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Abstract 
An important problem in the analysis of social networks, particularly those modeled 
using survey response data, is that of non-response. Recent studies have shown the 
negative effects of missing actors and missing ties on the structural properties of 
networks [4].  To overcome these problems, we adapt link prediction methodology [6] to 
the problem of single imputation of item non-response in social network survey data. 
Empirically, we examine the accuracy of link prediction methods on relational data for 
social groups in Zablocki’s Urban Communes Data Set [13].  Furthermore, we extend the 
methodology to include the use of supplementary information for link prediction in the 
case of networks with multiple types of relations on the same individuals.  
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1. Introduction 
 
Item non-response is an important problem in social network surveys, one that is usually 
dealt with by context-independent imputation methods [4, 11].  As an alternative to 
conventional strategies, we use link prediction methodology [6] and context-dependent 
information to investigate the influence of even very limited behavioral information on 
the accuracy of imputation of network links.  We study an illustrative social network, 
which is part of Zablocki’s Urban Communes Data Set [13].  In this setting, we consider 
the quality of prediction of missing links when the empirical data is based on only a 
single type of tie, but where a defensible behavioral assumption is an essential element in 
the analysis.  We then examine the situation in which data on multiple types of tie are 
available for the same set of individuals.  This presents an opportunity to base imputation 
on linkages for the same individual across two or more types of tie simultaneously.  
Algebraic semigroup representations of linkages among individuals across two or more 
kinds of tie are utilized in a link prediction framework to carry out more informed 
imputation than either the single tie data or the use of conventional context-independent 
methods will allow. 
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2. What is Link Prediction? 
 
We begin with the premise that individuals, labeled x and y, are more likely to be linked 
in a true (directed) network G if there is a large overlap between their sets of neighbors 
(paths of length 1) in a given observed network GG ⊂0 , where G0 is presumed to have 
missing links.  To formalize an imputation method that is designed to recover G from G0, 
we introduce a proximity measure score(x, y), where we interpret the highest values to be 
associated with individuals who are “closer” in the network and therefore have the 
highest likelihood of being linked.  Several different specifications of score(x, y) will be 
considered here.  These are as follows, 
 
a. Graph distance:  score(x, y) =  the length of the shortest path between x and y in G0. 

 
b. Common neighbors:  score(x, y) = )()( yRxR ∩ , the number of neighbors that x 

and y have in common, where R(x) =  the set of neighbors of x in G0 = {z: <x, z> is a 
single link connection between x and z in G0.   

c. Jaccard’s similarity coefficient:  score(x, y) = 
)()(
)()(
yRxR
yRxR

∪

∩
, which is the 

probability that both x and y have a neighbor in common, for some randomly selected 
neighbor of either x or y.   
 

d. Preferential attachment:  score(x, y) = )()( yRxR ⋅ .  This specification is motivated 
by the empirical evidence that the probability of a link between x and y is correlated 
with the product of the number of neighbors of x and y [1, 8].  

 
With any specification, we rank scores in decreasing order of proximity for all pairs (x, y) 
of vertices that are missing in G0.  Then, we require a threshold s* such that we impute a 
link between x and y for the s* pairs with the highest ranked score(x, y) values.  
Thresholds are best determined from training graphs with the same number of vertices 
and comparable patterns of connectivity to the graph at hand.  In this paper, we set the 
threshold s* to be the number of links that exist in the true complete graph G for the set 
of missing dyads in G0.  Additionally, there are some instances when multiple vertex 
pairs share the same score value.  When this occurs, we randomly select the necessary 
number of vertex pairs to impute. 
 
The above discussion concerns imputation when the available data pertains to only a 
single type of tie between individuals.  When there is relational data on two (or more) 
types of tie for the same individuals, we need an alternative specification of score(x, y)—
one that uses the multi-relational information—to impute data for the primary relation of 
interest.  To this end, let X denote the adjacency matrix for the primary relation, and let Y 
denote the adjacency matrix for the secondary relation.  We assume that the existence of 
a link between two individuals in the secondary relation implies a higher propensity for 
linkage in the primary relation.  Consequently, pairs of individuals are more likely to be 
linked in the primary relation if they share larger numbers of common neighbors in both 
relations.   
 
