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Abstract
In the spectral analysis of time series, the goal is often to determine the frequency and power contributions of
periodic components in noise. Single and multiple taper spectrum estimates are approximately chi-squared
distributed, so assigning significance to high peaks is not difficult. The difficulty lies in the rate of false
detection. In this study, we compute upcrossing rates for Gaussian white noise spectra of high significance
levels and determine the width of these excursions. These results give rise to a new approach to the justifi-
cation of peaks in processes which appear to have "many lines". We give an example of a natural process
which contains hundreds of line components whose frequencies correspond approximately with the normal
modes of the sun. We show that the distribution of this spectrum is best described by a mixture model of
approximately 68% noncentral and 32% central chi-squared components (lines and noise, respectively), and
furthermore that, upon random permutation of the data samples, the detection rate falls to that expected for
a Gaussian noise process. These experiments suggest that the peaks are genuine, and exhibit extraordinary
correlation structure.
Key Words: Multitaper spectrum, Spectrum Estimation, Time Series, Crossings, Periodicities, Solar
modes

1 Introduction

A major goal of spectrum estimation is to identify deterministic periodicities in time series, and implicit in
this task involves assigning significance to a peak or peaks in a spectrum estimate under the null hypothesis
that no harmonic component is actually present. When the frequencies of possible line components are
known, this is not difficult as spectrum estimates are χ2 distributed. Unfortunately, given very long datasets
(perhaps in excess of 100,000 samples), significant spurious detections can appear as many very narrow
peaks or fewer wide peaks, and their simultaneous assessment becomes a very large multiple-comparisons
problem. The assessment of significance of peaks in spectrum estimates is an old problem first considered
by Schuster [23] and later by Fisher [8]. We give in this paper the average rate at which false detections
occur, as well the width and shape of these excursions, as a new solution to this problem.

Beginning with the investigations of Rice [21] into upcrossing rates of Gaussian processes, expressions
for the upcrossing rates of chi-square processes were derived by various authors [25, 2]. These upcrossing
formulae are dependent upon the variance of the derivative of the process, or equivalently the serial cor-
relations of the process. These crossing expressions are applied here to spectrum estimates. Fortunately,
spectrum estimates have derivatives of all orders, so the main concern in the crossing literature, i.e. differ-
entiability of the process, is not an issue.

The theoretical results in this paper were motivated by the discovery [34], of sharp peaks in power spectra
of magnetic fields and fluxes of charged particles in interplanetary space. These frequencies corresponded
approximately with those expected for the normal modes of the Sun. Agreement with measured frequencies
of p-modes is excellent, and notably, over ten million solar p- and f- modes are expected to exist, [11].
When these findings were announced, they were disputed for various reasons. Most notably it was argued
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that turbulence in the solar wind would destroy coherent modal structures in the interplanetary medium
[22]. However, coexistence of discrete modes with interplanetary turbulence has been more recently shown
in magnetohydrodynamic simulations using all three spatial dimensions [9].

These data present a challenge to conventional spectrum analysis methods. Under the null hypothesis,
no modal structure is present in interplanetary space data, all perceived spectral lines are spurious, and the
spectrum follows a “power law”, characteristic of turbulent processes. Alternatively, there is a myriad of
peaks throughout the spectrum, and this structure coexists with the power law background. In this study,
we give evidence that data collected by neutron monitors on Earth show the presence of modal signatures
in the cosmic ray background. This discovery may have profound implications, as modal structures may
then manifest themselves in many natural processes on Earth, [33]. The present paper is part of a continuing
effort to improve understanding of the statistics of these spectra.

1.1 Organization

Section 2 gives a brief introduction to spectrum estimation, especially the multitaper spectrum estimator.
Notation is established and the distribution of these estimators is given. Section 3 gives an introduction
to crossing literature in the time domain, and these results are applied in the frequency domain to obtain
upcrossing rates for single taper and multitaper estimators. Section 4 gives some results concerning the
width and shape of spurious and genuine detections. In §5, a real data example is given and a permutation
test is proposed. Conclusions and some extensions are discussed in §6.

2 Spectrum Estimation

The power spectrum of a continuous time stationary process contains information about the temporal corre-
lations in the data as a function of frequency. Delta functions in the power spectrum correspond to strong
sinusoidal components in the data, and spectrum estimates are often computed for the purpose of determin-
ing where sinusoidal components contribute significantly to the total signal power. We give here a concise
summary of nonparametric spectrum estimation.

