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A Longitudinal M odel for Repeated Cross Sectional Data with Clustering

Albert Satorra Peter M. Bentlef
Abstract

Cross-sectional data based on independent repeated sashoph®t obviously lend themselves
to longitudinal modeling. We show that when data is clusideeg., repeated measures within in-
dividuals, patients nested in clinics, students nestedlials, respondents nested in areas) with
invariant second-level units, longitudinal modeling a gecond level is possible and meaningful.
Specifically, we consider a factor analysis model with agoessive factors whose measurement
structure varies by first-level sample size m, being a lefactodel when m is very large but a
2nd-order factor model otherwise. We consider issues afistancy, bias, alternative estimators,
chi-square model tests, and factor score estimation, dsag@hodel misspecification and effects
of intraclass correlation. Among other things, we note Beatletts factor score estimates require
modification for 2nd-order factor models. The models arelémgnted using standard software,
evaluated via simulations, and illustrated with repeatesieyy data on information and communi-
cation technology.

Key Words. Longitudinal data, structural equation models, factolysis, factor score estimation,
consistent estimation, small area estimation

1. Introduction

Sampling over time enables researchers to model the emol(itie change) of economic,
social or behavioral processes in populations (e.g., Duacd Kalton, 1987). When (part
of the) individuals surveyed overlap during several pesjoas in rotating panels, panel
data methods are typically used. A vast literature on paata thethods is available (see
Binder (1998); Kalton and Citro (1993); Kasprzyk, Duncamltiin and Singh(1989)). In
contrast to panel surveys, we address issues to the case thibeéndividuals surveyed are
different in each time occasion of the sur@yso we can not use the classical methods
of panel data analysis. To be able to do longitudinal anglyse assume hierarchical two
-level grouped data where first-level units are nested inrsddevel units. This is the case
for example, in a multi-stage survey, where primary samplsy(PSU) are nested in sec-
ondary sample units (SSU), also in small areas surveys entherindividuals are nested in
small geographical areas (see Ghosh and Rao (1994) andrRfafin (2013) for a review
of small-area analysis). In contrast with other work in e#pd surveys (e.g., Binder, and
Dick (1989), Blight and Scott (1973), and Fuller (1990), Hahd Skinner, (1983), Jones
(1980)) we consider the general case where the key variabtbe longitudinal model are
latent, observable just through multiple indicators. Whebe this a general set-up with
potential multiple applications. We give an example of aation to a longitudinal anal-
ysis of household information and communication technpl@@T) for repeated surveys
in a region of Barcelona (Spain). The methods presentedadidtess both the estimation
of structural parameters of a longitudinal model, as weadléktimation of the levels of la-
tent variables in the secondary sample units. The secorettasmkes the work overlap
with small area estimation methods (see the recent survefeffermann, 2013) which we

*Ramon Trias Fargas, 25-27, Universitat Pompeu Fabra, 0Bag&lona, Spain
fBox 951563, UCLA, Los Angeles, CA 90095-1563
The methods developed can easily be modified to cope wittapaverlap of the cases in repeated surveys
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frame in a general context where we have multiple indicatodats and repeated surveys.
The basic models to be proposed for the analysis turn out gpbeial models for struc-
tural equation modeling (SEM) and thus can be analyzed wsemydard software widely
available to researchers.

Section 2 describes the data design and models to be usdtkfanalysis; Section 3
investigates the performance of the models proposed imattig structural parameters
of the longitudinal model; Section 4 does the same for sntalh &stimation of latent
characteristics of interested (factor score estimati@®gtion 5 discusses an application
with empirical data; Section 6 concludes.