To formalize the notion of common neighbors in this context, we begin with two 
relations X and Y, represented by graphs G0(X) and G0(Y).  Then, the adjacency matrices 
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for the two relations are multiplied to generate compound relations of length 2, namely 
X2, XY, YX, and Y2.  The common neighbors of x and y can then be traced through a 
compound relationship by identifying a vertex z such that <x, z> is a link in the first 
component, and <z, y> is a link in the second component.  Two examples of this kind of 
linkage are as follows: 
 

1. <x, z> is a link in X and <z, y> is a link in Y, with no <z, y> link in X.  Then, z is 
a common neighbor of x and y in XY.     
 

2. Both <x, z> and <z, y> are links in Y, with neither of these links present in X.  
Then, z is a common neighbor of x and y in Y2. 

 
Counting neighbors of x and y in this way allows us to compute score(x, y) by summing 
across all compound relations of length 2.  It is worth noting that in the case of multiple 
relations, there may be missing linkage data in both the X and Y relations.  Our objective 
here is to use the observed data in Y to reliably impute missing links in X.   
 

3.  Examples 
 
3.1  Data Source 
 
We utilize data from the Urban Communes Project, which is a longitudinal, multi-wave 
panel study of participants from 60 social groups (hereafter referred to as communes) first 
surveyed in 1974 and studied extensively by Zablocki [13] and Bradley [2, 3].  In the 
Urban Communes Project, a commune is operationally defined as a minimum of three 
families or five non-blood-related adults who shared, to some degree, a common 
geographical location, voluntary membership, economic interdependence, and some 
program of common enterprise (i.e., spiritual, social-psychological, political, cultural, or 
some combination of these).  Six Standard Metropolitan Statistical Areas (Atlanta, 
Boston, Houston, Los Angeles, Minneapolis-St. Paul, and New York) were selected, 
which were broadly reflective of the differences in geographic location and urban context 
in the United States.  In each city, a commune census was undertaken by fieldworkers to 
establish contact with as many communes as possible.  From this census, ten communes 
were chosen from each city that both represented the overall characteristics of the 
communes enumerated and also reflected the communal differences among the six cities 
[13]. 
 
After the communes were selected, three of the 60 communes were removed from 
analysis because of their rehabilitative nature—that is, in three communes, membership 
was not totally voluntary and involved an element of legal coercion [2].  Additionally, a 
subsequent check on the exact membership disposition of every adult in all communes 
reduced the actual number of permanent residents to four adults in the case of two 
communes.  Therefore, a total of 57 communes are suitable for analysis, ranging in size 
from n = 4 to n = 26 members, with an average of 10 members in each commune.  A total 
of 566 adults, aged 15 years and older, comprised the 57 communes at the time of the 
first wave of data collection in 1974.  The sample is similar to the national population (in 
1974) on employment status and class affiliation.  However, the smaller family of origin, 
the greater probability of a middle class background, higher education, and non-blue 
collar occupation distinguishes the commune sample from the American population as a 
whole [2]. 
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A sociometric questionnaire served to gather information about the nature and structure 
of informal relations among the members in each commune.  In this instrument, every 
member was asked to answer a set of questions about his or her relation with each other 
resident who was 15 years of age or older.  The aim was to map all possible dyadic 
relations among group members across a variety of different types of social bonds.  
Therefore, each person had to complete a set of standardized questions for n – 1 members 
(where n = the number of permanent adults in the commune).  This procedure generated 
an exhaustive mapping of the n(n – 1) dyadic relations in a commune, for each of 13 
types of relational contents.  In this study, we consider the loving and improving 
relational contents.  The questionnaire item pertaining to these relations is as follows, 
 
…indicate if [loving/improving is] involved in your relationship with [alter] by circling 
the appropriate answer. 
 