2.1 Direct Estimators

2.1.1 Definition

Techniques for nonparametric estimation of power spectra began with the introduction of the periodogram by
Schuster [23]. The periodogram is part of a larger class of direct spectrum estimators, which are computed
as follows. Given equally-spaced samples of a stationary, zero-mean time series xt , t = 0, . . . ,N− 1, the
direct spectrum is

ŜD( f ) =

∣∣∣∣∣N−1

∑
t=0

xtDte−i2π f t

∣∣∣∣∣
2

(1)

where Dt is a data window, often chosen to be one of those compared in [10]. The periodogram estimator
results when Dt =

√
1/N is substituted above. The nonuniform data window was introduced to reduce bias

inherent in the periodogram. When a data window is used, E{ŜD( f )} = |D( f )|2 ∗ S( f ), where D( f ) is the
Fourier transform of the data window Dt , S( f ) is the true power spectrum, and ∗ denotes convolution.

Direct estimators are not only biased, but inconsistent, i.e. the variance of the estimator does not decrease
as the number of samples is increased. The variance of this estimator can be improved using Welch’s
method, that is, by dividing the data into overlapped sections, computing a direct spectrum on each section
and averaging the estimates. For more information on the Welch technique, see [36]. It can be shown that
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the Welch estimator is consistent when the block length is fixed. The Welch method is often applied to
multitaper spectra, described in §2.2.

2.1.2 Distribution

It can be shown that windowed Fourier transformed data is approximately complex-Gaussian distributed
[15] and is certainly asymptotically so using a weak central limit argument. As such, the direct spectrum at
a given frequency is χ2

2 distributed, where uncorrelated real and imaginary parts each contribute a degree of
freedom to the estimate, except at zero and the Nyquist frequencies, where the spectrum is real.

2.2 Multitaper Estimators

The multitaper estimator, [29], was developed as an approximate solution to the integral equation

y( f ) =
N−1

∑
t=0

xte−i2π(t−N−1
2 ) =

∫ 1/2

−1/2

sinNπ( f −ν)

sinπ( f −ν)
dZ(ν) (2)

obtained when the Fourier transform of the time series, y( f ), is substituted into the Cramér spectral rep-
resentation theorem [6]. The spectrum of the process is then defined as S( f ) =E{|dZ( f )|2}, where dZ( f )
is a stationary, orthogonal increments process. The method makes use of the discrete prolate spheroidal
sequences,{v(k)n (N,W )}N−1

k,n=0 or Slepian sequences which are a set of finite-length, orthogonal sequences
L 2-optimally concentrated on the band (−W,W ) in frequency [26]. They satisfy the eigenvalue equation

N−1

∑
m=0

sin2πW (n−m)

π(n−m)
v(k)m (N,W ) = λk(N,W ) · v(k)n (N,W ) (3)

where the eigenvalue λk(N,W ) also denotes the fraction of energy in the band (−W,W ), and the index
k sorts the sequences in descending order of energy concentration, 1 > λ0 > λ1 > .. . > λN−1 > 0.1 The
first K ≈ 2NW of these are close to one, while the others rapidly drop to zero. Slepian sequences are best
computed as the eigenvectors of a tridiagonal matrix, see [30].

2.2.1 Definition

The multitaper spectrum is constructed as the local least-squares solution to (2) in the band ( f −W, f +
W ), and as such, is a weighted average of magnitude squared Fourier transformed tapered data sequences.
Denoting the eigencoefficients as

y(k)( f ) =
N−1

∑
t=0

xtv
(k)
t e−i2π f t , (4)

and the eigenspectra as Ŝ(k)( f ) = |y(k)( f )|2, one forms the following weighted average

Ŝ( f ) =
K−1

∑
k=0

d2
k ( f )Ŝ(k)( f ) (5)

where the optimum frequency-dependent weights, dk( f ), are determined using an adaptive scheme, see [29]
§V. For Gaussian white noise processes with K = 2NW it can be shown that the expected weight is λk/2NW .

The multitaper usage of approximately bandlimited windows limits leakage from out-of-band frequen-
cies, reducing bias, while the orthogonality of the windows guarantees a consistent estimate when W is

1The explicit dependence on (N,W ) will be dropped for notational convenience.
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fixed. The bias of the kth eigenspectrum, using the Cauchy-Schwarz inequality alone, can be bounded by
σ2(1−λk), where σ2 is the average of the spectrum across frequency. Additionally, W can be decreased to
produce a less biased, better resolved estimate at the expense of variance, or increased to benefit the vari-
ance at the expense of bias, thus providing a compromise to the bias/variance tradeoff, see [30, 17]. Bronez
[5] showed that between direct Welch and multitaper estimators with two of bandwidth, bias, and variance
fixed, the third was always smallest in the case of the multitaper estimator. Stoica and Sundin [27] have
shown that multitaper spectra are approximately maximum-likelihood spectral estimators.