2. Datastructure and models

Consider a set of variables{Y}, j = 1,...,k} and repeated surveyss;,t = 1,...,T}
in a stratified/clustered = {C,, g = 1,...,G} populationP, whereP = Ug;:lcg and
CyNCy = D wheng # ¢'. Thus, we have dat@y;;,} with Yj;, being the value of
variableY; on individuali of clusterg for thetth survey. Note that notatioF;; is loose
in the sense that individualis different in the repeated (varying surveys. One example
of this set-up is repeated surveys on several variablesddfifluals of a population that
is stratified in small areas (thgs). In section below we consider the example where we
have repeated surveys on household usage of informatios@nchunication technology
(ICT), where each household responds to ICT usage variahlgs= 1,...,k, and the
aim is to assess the variation across time of the ICT levdi@hbuseholds at a small area
level (in the illustration, the population is clustered ih gmall areas). Assume the survey
is repeated with independent cross-sections along seyeass. In this paper we address
the issue of longitudinal analysis for the areas as well asestimation of the levels of
ICT usage for the different areas. We will use the ICT examplmake the discussion of
the model more concrete, but other examples could have tsh a.g. the area (second
level units) could be a hospital (or school, or teacher) etad the first level units could be
patients (or students).

We assume the following model for first-level unit data

Ygti = Athi + Egti (1)
thi = fgt + Wyti (2)
fg(t+1) = Pfgt+vta tzl,,T—l (3)

where f;, and Fy,; are first- and second-order scalar factors (latent vasabéspectively,
eqti (k x 1), wqgy; andv, are centered (vector/scalar) variables. In the ICT exajrfpleor-
responds to the true (unobservable) ICT level of the araetimet, while F;; correspond
to the true ICT level for individual interviewed at time in areag. ASSUmefy, €;q, Wyt
andv; are i.i.d. (in their subindexes) mutually independent camdariables. No distribu-
tion is specified, except for existence of fourth-order motaef all the variables involved.
We use the terminology of areas (or small areas) but the apprdoes not preclude that
the areas could be teachers, schools or other secondasyofiaialysis.

The data can be viewed as two-level data. Figlire 1 gives arstherepresentation of
the type of data considered, where we see the two-leveltsteuof first- and second-level
units, the time dimension, as well as the multivariate disiam (of the multiple indicator
model), with independent samples across time.
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Two-level data across time
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Figure 1: Two level repeated cross-section data

The between model: LFMw

We can reduce the data to a time series single-level datadrg@afing (taking the mean)
the variables within each areaobtaining what we can call the between (area) model.
Averagingy,;; acrossi within each area and time, (1) to (3) transforms to

Ygt. = Ath. + €gt. (4)
Fo. = fg+wg. %)
fj(t+1) = pfjt 4+, t=1,...T—1 (6)

wherey , Fy: , €. andwg, are mean variables. Note that the autoregressive equiljon (
is unmodified by averaging within each area (it is the sam@@asIfr the structural equation
model perspective, the between model is a second-ordenr faidel whereF; and f,;

are first- and second-order factors, respectively, ane tisean autoregressive equation for
the second-order factor. The model is depicted as a pathadiao Figurd 2 (where for
the sake of simplicity, only three indicators for each fa@oe considered). Since this is
longitudinal factor model with first and second order fastamplied by the presence of,

the model is noted as LMw.

A simplification of this model arises when = 0 at each time point (i.e. the variance
of w is set to zero) The path diagram representation of this medbe same as in Figure
but now with thew’s suppressed and thus tlfe are equated to thEs. This is now a
simple first-order factor model. This model is likely to appthen the sample size within
each area, saym,, is large, since in that case the varianceugf. which involves the
factor 1/my is likely to be small. That is, when sample size within eactose sample
unit is fairly large, then the model LFM may be a valid appmative model. A case
where undoubtedly LFM is the correct model is in the case gelaample size in each
area, for example in repeated surveys across countriesewiine sample size is typically
fairly large. Then one just uses the approximative model Lld=\the model for longitudinal
analysis. In the empirical example below, we will use theffinmdel LFMw to verify that
a valid approximative model for that data is in fact LFM.
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Figure 2. LFMw: second-order factor model

SEM representation of LFMw

A structural equation model (SEM) representation of the ehodn be obtained as follows.

We stack vectors along= 1,..., 7% y = (yg1, -, Yyr)', F = (Fgy,... . Fyp ) e =
/ / / / / /
(gise-reyr)sw= (Wi ,...,wep ) = (fo1,--, fyr)s so that
y = AF+e @)
F = f4+w
f = Bf+wv
v = (f1,v9,...,v;), e andw are mutually independent with covariance matridgs .

and ®,,. With this definition, the(T.k) x (T.k) variance matrixX, = var(y) has the
moment structure

Y, =A[(I - B)'®,(I - B) '+ &,]A + ®..

