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Abstract 

Students new to statistical concepts often struggle with the notion of measuring 

variability. Our standard measures, variance and standard deviation, can seem unduly 

cumbersome to the uninitiated. Full understanding of the why and how of these measures 

often needs more mathematical background than many students possess. We illustrate 

how the concepts of diversity and quantitative variability are confusing. So much so that, 

in our textbooks even our most basic measures of variability, must be defined, computed, 

and accepted before intuition about them can be developed. This seems backwards. As an 

introductory measure of variability, I propose reviving an old measure called the probable 

error (one half of the inter-quartile range). Examples are given to motivate this measure, 

building on students’ more intuitive ideas about quantitative variability.  Relationships 

with outlier bounds and 68-95-99.7-type rules of thumb are also illustrated and discussed. 

Some historical perspective is given including why probable error, at best only an 

introductory measure of variability, is very much misnamed. 
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1. Introduction 
 

Students have trouble with the concept of variability. Not only the details of how to 

compute it, but more fundamentally what it is, how to recognize it, and how to measure 

it. Some confuse variability with sample size. The reasoning seems to be that a bigger 

sample must, of course, have a more varied collection of measurements. This 

misunderstanding is often reinforced when we display simple frequency histograms for 

two samples of different sizes. As instructors know well, a larger sample will have 

histogram bins with larger frequency counts, resulting in taller histogram bars. The 

resulting histogram for the larger sample will actually be larger than the histogram for a 

smaller sample. To some students this indicates greater variability. Of course, this 

histogram size issue can be avoided by plotting relative frequency histograms instead.  

 

But beyond this misconception students confuse quantitative variability with qualitative 

diversity, as illustrated in Figure 1. Two hypothetical fleets of rental cars are shown. The 

students first see the top fleet of six cars, all of different colors and the bottom fleet of six 

cars of only two colors. Initially, gas mileage figures are not shown. The students are then 

asked, “Which fleet is more variable?” This is not a trick question. Without mileage 

figures the only thing differentiating the fleets is color. The top fleet with six colors is 

more variable than the bottom fleet with only two colors. 
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Figure 1. Two hypothetical fleets of rental cars with gas mileage figures listed below. 

See text for more details. 

 

Now the mileage figures are shown and the question is asked again. The top fleet has six 

different mileage figures, just like its six different colors. The bottom fleet has only two 

different mileage figures, again just like its two different colors. By the same reasoning as 

with the car colors, many are likely to say again that the top fleet (with more mileage 

figure values) is more variable. But when students reason this way they are considering 

qualitative diversity not quantitative variability. Qualitatively they have seen six different 

colors or six different mileage numbers in the first fleet and only two different colors and 

numbers in the second. The first fleet must therefore be more variable. It is more 

qualitatively diverse. To measure this, imagine selecting two cars at random with 

replacement from each fleet. The probability that two cars are the same color can be used 

as a measure of diversity. For the top fleet this probability is 5/6 for the bottom fleet it is 

1/2. So the top fleet has greater qualitative diversity. 

 

The first fleet has more varied types (colors or numbers), but this ignores the size of 

numbers. This reasoning considers the numbers as types not indications of quantity. This 

reasoning does not examine quantitative variability. The most common measure of 

quantitative variability is the standard deviation. At this point, the common approach, 

illustrated in Figure 2, would be to list the sample, compute its mean, and compute the 

deviations from the mean, to measure how far each car’s mileage is from this mean 

mileage.  
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Figure 2: Typical classroom illustration of the computation of variance and standard 

deviation for the top fleet of rental cars shown earlier. 

 

These deviations, of course, add to zero (not a very useful measure of variability). So we 

square them, to get rid of their algebraic signs. Then we “average” these squared 

deviations and define this to be the variance: our measure of quantitative variability. Of 

course, our “average” is defined in an odd way, dividing by (n-1), rather than the usual 

and better understood averaging method of dividing by (n). The top fleet has a variance 

of 350. Similar computations show that the bottom fleet has a variance of 750. The top 

fleet has less quantitative variability.  

 

All this is typically done before the student is offered much understanding or intuition 

about what a measure of quantitative variability is or what it should be measuring. After 

these findings one can, of course, alert the students to the fact that the top fleet has 

several cars closer to the mean mileage than the bottom fleet. But his observation comes 

after the definition, computation, and comparison of variabilities. 