2.2.2 Distribution

Multitaper estimators have χ2
2α

distributions, where the effective degrees of freedom, 2α , can be approxi-
mated in terms of the weights

α ≈
K−1

∑
k=0

d2
k ( f )≈ K. (6)

A particularly convenient standardized form of the spectrum

z( f ) =
Ŝ( f )

E{Ŝ( f )}
(7)

is distributed as a scaled central χ2
2α

random variable, and takes a Γ(α,1/α) probability distribution. This
distribution has mean 1 and variance 1/α . The standardized spectrum will be used to derive all of the
theoretical results of this paper.

Note that when the data contains a line component at frequency f0, the distribution of the spectrum
at f0 changes from the null assumption of a central χ2

2α
, to a noncentral χ2

2α
distribution, [13, 29]. In

this case E{S( f0)} = λ + 2α , where λ > 0 is the noncentrality parameter. This observation means, in
practice, that spectra containing numerous line components may be inappropriately scaled if the spectrum is
standardized using a local mean value. The 5% points of the central and noncentral distributions, however,
agree approximately for reasonable values of λ , so standardization is better done by scaling the empirical
5% point of the spectrum so it matches the theoretical. Needless to say, careful prewhitening of the original
spectrum must be done to ensure sufficient “flatness” in the residual spectrum has been achieved, see [32]
Appendix D.

2.3 A Note on Rayleigh Resolution

The Rayleigh resolution, R, of a time series is the original lower bound on the spacing of peaks in the
spectrum which can be resolved given the length of time over which the data sequence is observed. Hence,
R = 1/T Hz where T is the length of the series (in seconds) or R = 1/Nδ tHz when the series is sampled
at intervals of length δ t seconds (we assume unit sampling throughout this paper). Note that the Rayleigh
resolution does not depend on the sampling rate of the series, hence R does not change with zero-padding
or downsampling. In this paper, frequency is standardized in units of the Rayleigh resolution. Standardiz-
ing both the spectrum and the units of frequency allows us to construct standard reference tables of false
detection rates, looking ahead to table 2.

3 Crossing Problems

Rice [21] derived the expected number of zeros per second of a zero-mean, stationary, continuous-time
Gaussian process as

N̄z =
1
π

[
−γ ′′(0)

γ(0)

]1/2

= 2
[∫

f 2S( f )d f∫
S( f )d f

]1/2

(8)
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where γ(τ) is the autocovariance function of the process at lag τ and γ ′′ is the curvature of the autocovariance
with respect to τ . For history of Rice’s formula [20] and an overview of the literature that has expanded
from this result, consult [4, 1].

Miller [16] and Silverman [25] independently extended this result to χ2 processes, see also [12, 24, 2,
35, 14]. Using the standardized spectrum (7), define

ϒ(∆) = Cov{z( f +∆),z( f )}, (9)

as the antecovariance of the spectrum estimate, where the antevariance is ϒ(0) = 1/α . Denoting U(z;α) as
the upcrossing rate of the level z of a Γ(α,1/α) process per Rayleigh resolution, we have

U(z;α) = ψ

√
z

2πα
p(z;α) (10)

where p(z;α) is the Γ(α,1/α) probability distribution function and

ψ =
1
N

[
−

d2

d∆2 ϒ(∆)|0
ϒ(0)

]1/2

. (11)

The factor of ϒ(0) in the denominator converts from covariance to correlation, and the 1/N converts to
frequency in units of Rayleigh resolution. The term− d2

d∆2 ϒ(∆)|0 is the variance of the derivative z′= d
d f z( f ).

The purpose of this paper is to apply crossing theory to spectra to obtain expressions for false detec-
tion rates above given significance levels. Under the null assumption that the data is white, Gaussian, the
upcrossing rate U(z95%;α), where 0.95 =

∫ z95%
0 p(z;α)dz gives the rate of false detection of periodic com-

ponents in the spectrum which have over 95% significance. This false detection rate depends on the serial
correlations ϒ(∆) of the spectrum estimates, and we derive these for both classes of estimators discussed
in §2. Application of the above theory is applied with some care. It is usually assumed that the individual
Gaussian processes making up the χ2 process are independent with identical autocovariances, but when
applied to multitaper eigencoefficients neither of these assumptions is true.