That is, ¥, = X(0), whered a vector of unconstrained parameters to be estimated that
comprises the free elements of the parameter matricesvetvoh the moment structure.
For the sake of simplicity of exposition, assume tihgt = ¢, Ir. This restriction can be
amended when needed by proper specification of the diagemastin matrix®,, (when
sample size varies highly across clusters, then we canfgpieeiar equalities of the terms
of the diagonal ofp,, involving the factors of area sample sizg)).

For the example of LFMw in Figurlel 2, the parameter matrices@ated to the SEM
approach are as follows (note that= 4 andk = 3)

1 0 0 O
A0 0 0
A2 0 0 O
0 1 0 O
0 X 0 O
0 X 0 O
A= 0 0 1 0
0 0 X O
0 0 X O
0 0 0 1
0 0 0 XM
0 0 0 X
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The variance ofv is restricted by equality across times.
We distinguish the two models

LEM: ¢, = 0 (Fyu = fqu)- This is a first-order factor model.
LFMw: ¢, free parameterHy; # fq). This is a second-order factor model.

The SEM approach allows estimation and inferences forsthectural parameters
(e.g.,p, A, ...) of both LFM and LFMw, with estimates being consisteagymptotically
normal, etc. Estimation and inferences will be carried gisitandard software for SEM
analysis. In our illustration, the moment structure is tdithed to.S by EQS (Bentler, 2001-
2010), with ML or LS estimation. We use normal theory andrilistion free (robust) s.e.
and chi-square goodness of fit test. Other SEM software, l§REL, Mplus, CALIS,
semof Stata, AMOS, etc. could have been used. The methods usétl igferences
(asymptotically) free from distributional assumptionsai@ra and Bentler, 1990, 1994).
Robust goodness of fit test of the model are also provided.

We are interested also dactor score estimates for latent variables at the area (second-
level units) level. In the case of LFM, standard Bartletttslarhomson’s factor scores
estimation are readily available in SEM software. In theeaafd_FMw, we need to develop
specific Bartlett’'s and Thomson’s factor scores, since wedaaling with a second-order
factor model.

ML fitting function isf

F(S,2(0)=In | 2(0)S™ | +tr{s=(6) "} —p

> is the covariance structure for either LFM or LFM$ijs the sample covariance matrix of
the second-level unit multivariate vectgr The “sample size” i€7. Chi-square goodness
of fit test of the model, testing equality pfacross time, invariance ofs, etc. are available.

3. lllustration with ssimulated data

This section uses simulated data to assess the performbatieeproposed models LFMw
and LFM in analyzing repeated samples with clustering. Tlewel data is generated from
the following model equations:

Yitgi = AjFigi + €jtgi,
Figi = fig + Wigi
where); = A = (1,.6,.1), ¢ = (I3 — diag(A = A)) + diag(0.2,0.2,0.2); j = 1,...,3;
t=1,...,4,i=1,...,m; andg = 1,...G. We consider variation om (the sample
2 The wLs fitting functionisf () = (s — o)’ W (s — o)

3For the required asymptotic theory, see e.g. x Satorra, &.RaM. Bentler (1990). Model Conditions for Asymptotic Remess in the Analysis of Linear
Relations, Computational Satistics & Data Analysis, 10, 235-249
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size in each second-level units, considered to be consiaatlthe second-level units, for
simplicity). Here\ x A denotes simply element-wise squaring. We furthemplet 0.8,
\I/v = (1 - P2) X [T—lv

fo = pfi+ouve

fr = pfr-1+vr

For this type of data, we can compute the intraclass (imgaj)acorrelation (ICC) as the
ratio of the variances within-area and total variance; &C'C = ¢, /(¢ + ¢w). The
within versus between variation for the true valudég are shown in Figurgl3. This is a
plot of the true values of” (the ordinate scale) against the area number. The plotdenssi
G=100 areas, and m=60 cases in each area. Big circles indhdegiote the true valug,
for each area. The graph shows variation of g around the values of, than in turn
show variation across the areas. In this graph the ICC =0.1.

ey
g dot: {unit-level
. cercle: farea-level
.