 

This all seems backward. Concepts and intuition should come before formal 

computations. 

 

2. Building Intuition 

 

We can build greater intuition about quantitative variability by considering practical 

estimation problems noting both under- and over-estimation, as illustrated in the carton in 

Figure 3. Arrows are shown that fall short or over shoot a target. The median locations of 

the shortfall or overshoot provide estimates of these types of errors in an archery contest. 

Averaging the typical extent of these errors can serve as an easily understandable 

measure of quantitative variability.  
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Figure 3. The cartoon shows the results of an archery contest. One arrow (in green) has 

hit the target. Four arrows (in blue) have fallen short, under-estimating the aim or force 

needed to hit the target. Four arrows (in pink) have overshot the target, over-estimating 

the aim or force needed hit the target. The median horizontal location of the blue arrows 

serves as a typical value of our shortfall. Likewise, the median of the final position of the 

pink arrows serves as a typical value of our overshot. 

 

 

To be more specific, and a bit historical, I examined the summary percentiles on an 

experiment performed by Galton (1907), described more recently in Surowiecki (2004). 

Having attended an agricultural fair, Galton collected 787 contest entries submitted to 

guess the weight of an ox. He reports the percentiles (5 to 95 by 5) of the submitted 

guesses. As an illustrative data set I have used these percentiles to produce a sample of 

787 simulated guesses having percentiles matching those of Galton. 

 

Students know well that the median is often a good choice for estimating or guessing a 

typical value from a general set of data, (although the median may not always be the best 

choice). The median (M) of the guesses was 1207 lbs. very close to the weight of the ox, 

1198 lbs. Galton uses this to extol the possible virtues of democratic decisions, and 

Surowiecki uses this close result as an example of the wisdom of crowds. But what of the 

variability in these guesses? 

 

Being the median, half of the guesses are under-estimates and half are over-estimates. 

Considering only those guesses that fall below the median, students are asked “What is a 

typical value for this under-estimate?” Knowing the median is a good choice they 

compute the median of just the under-estimates. This, of course, is the first quartile ( 1)Q  

of the entire set of 787 guesses. Likewise, considering only those guesses that fall above 

the median, a typical value is taken to be the median of the over-estimates, yielding the 

third quartile ( 3)Q   of the entire set of guesses. Figure 4 shows these results for the 

Galton example. In this context, Q1 and Q3 are useful summary statistics of the shortfall 

and overshot. They provide greater motivation than their common use as merely defining 

the range of the middle 50% of the data! 
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Figure 4. In guessing the weight of the ox, a typical low (under-estimate) is the median 

of the lower half of the guesses, 1162 (Q1 for the entire sample). A typical high (over-

estimate) is the median of the upper half of the guesses, 1236 (Q3 for the entire sample). 

 

 

A typical low-side error in our guessing is then the difference: 1M Q  . This measures a 

typical amount by which we might fall short of the correct answer. For the ox data 

1 45M Q  . Likewise a typical high-side error in our guessing is the difference: 

3Q M . This measures a typical amount by which we might overshoot the correct 

answer. For the ox data 3 29Q M  .  Adding these two errors we get the Inter-quartile 

Range: ( 1) ( 3 ) 3 1 74IQR M Q Q M Q Q        . Averaging the two errors yields

/ 2 37PE IQR   , what Galton called the probable error. So if we fall short or over 

shoot, a typical size for either type of deviation is 37 lbs. It is easily understood and 

useful measure of variability that can be used in much the same way that the less intuitive 

and more involved standard deviation. 

 

Galton(1889, p.57) did not like the name “probable error”, since for a standard normal 

distribution this probable error would have a value of 2
3

  0.6745 . .PE Std Dev   

where as a literal reading one would have to admit that the most probable normal error is 

zero. Galton preferred the term probable deviation, which seemed to pave the way for 

Pearson’s standard deviation.  
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2. Using the Probable Error 

 

The connection between PE and the IQR allows for a reexamination of our usual outlier 

bounds or fences. The upper outlier fence is 3 1.5Q IQR   . The factor of 1.5 seems 

arbitrary to many. It is rooted in the behavior of outliers for the normal distribution, 

chosen so that less than 1% of a normal distribution would be labeled as outliers. Using 

the PE the upper outlier fence can be changed to: 3 1.5(2 ) 3 3Q PE Q PE   and for 

the lower outlier fence: 1 3Q PE . 