3.1 Direct Spectrum Upcrossing Rate

Beginning with equations (10) & (11), the antecovariance, or covariance of the spectrum estimate, ϒ(∆), of
the direct spectrum (1) is, [28] or [31] §4.4,

ϒD(∆) = |(D∗D∗)(∆)|2 =

∣∣∣∣∣N−1

∑
t=0

D2
t e−i2πt∆

∣∣∣∣∣
2

(12)

where ∗ used as a superscript denotes complex conjugate. The second equality follows when the process
is white, zero-mean, and complex valued (as it is under the null hypothesis here). To obtain the upcrossing
rate, substitute α = 1 so the standardized spectrum has an exponential distribution, p(z;α) = e−z. Then (11)
becomes, upon application of Isserlis’s formula,

ψD =
2π

N

[
N−1

∑
s,t=0

(s− t)2D2
t D2

s

]1/2

(13)

and the upcrossing rate (10) is

UD(z;1) =
e−z

N

[
2πz

N−1

∑
s,t=0

(s− t)2D2
t D2

s

]1/2

. (14)
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For example, straightforward substitution of the periodogram estimate into the antecorrelation formula (12)
results in

ϒP(∆) =

∣∣∣∣ sinNπ∆

N sinπ∆

∣∣∣∣2 (15)

And the mean number of upcrossings of a level z for a periodogram per Rayleigh resolution becomes simply

UP(z) =
[

πz
3

]1/2 (N2−1)1/2

N
e−z ≈

[
πz
3

]
e−z. (16)

Note that for complex Gaussian white data, E{z( f )} = 1 and all peaks are spurious, so the upcrossing rate
should be as small as possible for high levels z. The upcrossing rate, among direct estimates and for N fixed,
only changes in the constant ψD, which depends only on N and the data window Dt . It is possible to have
ψD = 0 if one chooses, for example Dt = 1 when t = 0 and 0 everywhere else, but this choice gives a terrible
spectrum estimate. In fact, for any “good” choice of Dt , see [10], one finds that the reduction in UD(z;1) as
compared to UP(z;1) is marginal.

3.2 Multitaper Antecorrelation

The antecovariance, ϒ(∆), for a multitaper estimate is evaluated in [31]. Beginning with a white, Gaussian,
complex-valued series, as before, the covariance between the eigencoefficients separated in frequency by ∆,
[29], is

Cov{y j( f +∆),y∗k( f )}=
N−1

∑
t=0

v( j)
t v(k)t ei2πt∆ (17)

where ∗ denotes complex conjugate. When ∆ = 0, this expression collapses to δ j,k, because the Slepian
sequences are orthonormal. Now, substituting the expected weights d2

k ( f ) = λk, the antecovariance becomes

ϒ(∆) = Cov{z( f ),z∗( f +∆)}= 1
(2NW )2

N−1

∑
n,m=0

[
K−1

∑
k=0

λkv(k)n v(k)m

]2

e−i2π∆(n−m) (18)

When K / 2NW , substituting (3) into the bracketed term and using orthogonality of the Slepian sequences,
gives the approximation

ϒ(∆) � 1
(2NW )2

N−1

∑
n,m=0

[
sin2πW (n−m)

π(n−m)

]2

e−i2π∆(n−m) (19)

=
1

(2NW )2

N−1

∑
τ=−(N−1)

(N−|τ|)
[

sin2πWτ

πτ

]2

e−i2π∆τ (20)

where the second equality uses the change of variables τ = n−m. Remarks: (i) This expression is approx-
imate because the bracketed term in (18) is a truncated spectral decomposition of (3). The approximation
is accurate because eigenvalues become very small for k > 2NW . (ii) ϒ(∆) drops rapidly to almost zero at
±2W , [31] Fig. 3. (iii) Real valued processes have half the degrees of freedom within ±2W of the origin
and the Nyquist frequency than they have at other frequencies. (iv) The standardizing factor 2NW is the
trace of the sinc matrix in (3) and is the sum of the squared weights, λk here. (v) Eqn. (20) is the Fourier
transform of a product of a Fejér kernel and a triangular window ((N−|τ|) for |τ| ≤ N and zero otherwise).
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K
NW 2NW 2NW −1 2NW −2 2NW −3 2NW −4 2NW −5 2NW −6
3.5 0.7740 0.9514 0.9717 0.9612 0.9540 0.9502 0.9484
4 0.7230 0.8895 0.9118 0.9022 0.8947 0.8904 0.8881

4.5 0.6811 0.8383 0.8620 0.8533 0.8458 0.8412 0.8385
5 0.6458 0.7951 0.8199 0.8120 0.8045 0.7997 0.7967

5.5 0.6155 0.7580 0.7835 0.7764 0.7690 0.7641 0.7609
6 0.5892 0.7257 0.7518 0.7453 0.7381 0.7331 0.7298
7 0.5455 0.6718 0.6986 0.6934 0.6865 0.6815 0.6781
8 0.5103 0.6285 0.6557 0.6514 0.6449 0.6400 0.6364
10 0.4568 0.5622 0.5896 0.5870 0.5811 0.5764 0.5729

Table 1: Table of ψ , Eqn. (11), computed exactly for various choices of K and NW . For example, the choice
of NW = 5, K = 8 = 2NW −2 gives ψ = 0.8199.