T
Q 20 40 &0 80 100

area number

Figure 3: Two level variation when ICC = 0.1, G = 100, mg=60

SEM analysis can provide correct asymptotic inferencesnfsmal and non-normal
data. This leads us to consider simulated data thayhasn-normally distributed. We let
data arise from the scaled varialfle~ (x —1)/v/2. The distribution of;,t = 2,...,T,
as well as the distribution of the first-level variableg; ande;,;, was chosen to be normal.
The histogram shown in Figuré 4 corresponds to the distabudf f with G = 1200.

A data set of the form described is simulated and the modeM BRd LFMw are
fitted using EQS. Results on estimates and standard errafts ffiie NT and robust ones)
are collected into tabldés 1 fd 3 that varyand ICC. The value of is set constant equal
to 1200 (a small value ofz was also used but without observing difference in the result
that will be reported). The tables have two parts, the firét ikedevoted to LFMw, the
second to LFM. The first column of the table shows the param@teolved in the model,
the second column shows the estimates obtained using Mina#iin; the third column
shows the normal theory standard errors (se); the fourtmmolshows the robust se (rse).
A chi-square normal theory likelihood ratio test is also gored for each of the models.
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Figure 4: Histogram of true values of f (G = 1200)

Table 1: Estimates for LFM and LFMw whem = 3 and ICC =0.1.

parameter true value D se robust se

LFMw:

p .8 .807 .048 .052
A1 1 1 - -
A2 5 496 .016 .016
A3 A .107 .010 .010
bf 11 .094 .021 .023
b .333 351 .033 .034
o .36 .356 .038 .041
Goodness of fit:  xZ, =88.78  p—value = 0.0546

LFM:
P .8 445 .021 .021
A1 1 1 - -
A2 5 520 .016 .015
A3 A 112 .010 .010
bf 11 394 .026 .026
bu - - - -
o .36 779 .031 .030

Goodness of fit: x2, = 127.984 p — value = 0.00028
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Table[1 considers the case where area sample size is sma#,3, and ICC is also
small, ICC = 0.1. This is a case that one can expect high smedl effect, in the sense
that LFMw will perform differently than LFM. The autoregiege parametep whose pop-
ulation value is0.8 seems to be correctly estimated by model LFMw, but therevierse
bias on the SEM estimates pfwhen using the approximative model LFM: the estimate is
.445 when the true value is 0.8 (and the confident boutdsyice 0.021, do not compen-
sate for this bias). The chi-square goodness of fit test slaog@od fit for the LFMw (a
p—value greater thab%) but a very poor fit for LFM (p—value = 0.00028). Note also that
the estimate ob,,, the variance of the terrw is large; thus, setting its value to zero, as
done by LFM, incurs a severe misspecification. Note also denfie bounds of parameter
estimates of the LFMw model encompass the true values offpess. To be noted also
is very minor difference between the s.e. of parameter estisn the normal theory (se) or
the robust se (rse). One curious issue to note is that in astigp the model LFMw gives
a much larger standard error than when using LFM. We encowtiat is the payoff of
using a correct model, is that bias decreases but also thersase. Note that in this the se
of a very poor estimator gf, the one of LFM, is half the one of the correct estimator based
on LFMw.

Keeping all the conditions the same, Table 2 shows the seadien area sample size
increases ten = 60. Table[2 shows that the increase on samplesizeduces drastically

Table 2: Estimates for LFM and LFMw whem = 60 and ICC =0.1.

parameter true value p se robust se

LFMw:

P .8 754 .024 .024
A1 1 1 - -
A2 5 498 .003 .003
A3 A .101 .003 .003
bf 11 112 .010 .012
bw .017 .003 .010 .009
o .36 .381 .017 .0160
Goodness of fit: y2, = 68.423 p — value = 0.497

LFM:
P .8 749 .017 .017
A1 1 1 - -
A2 5 498 .003 .003
A3 A 101 .003 .003
bf 111 114 .005 .009
du - - - -
o .36 .386 .009 .009