 

For symmetric distributions we can expect 3Q M PE   and 1Q M PE   so that the 

outlier fences take on a more satisfying form defined around the center of the data rather 

than around upper or lower extremes. The upper outlier fence is: 3 3 4Q PE M PE  

and the lower outlier fence is: 1 3 4Q PE M PE   . 

 

For the normal distribution we can also define 68-95-99.7%-type rules, sometimes called 

Empirical Rules, based on the PE. Figures 5 and 6 show such rules for some integer and 

half-integer values of the PE. 

 

 
Figure 5: The percentages of a normal distribution that can be expected to fall within one, 

two, three, and four probable errors (PE) of the median (M). 
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Figure 6: The percentages of a normal distribution that can be expected to fall within 1.5, 

2.5 and 3.5 probable errors (PE) of the median (M). 

 

Note some common results that agree with the usual Empirical Rule benchmarks: 68% 

within 1.5PE  of the median (M), corresponds to within 1 Std.Dev. of the mean 
2
3

[1.5 1.5( . .) 1 . .]PE Std Dev Std Dev   and 95.7% within 3PE of the median (M), 

corresponds to being within 2 standard deviations of the mean: 
2
3

3 3( . .) 2 . .PE Std Dev Std Dev   

 

For asymmetric distributions, like the left-skewed ox data, the shortfall error will be 

larger than the overshoot error and PE, the average of these errors,  will misrepresent 

both. The PE will under-estimate the shortfall error, making 1M PE Q  . It will also 

over-estimate the overshoot error, making 3M PE Q  . Thus, for such asymmetric 

distributions, the interval from M PE  to M PE  may not contain the expected 50% 

of the distribution that the Q1 to Q3 interval defines, although for the ox data we do get 

almost exactly 50% even with the asymmetry. 

 

The probable error is an easily understood, computed, and applied measure of 

quantitative variability. 

 

3. More Theoretical Uses 

 

Although what follows is not a development that beginning students need or could even 

follow, it might be useful for instructors to see that we can also develop statistical t-type 

tests using the PE (or IQR) as a measure of variability in ways similar to the usual t-test. 

Let 1, , nX X be a random sample from a normal distribution with mean   and 

variance 
2 . Let 1 2 nY Y Y    denote the order statistics from this sample. The IQR 

is given by: 
[3 /4] 1 [ /4] 1n nIQR Y Y   , where the square bracket notation [ ]x   denotes the 

greatest integer less than or equal to x. From well know properties of order statistics it 
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follows that 
1 1(0.75) (0.25) 1.34898pIQR     , where 

1( )p  represents 

the p
th
 percentile of a standard normal distribution. From this it follows that 

1/ 2 (0.75) 0.674489pPE IQR    . We can define a location and scale 

invariant statistic similar to a t-statistic 

 
 0.674489 n X

g
PE


  . 

 

By Slutsky’s theorem it follows that (0,1)dg N  and n . For large samples, we 

could test hypotheses or build confidence intervals for   using the statistic g and its 

asymptotic standard normal distribution. For smaller samples, numerical integration can 

be used to find the distribution of g. But because of the discrete and discontinuous nature 

of selected order statistics, the resulting behavior of tail probabilities of this statistic are 

jagged in a damped saw-toothed pattern as the sample size grows and converge to the 

expected normal distribution values. This erratic pattern results from the shifting position 

of Q3 or Q1 within intervals of order statistics. In general, g is not a statistic to be 

recommended except possibly for large samples. 

  

4. Summary 

 
We revive a measure of quantitative variability built on the grounding principle that the 

median is a good measure of location for a general set of data. With this principle if we 

fall short and under-estimate our location, Q1 the median of all the shortfalls measures 

this underestimation. If we overshoot and over-estimate our location, Q3, the median of 

all the over shots measures this over-estimation. The difference M-Q1 measures the error 

of under-estimation and Q3-M measures the error of over-estimation. The sum of these 

two errors is the Inter-quartile Range, IQR. The average of these two errors is the 

Probable Error, PE = IQR/2. The probable error provides a more intuitive and easily 

computed, and it offers a more understandable motivation for a quantitative measure of 

variability. As an introductory quantitative measure of variability, the probable error can 

be used to set up a student’s intuition about variability and provide an easier transition to 

the more durable standard deviation which, quite rightly, is our standard way to measure 

quantitative variability. 
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