Because the crossing rate (10) depends on the curvature of the antecorrelation, or equivalently, the
variance of the derivative of the standardized spectrum, we take the second derivative of (20) at the origin,

σ
2
d =

1
N2 Var

{
d

d f
z( f )

}
=− 1

N2
d2

d∆2 ϒ(∆)
∣∣∣
0

(21)

=
1

(N2W )2

N

∑
τ=−N

(N−|τ|)sin2 2πWτ (22)

=
1

2(NW )2

{
1−
[

sin2πNW
N sin2πW

]2
}

(23)

≈ 1
2(NW )2 ≈

2
α2 (24)

where the scale factor 1/N is added to keep frequency in units of Rayleigh resolution. The Fejér kernel is
used to simplify (21). The second term in (23) is zero for nonzero positive integer and half-integer values
of NW , and is otherwise approximately [sin(2πNW )/(2πNW )]2. The second approximation in (24) holds
exactly when α = 2NW .

3.3 Multitaper Spectrum Upcrossing Rate

Beginning with (10) and (11), direct substitution of the expressions (20) and (24), and letting K = 2NW
gives ψ ≈ (2/α)1/2, so that the multitaper upcrossing rate is

U(z;α)≈
√

z
π

1
α

p(z;α) (25)

in Rayleighs assuming a white complex-vauled Gaussian process. This formula is deceptively simple as it
involves the approximation (20). Exact evaluation of (11) can be computationally inconvenient when N is
large. Table 1 gives values of ψ for various choices of NW , where N = 105 was used in the computation.
Table 2 shows U(z;α) for common choices of NW,K.

It is common to average multitaper spectrum estimates from overlapped data blocks, as in the Welch
method. Assuming J non-overlapping segments, each with K degrees of freedom, the crossing rate becomes

UJ(z;α)≈ ψ

√
z

2παJ
p(z;αJ)� 1

α

√
z

πJ
p(z;αJ) (26)
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NW = 3.5 K = 4 K = 5 K = 6 K = 7
P % z U(z;4) z U(z;5) z U(z;6) z U(z;7)

50.0000 0.918 154,172 0.934 155,596 0.945 152,176 0.953 123,703
90.0000 1.670 61,808 1.599 62,952 1.546 61,986 1.505 50,655
99.0000 2.511 8,910 2.321 9,105 2.185 8,989 2.082 7,362
99.9000 3.266 1,093 2.959 1,118 2.742 1,105 2.580 906
99.9900 3.978 126 3.556 129 3.261 128 3.041 105
99.9990 4.666 14 4.130 14 3.756 14 3.480 12
99.9999 5.338 2 4.686 2 4.235 2 3.903 1
NW = 4 K = 5 K = 6 K = 7 K = 8

P % z U(z;5) z U(z;6) z U(z;7) z U(z;8)
50.0000 0.934 144,458 0.945 145,837 0.953 142,168 0.959 115,494
90.0000 1.599 58,446 1.546 59,404 1.505 58,216 1.471 47,496
99.0000 2.321 8,453 2.185 8,614 2.082 8,460 2.000 6,915
99.9000 2.959 1,038 2.742 1,059 2.580 1,041 2.453 852
99.9900 3.556 120 3.261 122 3.041 120 2.870 98
99.9990 4.130 13 3.756 14 3.480 13 3.265 11
99.9999 4.686 1 4.235 1 3.903 1 3.645 1
NW = 5 K = 7 K = 8 K = 9 K = 10

P % z U(z;7) z U(z;8) z U(z;9) z U(z;10)
50.0000 0.953 129,774 0.959 130,965 0.963 126,962 0.967 103,075
90.0000 1.505 53,141 1.471 53,859 1.444 52,399 1.421 42,669
99.0000 2.082 7,723 2.000 7,842 1.934 7,642 1.878 6,232
99.9000 2.580 951 2.453 966 2.351 942 2.266 769
99.9900 3.041 110 2.870 112 2.733 109 2.619 89
99.9990 3.480 12 3.265 12 3.093 12 2.952 10
99.9999 3.903 1 3.645 1 3.440 1 3.271 1
NW = 6 K = 9 K = 10 K = 11 K = 12

P % z U(z;9) z U(z;10) z U(z;11) z U(z;12)
50.0000 0.963 119,005 0.967 119,995 0.970 115,801 0.972 93,999
90.0000 1.444 49,115 1.421 49,674 1.401 48,063 1.383 39,104
99.0000 1.934 7,163 1.878 7,255 1.831 7,028 1.791 5,725
99.9000 2.351 883 2.266 895 2.194 867 2.132 707
99.9900 2.733 102 2.619 103 2.524 100 2.442 82
99.9990 3.093 11 2.952 12 2.834 11 2.733 9
99.9999 3.440 1 3.271 1 3.130 1 3.010 1