Goodness of fit: x2, = 68.500 p —value =0.528

the inconsistency of the estimate @fwhen using LFM (even though a slight bias still
persist since the 95% coverage inteival9 + 2+ 0.0167 misses 0.8 slightly. The estimate
of p based on LFMw seems to perform on target. Note that the s&éédcFM model are

still slightly smaller than for the LFMw. The chi-square giness of fit now does not reject
LFM (p-value = 0.528). Again the LFMw provides accuraterasties for all the parameter

of the model (all true values under the the 95% confidencedsahparameter estimates).
The estimate of the varianeg, has now been reduced drastically, as the population value
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of this variance is indeed reduced since it has been meltigdy the factor /m where m
is large. Slight differences are observed between the rdheary and robust se. We thus
conclude that the increase of makes LFM a valid model representation for the data. In
the ICT data example to be discussed below= 75 so it is likely we are falling in that
situation where LFM is the appropriate model. The exactemdrmodel is LFMw , but
setting¢,, = 0 in that data context does not lead to misspecification.

For both the LFMw and LFM and the data context of the simufetjgheory of asymp-
totic robustness (AR) as described in Satorra and Bent@9Q)lensures asymptotic cor-
rectness of the se for all the parameters except for thengaiaf the non-normal compo-
nent. Thus, we should expect the se and rse to be very simiitare(they are asymptotically
equal, adhering to the AR mentioned) except possibly fosthtor the estimate af ;. We
see that discrepancy between robust and normal theory seds far all the parameters.
We also see small discrepancy between the se and rse of &stiina, in both tables.
We will see that the discrepancy among se and rse will appeidei next table to be dis-
cussed. The theory of asymptotic robustness of Satorra anteB (1990) attests also to
the asymptotic correctness of the goodness of fit tests shothe tables, for both models
and given the data generated process, despite non-ngrmalit

We have seen the effect of increasing the area samplesixée will now keepm = 3
small, but we will increase ICC to a large value, ICC = 0.83%isTcase is illustrated in
Table[3 The results of this table show that increasing ICCimasame effect as increasing
the area sample size. LFM is now again a valid approximative model performing isim
larly as the true model LFMw. The only difference with Tablés2he large difference in
se and rse for the estimate @f. This is in accordance to the AR theory of Satorra and
Bentler (1990), where now we see the distortion of the nothedry se of estimator af
now made prominent given the high ICC value. So, with regargarameter estimation,

Table 3: Estimates for LFM and LFMw whem = 3 and ICC = 0.833

parameter true value p se robust se

LFMw:

p 8 .812 .017 .016
A1 1 1 - -
A2 5 486 .010 .010
A3 1 .107 .009 .009
g .833 .852 .041 .088
o .056 .067 .020 .020
o .36 372 .027 .025
Goodness of fit: y2y = 69.399 p —value = 0.463

LFM:
p .8 775 .014 .013
A1 1 1 - -
A2 5 495 .009 .009
A3 A 111 .009 .009
bf 111 .897 .010 .087
Su - - - -
o .36 445 019 .019

Goodness of fit: xZ, = 79.636 p —value = 0.202

we conclude that
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1. LFMw produces consistent estimatespofand the other parameters of the model)
even for smalin and small ICC;

2. Analysis based on LFM suffers from (severe) bias whermmesing p (and other
parameters) whem and ICC are small;

3. Estimates of LFMw and LFM converge to each other wheand/or ICC increase.

4. Factor score estimation

We now consider factor score estimation. We will developreaties for the realized values
of the (latent) variableg; andvy,...,vp foreachareg =1,...,G.
We rewrite LFMw in factor model form

y=Iv+r (8)

wherell = A(I — B)~!,r = Aw + e andv’ = (f1,va,...,vr). Let¥,, &,, ¥, and¥,
denote the variance matricesgfv, w ande respectively. Clearlyl, = AV, A’ + V..
Now applying to [(8) the classical theory of factor scoremaation in factor analysis, we
obtain the two factor score estimators

Bartlett's:

op = (W0 T T (y — py)

and

Thomson's:

or = @Uﬂlzgl(y — [hy)

whereX, = (II®,II' + ¥,.) andy, = E(y) .
1. Thomson’s correspond to BLUP (best linear unbiased m@tﬂ

2. Feasibleog andor are obtained by replacing population values of parametgrs b
consistent estimates. The feasible Thomson's is the (&apiBLUP (i.e., an EBLUP).

