equipment in the household 1.043 ( .094)
mobile Number of mobile phones in the household .430 ( .073)
sinceInt Since when has access to Internet .998 ( .149)
knowPC Number of tasks with a computer 1.024 ( .042)
knowInt Number of tasks through Internet 1.000†

frecPC Intensity of use of personal computer 1.162 ( .084)
frecInt Intensity of use of Internet 1.187 ( .041)
secbuy Security perception: buying through Internet .444 (.056)
secbank Security perception: bank transactions through Internet .163 ( .016)
econ Level of economic impact of ICT actions from home .641 ( .045)
social Level of social impact of ICT actions from home 1.144 (.060)
admin Level of interaction with public administrations through Internet .371 ( .044)
† fixed to 1 to set the scale of the factor

For this data, we fitted the LFMw model obtaining the loading estimates shown on the
last columns of Table 7. The estimated autoregression was

fg(t+1) = .94 fgt + vt

(.091)

φf = .280(.093), φv = .054(.038) , φw = .03659(.03651)

The analysis was carried out using the SEM software EQS-6.2.The estimation method
used was LS with distribution free (robust) s.e. and test statistics.6

The fit of LFM with the ICT data gave very close loading estimates as the ones reported
above, and the following fitted autoregression equation

fg(t+1) = .898 fgt + vt

(.050)

φf = .306(.077), ρ̂LFM = .898(.050) compares witĥρLFMw = .94(.091). The same
software was used for the LFM analysis.7

This data shows a high stability across time of ICT at area level, so there does not seem
to be much variation of ICT across areas in the period of investigation. This is attested
by the very high value of the estimated autoregression coefficient (̂ρ = .94). Very similar
results are obtained wether one use the “small area” model approach of LFMw or the “large

5
Thanks are due to Eva Ventura from Universitat Pompeu Fabra,and Maribel Garcia, Marcos Pardal and Cristina Rovira, fromIDESCAT, for providing access

to this data.

6ML was not feasible, sinceS is a48× 48 matrix (k = 12 variables andT = 4 time points) and “sample
size” for SEM analysis isG = 41. Mean and variance adjusted Chi2 =14.644 with 10 D.F. (P value= 0.146)
(see Satorra and Bentler (1994) for the robust statistics used in conjunction to the LS estimation used.

7 Mean and variance adjusted Chi2 = 13.132 with 10 D.F. (P value= 0.21637) for LFM.
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area” approach of LFM. Note that the simulation results of Table 2 showed that for a low
intraclass correlation and area sample size ofm = 75, as the one used in this ICT data,
LFM and LFMw performed similarly.

The small value of the estimated variance ofw obtained when fitting LFMw (φw =
.037(.037)) it also suggest LFM will be a valid approximative model for this data. Thus
longitudinal analysis of the described CIT data based on a first order longitudinal factor
model (LFM) is justified; with this ICT data, just proceed using LFM. The detail analysis of
the LFM model for this ICT data is reported in work of Satorra and Ventura (in preparation).

The estimation of the factor scores forf andv2 to v4 were also computed for both
models, though not reported here for conciseness; both the LFMw and LFM lead also
to very similar factor score estimates, in parallel to the simulation results of Table 4 that
considers a large value ofm.

6. Discussion

A model has been proposed to perform longitudinal analysis with repeated cross section
data that shares the same clustering across surveys. A modelwas proposed, the LFMw, that
allowed consistent estimation of longitudinal parametersfrom independent cross-section
data with clustering.

One example of application is small area estimation, where we have areas (clusters,
second level units) and repeated surveys on that populationwith the same area structure.
A small area context is the one that had served as an empiricalillustration. A model has
been specified, the LFMw, that takes care of the small area effect induced by small samples
within each area, and/or small values of the intraclass (intra-area) correlation coefficient.

In contrast with classical small area estimation, where thetarget is just characteristics
of the areas, the LFMw allowed not only to improve on classical naive small area esti-
mators, but also allows to consistently estimate structural parameters of the longitudinal
model, like for example the autoregression coefficient. In the simulations we showed that
very small sample size in each area, and also very small ICC, allowed consistent estima-
tion of key structural parameters of the LFMw longitudinal model using classical tools of
SEM analysis. When sample within each area is not large, or ICC is small, consistency of
parameter estimates for the structural parameters of the longitudinal model is lost when we
take an approximative model LFM instead of LFMw. The use of LFM is valid when we
have large samples within each area, or very large values forICC. Both to analyze LFMw
and LFM we used the widely available software EQS (Bentler, P. M. (2000-08), thus the
methods proposed are readily available to researchers. Other software of structural equa-
tion modeling (e.g., LISREL, Mplus, AMOS, orsam of Stata) could as well have been
used.

LFMw improves RMSE of factor score estimation, over naive alternatives, and im-
proves small area estimation. For large size clusters and/or high ICC, LFMw converges to
LFM. The large gains of LFMw are on low values ofm and small values of ICC. On our
ICT data, LFMw produced similar results as LFM (herem = 75, m is large).

Other applications remains to be explored where the use of the LFMw gives a clear
gain over LFM, in allowing consistent estimation of parameters of a longitudinal model
and more precise estimates of area level characteristics. From the theory and simulation
work of this paper, we know that these applications should consist of repeated clustered
surveys with modest values of intraclass correlation coefficient and small area sample size.
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