Table 2: For quick reference, this table gives expected upcrossing rates, U(z;K), per million Rayleigh
resolutions for typical choices of NW and K. P denotes the probability of reaching the level z and U(z;α) is
given in Eqn. (10). For example, the expected number of upcrossings in 106 Rayleighs of the 99% level in a
multitaper spectrum of Gaussian white noise with NW = 5,K = 8 is 7842. If the number of peaks in a real
spectrum greatly exceeds this, it is likely due to the process’s correlation structure. To get the significance
level for a χ2

2K estimate, as opposed to a Γ(K,1/K) estimate, multiply z by 2K.
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Figure 1: The left panel shows the multitaper U(zp;K) (blue, marked MT) versus the periodogram UP(zp;1)
(black, marked P) estimates’ crossing rates per Rayleigh resolution with white complex-valued noise as
input. Red dashed lines give upcrossing rates for simulated data (N = 100,000) for the respective estimates.
The y-axis gives crossing rates for the level zp which is obtained by inverting the cumulative probability
distribution at the level 100(1− p)%, p is the p-value for the test for a harmonic component at a given
frequency and is plotted on the x-axis. For the multitaper, parameters NW = 5,K = 8 were chosen. The
right panel shows the average dwell bandwidth of crossings for these estimators.

where the last expression uses the asymptotic value of ψ .

3.4 Comparison

Combining the results of this section, the left panel of Fig. 1 shows the periodogram estimate’s upcrossing
rates against that of the multitaper, along with the result of a white Gaussian noise simulation where N = 105.
Multitaper parameters were chosen as NW = 5,K = 8. Note that the multitaper curve is everywhere below
that of the periodogram, indicating that at every level of significance, the multitaper estimate will give,
given Gaussian white noise (where only spurious peaks are present), fewer detects. The reason for this lies
in the expression (10), where the dominant term for the shape of U(z;α) is in the probability distribution
p(z;α). The level z is implicit in this figure as the inverse complimentary (1-cdf) cumulative distribution of
the values on the x−axis.

4 Shape and Width of Spurious Peaks

The upcrossing rate formulae have a particularly simple relationship with the width of these peaks, [18]
equation (3.41). Define the dwell bandwidth, w(z) as the average frequency difference from the point where
the estimate crosses z with a positive slope and the next frequency where the estimate returns to a level
below z. For small z, this dwell distance can correspond to more than one peak, but for large z the dwell
band usually contains a single maximum, so peak-bandwidth is almost synonymous. The average number
of such excursions times their mean bandwidth gives the total frequency range above z, the complimentary
cdf (CCDF), Q(z;α), so Q(z;α) =U(z;α)w(z).

For example, using (16) and noting that the CCDF is just e−z, the average dwell bandwidth for spurious
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Figure 2: The red curve gives the average shape of the 50 largest (spurious) peaks in a multitaper white-
noise spectrum. The light grey band shows the range, while the dark grey band shows one standard deviation
away from the mean. The dotted black line shows the shape of the theoretical antecorrelation. Here, N =
100,000,NW = 5, and K = 8 was used. The dashed vertical lines give the ±W and ±2W bands, and the
horizontal dashed lines give the mean z = 1 = ±1σ = ±

√
1/K and the 99% significance level. At 99%

significance, the average peak width is about W Rayleighs wide.

peaks in a periodogram is

wP(z)≈
√

3
π

z−1/2 (27)

Rayleighs. Similarly, combining (10) with the gamma CCDF gives the average dwell bandwidth for spurious
peaks in the multitaper estimate, in Rayleighs,

wmt(z)≈ α

√
π

z
Q(z;α)

p(z;α)
. (28)

The right panel of Fig. 1 gives a comparison of the average dwell bands for the two estimates.
Related to the dwell bandwidth problem is the question of the shape of random peaks in spectrum

estimates. In the time-domain crossing literaure, [7], continuous-time Gaussian processes are assumed to
be well-approximated by a second-order Taylor series approximation during an excursion. Fig. 2 shows
the average of the 50 largest peaks in a multitaper spectrum estimate, and while a quadratic approximation
may be convenient, it is apparently not appropriate for spectrum estimation. Blachman [3] showed that for
Gaussian processes, large excursions take the shape of the autocovariance function. Adapting this result to
spectra is not strictly valid as spectra have χ2 distributions, but is asymptotically valid if one increases the
degrees of freedom with N, and for spectra with > 20 df, the result applies reasonably well. Reconsidering
Eqn (20), the antecorrelation ϒ(∆) is dominated by a triangular window of width 2W . Additionally, the
antecorrelation is an entire function of frequency so its curvature is well-defined. We conclude, then, that
the shape of random peaks in multitaper spectra is triangular with width ±2W . On the other hand, if the
spectrum genuinely contains a δ -function at a given frequency, the spectrum estimate takes on the shape of
the spectral window - which, for a multitaper estimate is roughly rectangular with width±W centered about
the frequency of interest.
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Figure 3: Standardized Newark neutron monitor spectrum between June 30-December 31, 1250-1500 µHz
band shown, spectrum is an average of two nonoverlapping segments. Horizontal lines denote significance
levels for a χ2