WhenT = 1 andk = 1 then

Ygi = fg+wgi

sinceA = 1, ¢y = 0. Letd,, = ¢, (= 02) be the variance within area, adg;, = ¢y,
(= o) the between area variance. It is interesting to note thatanhc¢ase{ = 1 and
k = 1), Thomson'’s factor score estimator takes the form

~ Q)f

fo= m(y.g —7g) 9)

an expression that coincides with the classical (combisetll-area estimator for a cen-
tered variable (for an overview on the theory of small ard¢eredion, see Ghosh and Rao,
1994). Our Thomson’s factor score estimation formula gaisas thus to multivariate
analysis £ > 1) and/or longitudinal datal{ > 1), classical formulae for small area esti-
mation. As naive estimator of the factor score, to be contpaiith the ones developed in
the present paper, we consider the direct and combinedagstismproposed in the literature
for small area estimation (e.g., Rao, 2003 ).

To assess the comparative performance of the alternativeatsrs of the area charac-
teristics, we consider also simulated data. The true vall@own due to the simulation

4 Neudecker, H. and A. Satorra (2003), ‘On best affine presfittiSatistical Papers, 44, 257-266
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scheme, and the quality of the alternative estimators akiaied by computing the mean
square error

RMSE = \/Z(fg — fy)%/G

of the corresponding estimatgfg of the realized and known true valifg. We consider
several data sets that vary on the conditions of the datanrefibect the size of the area
samplem and the intraclass correlation coefficient ICC. The estimsatonsidered are the
following:

tLFMw, bLFMw: Thomson’s and Bartlett’s arising from LFMw specification
tLFM, bLFM: Thomson’s and Bartlett’s arising from LFM specification

D, csae: Small area estimators arising from considering the singt@bley;, = 1) yiq1 /%,
wherel; ak x 1 vector ofls (i.e. y;4 is the simple average of all the indicators).
D is the direct estimatoy , and case is the composite small area estimator (9) with
variances between replaced by consistent estimates. dicdlsie, we only consider
estimation of the factor scorg for each aregy. We do not consider small area
estimation of the time change variablgs

The table below show the results of the simulations undéeréifit data conditions. Note
that the columns foPD andcsae contains only information for the factor scofe.

tLFMw? bLFMw! tLFM bLFM D csae
estimating f1
fl 0.241 0.254 0.248 0.254 0.503 0.531
estimatingy ’'s
vy 0.275 0.309 0.291 0.307
V3 0.271 0.305 0.288 0.304
vy 0.272 0.300 0.286 0.300

+ tof Thomson's

1 b of Barlett's

Table4: The RMSE of different estimators when G= 1200, m = 40 and |ICG3

In the data context of Tableé 4, where area sample size isvediatarge and also ICC
is moderate, we see that the both Bartlett and Thomson dsetisnfor /1, have a similar
performance, irregardless of whether we use the LFMw or LBbt#ications. The same
occurs for the estimators of the change variablg$o v,. The RMSE of the small area
estimators (D and csae) double approximately those of ttimasrs based on a model,
with both D and csae performing similarly. Note that the dagatext considered, where
both mand ICC are relatively large, amounts to a set-up wherdirect estimator performs
similarly as the composite small area one. We now invegitfad case where we decrease
the area sample size to m=3, so that it is likely that the sarath formulation produces
gains relatively to the standard approach.

In the data context of Tablé 5, where m has been reduced to 8e&that the use of a
proper small area sample model as LFMw clearly wins over ipgaimative LFM. We
see that Bartlett's yields a higher RMSE than Thomson’s. tRerThomson’s estimator,
LFMw is associated to a clear RMSE gain with respect the LFdngare the RMSEs
0.586 versus 0.784 when comparing the Thomson’s estimfdothe LFMw and LFM
specifications. Similar gains are attained for Thomsortisnegors of the change variables
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tLFMw? bLFMw! tLFM bLFM D csae
estimating f1
fl 0.586 0.895 0.784 0.892 0.741 0.753
estimatingy ’'s
Vo 0.504 1.185 0.882 1.060
V3 0.500 1.217 0.901 1.097
vy 0.512 1.197 0.879 1.049

+ tof Thomson's ;1 b of Barlett's

Table 5: RMSE for different models and estimators. G=1200, m = 3 &©40.33

1;:S. To be noted is that Bartlett factor score estimators aadfected for whether we use
the LFMw or LFM. Table 6 gives a variation of the data set-upeve now the ICC has
been decreased to ICC = 0.1. The results are similar as theafneable b, except that
now csae wins over D. This is a case where estimators basethalharea clearly win

over the ones that ignore the small area formulation, andcon&l say that LFMw is a
small areas model with respect to LFM. When ICC is large, weaeincrease of 67%
(10.494/0.296=1.668919) of the RMSE of LFM relatively to LM This increase was
smaller in the case of ICC = 0.33, where we observed only a 3d¥ease on RMSE
(0.784/0.586=1.337884) when comparing RMSE of LFM versasiiv.

tLFMw?  bLFMw! tLFM bLFM D sae
estimating f1
fl 0.296 0.684 0.494 0.681 0.492 0.376
estimatingy ’'s
vy 0.424 0.880 0.594 0.756
V3 0.466 0.900 0.648 0.799
vy 0.458 0.854 0.630 0.764

Table 6: RMSE for different models and estimators, G = 1200, m=3 &@ + 0.1

On factor score estimation, we thus conclude: (1) The ThoragseFMw (a genuine
small area estimator) wins over the alternatives for alddua contexts considered; (2) The
gains of tLFMw with respect to tLFM increase with the deceea$the area sample size
and/or the decrease of the ICC; (3) RMSE of Thomson’s estimaitperforms the ones
of the Bartlett’s estimator in general, but they tend to thms size when m is large and/or
ICC is large. (4) Estimates of the change variahlegan be obtained similarly as the
factor estimators of;. Those estimators may allow specific characterization efateas
g=1,...,G.

5. Empirical analysis. ICT data

Statistical offices worldwide invest resources on Infoiiorand Communication Technol-
ogy (ICT) surveys. For policy purposes, interest is in thelef ICT at small area levels.
We are interest also in changes of level of ICT. We use ICT finalsareas: four repeated
surveys, 41 countiesp = 75, population of Catalonia, Spain.

Synthetic variables extracted from therritorial Survey on Information and Commu-
nication Technologies of the Households (ICT)’ of 2008-2011, conducted by the Statistics
Institute of Catalonia, IDESCAT, Barcelona, Spain, anddkémated loadings for the de-
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scribed LFMw model are shown in Tallé 7. The data consist opirgral data for 12
variables, 41 counties (“comarques”, small areas), withrae size m = 75 for each area.

We consider 4 repeated surveys, years 2008-011.

Table7: 12 synthetic ICT variables and the loading’s estimatesesponding to LFMw.

Numbers in brackets are the standard errors (robust) ohatss.

Variable Description A rse

econ Level of equipment in the household 1.043 (.094)
mobile Number of mobile phones in the household 430 (.073)
sincelnt  Since when has access to Internet 998 (.149)
knowPC Number of tasks with a computer 1.024 (.042)
knowInt Number of tasks through Internet 1.000

frecPC  Intensity of use of personal computer 1.162 (.084)
frecint Intensity of use of Internet 1.187 (.041)
secbuy  Security perception: buying through Internet .444056)
sechank  Security perception: bank transactions througinriet 163 (.016)
econ Level of economic impact of ICT actions from home .641046)
social Level of social impact of ICT actions from home 1.144.060)
admin Level of interaction with public administrationsdbgh Internet 371 (.044)

1 fixed to 1 to set the scale of the factor

For this data, we fitted the LFMw model obtaining the loadisgreates shown on the

last columns of Tablel 7. The estimated autoregression was

Jotrry = 94 fq+ v
(.091)

¢r = .280(.093), ¢, = .054(.038) , ¢, = .03659(.03651)

The analysis was carried out using the SEM software EQST& estimation method

used was LS with distribution free (robust) s.e. and tesistitzs

The fit of LFM with the ICT data gave very close loading estiesads the ones reported

above, and the following fitted autoregression equation

Jo4r)y = 898 fgr + vt
(.050)

¢f = .306(.077), prrm = .898(.050) compares Withprrar, = .94(.091). The same

software was used for the LFM analy@s.