24 standardized estimate. Vertical lines denote low-l p-mode frequencies in that band, [19].

5 A Real Data Example

Returning to the problem mentioned in the introduction, namely, the discovery of solar modal structure
in space [34, 32] and in the engineering environment on Earth [33], we examine neutron monitor data.
These data present an excellent example of a process which appears to contain a pathological number of
line components. We question whether the perceived line components could correspond to frequencies for
solar p-modes, and by permuting the original data we test whether the lines are due to the temporal order
of the data, i.e. the data’s autocorrelation structure, or to the data’s distribution. Neutron monitor data are
given as counts per 10 seconds, so the process is expected to be Poisson distributed, however x̄ = 99.2 and
σ̂2 = 62.5, suggesting that the data are underdispersed, so that the events are not uniformly distributed in
time but “bunched”.

Figure 3 shows a standardized spectrum estimate of neutron monitoring data obtained from the Newark
neutron monitor of the Bartol Research Institute. Data were sampled from June 30, 2005 to December 31st,
2005, separated into two non-overlapping segments (N = 799,197 samples, 10s apart) and were interpolated,
low-pass filtered and decimated to δ t = 30s. The data was of high quality; less than 3% of the data was
missing over this period. The Rayleigh resolution of the resultant spectrum was 62.6nHz. Because fine
scale frequency resolution is desired, the time bandwidth NW = 3.5 was chosen with K = 6 tapers, giving a
bandwidth of 438nHz, and yielding an estimate with ≈ 24 degrees of freedom.

Superimposed on this spectrum are l≤ 6 p-mode frequencies obtained from [19] (vertical lines in Fig. 3),
labeled by the triplet (l,m,n), which indexes the modes. We perceive agreement between the 13 frequencies
pictured on this band with highly significant peaks in the spectrum. Note that the standardization is for
a Γ(12,1/12) process, and that significance levels (horizontal lines in the figure) are labeled under the
assumption that no modal structure is present. Abundant modal structure, such as would appear under our
alternative hypothesis would cause this estimate to have a larger mean than expected.
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Figure 4: The left panel shows the best-fitting mixture (red) of noncentral (blue) and central (green) χ2
24

pdfs to the empirical distribution (in black) of the multitaper spectrum NW = 3.5,K = 6,J = 2 estimate on
the band (250− 5000)µHz. This mixture was found by minimizing the Kolmogorov-Smirnov D statistic
(contour plot, right panel) over a grid of choices for the mixing fraction ε (shown on the x-axis) and the
noncentrality parameter λ (y-axis), expressed in units of the degrees-of-freedom parameter ν = 24. The
minimum of the D statistic (marked with an ‘x’) occurs on this grid at λ = 0.7ν ,ε = 0.68, and takes the
value Dmin = 0.0150 which indicates that the data are mainly modal on this band. Note that the central
chi-square distribution (ε = 0) gives D = 0.0663.

Proceeding in the spirit of Thomson et al. [32], we decompose the empirical distribution of the spectrum
in the p-mode band (250− 5000µHz) into a mixture of central and non-central χ2

24 components. Here we
assume that the spectrum consists of a mixture of “noise” and “lines”, the former having a central distribution
and the latter having a noncentral distribution. The fit was done assuming that the noise power is uniform
across frequency and constraining the mean of the two distributions to match the average across frequency.
Denote by λ the noncentrality parameter, and ε the fraction of the spectrum in modes, both which are to be
estimated. Expressing the noncentrality parameter in standard units gives a signal-to-noise ratio ρ = λ/ν

where ν = 24, the degrees of freedom, is the mean of the central component. The probability distribution of
the mixture model, then, is

Pε(s|ν ,ε,λ ) = (1− ε)Pc(sγ|ν)+ εPnc(sγ|ν ,λ ) (29)

where the scale factor γ is chosen so that the expected value of the mixture distribution matches the sample
average. Here s denotes a value of the spectrum at some frequency and Pc and Pnc are the central and
noncentral χ2

ν distributions, respectively. Creating a grid of choices for λ ,ε , the Kolmogorov-Smirnov D
statistic for goodness-of-fit between the empirical and mixture distributions was made at each point, see
Fig. 4. The minimum D-statistic was Dmin = 0.015 with λ = 0.7ν = 16.8, and ε = 0.68. The right panel
of Fig. 4 shows the best fitting pdf for the mixture model superimposed upon a histogram of the empirical
distribution. Note that the central χ2

24 distribution gave D = 0.0663. This analysis suggests that the data
are overwhelmingly modal on the 250− 5000µHz band, where about 68% of the frequency bins indicate
nonzero noncentrality.