This data shows a high stability across time of ICT at areal]®o there does not seem

to be much variation of ICT across areas in the period of tiyason. This is attested
by the very high value of the estimated autoregression cisfti (b = .94). Very similar
results are obtained wether one use the “small area” mogebaph of LFMw or the “large

5Thanks are due to Eva Ventura from Universitat Pompeu FaliMaribel Garcia, Marcos Pardal and Cristina Rovira, flDESCAT, for providing access
to this data.

SML was not feasible, sincs is a48 x 48 matrix (¢ = 12 variables and’ = 4 time points) and “sample
size” for SEM analysis i€ = 41. Mean and variance adjusted Chi2 =14.644 with 10 D.F. (Peralui146)
(see Satorra and Bentler (1994) for the robust statistied irsconjunction to the LS estimation used.

" Mean and variance adjusted Chi2 = 13.132 with 10 D.F. (P valu21637) for LFM.
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area” approach of LFM. Note that the simulation results dflé& showed that for a low
intraclass correlation and area sample sizenof 75, as the one used in this ICT data,
LFM and LFMw performed similarly.

The small value of the estimated varianceuobbtained when fitting LFMw ¢, =
.037(.037)) it also suggest LFM will be a valid approximative model foistdata. Thus
longitudinal analysis of the described CIT data based onsadider longitudinal factor
model (LFM) is justified; with this ICT data, just proceednglLFM. The detail analysis of
the LFM model for this ICT data is reported in work of Satoma &entura (in preparation).

The estimation of the factor scores fgrand v, to vy were also computed for both
models, though not reported here for conciseness; both fiw.and LFM lead also
to very similar factor score estimates, in parallel to thrawation results of Tablgl 4 that
considers a large value of.

6. Discussion

A model has been proposed to perform longitudinal analy#ils K@peated cross section
data that shares the same clustering across surveys. A masl@roposed, the LFMw, that
allowed consistent estimation of longitudinal parameferm independent cross-section
data with clustering.

One example of application is small area estimation, whezchawve areas (clusters,
second level units) and repeated surveys on that populatibnthe same area structure.
A small area context is the one that had served as an emglhicstation. A model has
been specified, the LFMw, that takes care of the small areateffduced by small samples
within each area, and/or small values of the intraclassa@iatea) correlation coefficient.

In contrast with classical small area estimation, wheredhget is just characteristics
of the areas, the LFMw allowed not only to improve on cladsizdve small area esti-
mators, but also allows to consistently estimate strutjmeameters of the longitudinal
model, like for example the autoregression coefficient.hergimulations we showed that
very small sample size in each area, and also very small IIifyed consistent estima-
tion of key structural parameters of the LFMw longitudinabahel using classical tools of
SEM analysis. When sample within each area is not large, Gri§&mall, consistency of
parameter estimates for the structural parameters of tiggtlmlinal model is lost when we
take an approximative model LFM instead of LFMw. The use ofWLE valid when we
have large samples within each area, or very large valud€for Both to analyze LFMw
and LFM we used the widely available software EQS (Bentlei R2000-08), thus the
methods proposed are readily available to researchersr Gdiftware of structural equa-
tion modeling (e.g., LISREL, Mplus, AMOS, asamof Stata) could as well have been
used.

LFMw improves RMSE of factor score estimation, over naivieralatives, and im-
proves small area estimation. For large size clusters ahdjb ICC, LFMw converges to
LFM. The large gains of LFMw are on low values of and small values of ICC. On our
ICT data, LFMw produced similar results as LFM (here= 75, m is large).

Other applications remains to be explored where the useeoLBMw gives a clear
gain over LFM, in allowing consistent estimation of paraemgtof a longitudinal model
and more precise estimates of area level characteristicsn Ehe theory and simulation
work of this paper, we know that these applications shoulisisb of repeated clustered
surveys with modest values of intraclass correlation adefit and small area sample size.
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