Increasing the bandwidth and number of tapers to NW = 5,K = 8, to give ν = 2α ≈ 16 for a single
segment, we consider whether or not the peaks in the spectrum could be due to the unexplained underdisper-
sion of the original Poisson process. Note that the data are otherwise somewhat non-Gaussian with skewness
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P % z U(z;8)
√

U(z;8) Gauss RP Obs
50.0000 0.959 13,096 114 12,840 12,041 12,368
90.000 1.471 5,386 73 5,297 5,018 6,256
99.000 2.000 784 28 781 566 1,665
99.900 2.453 97 10 101 71 392
99.990 2.870 11 3 10 3 90
99.999 3.265 1 1 1 0 45

Table 3: Expected, U(z;16), and observed counts of upcrossings per 100,000 Rayleigh resolutions of the
Newark neutron monitor multitaper NW = 5,K = 8 spectrum over the band 250− 5000µHz. The column
headed

√
U is the standard deviation expected with Poisson statistics. The three right-hand columns give ob-

served counts for the observed data (Obs), the same data after random permutation (RP) and white Gaussian
(Gauss) data, for reference.

0.5159 and kurtosis 3.835. Using the data sequence of length N = 799,197, between September 30th and
December 31st, 2005, sampled at δ t = 10 seconds, the Rayleigh resolution is 125nHz. The p-mode band
is about 4750µHz wide, (∼ 250− 5000µHz) which gives a band of width 37,962 Rayleighs. Downsam-
pling, computing the spectrum, and prewhitening as before, we give in Table 3 the result of a permutation
experiment on these data. Upcrossings are given per 105 Rayleigh resolutions.

Because large peaks are rare events, counting “rare” upcrossings over an interval corresponds to a Pois-
son process, thus the column marked

√
U(z;α) is the expected standard deviation of the number of up-

crossings of the level z, and gives rough error bounds associated with these counts. The table shows that
there is an overwhelmingly large number of peaks in the observed spectrum, and that this number of peaks
decreases to approximately that expected from a Gaussian process when the data is randomly permuted.
For high significance levels, one finds many more upcrossings than expected with white Gaussian data. For
reference, the column marked Gauss gives the number of upcrossings of a simulation of a white Gaussian
process. We conclude that the pathological number of peaks observed in this spectrum is a result of the
temporal order of the data, i.e. the process’s autocorrelation structure and is not a result of any departure
from Gaussianity.

6 Conclusions

We have derived expressions for the upcrossing rate of the spectrum of a Gaussian white noise process above
a given significance level. This expression involves the autocorrelation of the spectrum, or antecorrelation,
as well as the estimator’s probability distribution. We showed that among nonparametric spectrum estimates,
fewer spurious detects are always given by the multitaper estimate. From the upcrossing expression we also
can derive the expected width of excursions above a given significance level. We found that the shape of the
spectrum near a spurious peak corresponds to the shape of the antecorrelation there. Because the multitaper
antecorrelation is roughly triangular in shape with width ±2W , spurious peaks take on that shape, while
genuine peaks take the shape of the spectral window, which is rectangular with width ±W .

Galactic cosmic radiation is known to undergo solar modulation in interplanetary space, and thus carries
the signature of the 11 year solar cycle. In this study we consider solar modal structure as a possible
driver for the more minor variations in cosmic ray intensity on Earth. Because the interplanetary medium
is mainly turbulent, some have suggested that the perceived modal structure in these data could be due to
its non-Gaussian distribution. We used a permutation test to justify the appearance of these modes. After
random permutation, the large number of upcrossings of the spectrum in the high significance levels reduces
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to the number expected for a Gaussian process. This evidence, combined with the fact that the spectrum
appears to be about 68% modal, supports the argument that these peaks are genuine. We conclude that these
data contain peaks which are indeed due to the correlation structure of the data and not its distribution. The
agreement in Fig. 3 of these modal structures with known modal frequencies in the p-mode band supports
these claims.

In conclusion, the present approach is part of an effort to better characterize spectra of this sort, and
though we give here a single motivating example, the implications of these results are of widespread interest
in the space physics and engineering communities.
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