Possible responses to these relational questions are “Yes,” “No,” or “Sometimes.”  In this 
paper, we consider unweighted networks, with both “Yes” and “Sometimes” responses 
indicating the existence of a relation.  Since commune members were not required to 
answer any or all of the relational questions in the sociometric questionnaire, it is 
possible that a given commune exhibits some degree of non-response.  However, it is 
observed that most communes had a reasonably high response rate.  In fact, 46 of the 57 
eligible communes exhibited a 25% or lower item non-response rate, and 40 of these 
exhibited a 15% or lower item non-response rate.   
 
3.2  Imputation Using Data from a Single Type of Tie 
 
Consider a commune with 7 members and complete data (i.e., full response) on the 
loving relationship L.  The network diagram and adjacency matrix are shown in Figure 1.  
 

 
           (a)                                            (b) 

 
Figure 1: (a) True network diagram for loving relation;  

(b) True adjacency matrix 
 
We induce missing data scenarios by assuming that random patterns of 10, 20, and 30 out 
of the 42 possible directed dyads are unobserved (i.e., missing).  In Figure 2 below, we 
illustrate the “observed” network diagram and adjacency matrix for a random removal of 
10 dyads.   
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           (a)                                            (b) 

 
Figure 2: (a) “Observed” network diagram for loving relation;  

(b) “Observed” adjacency matrix 
 

1.  Start with  
observed data 

2.  Set missing             
values = 0  
to obtain L0 

3.  Compute  
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# common 
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1. score(1,5) = 2 
2. score(2,6) = 1 
3. score(3,1) = 1 
4. score(4,7) = 1 
5. score(5,4) = 1 
6. score(6,1) = 1 
7. score(6,7) = 1 
8. score(7,6) = 1 
9. score(2,4) = 0 

10. score(4,2) = 0 

 
Figure 3: Illustration of common neighbors link prediction methodology on  

example commune, with 10 dyads missing 
 

In Figure 3, we illustrate link prediction using the common neighbors method.  With a 
threshold s* = 5, we wish to impute the 5 vertex pairs with the highest ranked score 
values.  It is clear that a link is imputed for the vertex pair (1, 5) with the highest score 
value.  Then, since there are 7 vertex pairs with score(x, y) = 1, we randomly select 4 
pairs from among these for which to impute a link in L0.  Figure 4 below illustrates one 
possible outcome of the link prediction procedure. 
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 (a)                                             (b)                                             (c) 
 

Figure 4: Illustration of common neighbors link prediction methodology on  
example commune; (a) true adjacency matrix, (b) imposed 10 dyads missing,                  

(c) link prediction result 
 
Since there are multiple ways to randomly select 4 pairs of vertices to impute from the 
seven pairs with the same score value, we consider all possible selections (i.e., 35 
possible imputations).  To evaluate the efficiency of a given prediction method, we 
compute a prediction accuracy rate, which is defined to be the percentage of link 
predictions that are correct, compared to the true network.   That is, we compare the 
predicted values (circled in red) in Figure 4(c) with the true values (circled in black) in 
Figure 4(a).   The average number of correct predictions and prediction accuracy rate 
from all 35 possible resulting imputations are reported in Table 1 below.  
 

Table 1:  Link prediction results for imputation of missing data in loving relation, 
single tie case 

      

Link 
Prediction 

Method 

10 dyads missing 
(s* = 5) 

20 dyads missing  
(s* = 6) 

30 dyads missing  
(s* = 8) 

Average  
# Correct 

Average 
Prediction 
Accuracy 

Rate 

Average  
# Correct 

Average 
Prediction 
Accuracy 

Rate 

Average  
# Correct 

Average 
Prediction 
Accuracy 

Rate 

RANDOM  5.0000 0.5000 11.6000 0.5800 18.2667 0.6089 

Graph 
Distance 5.0000 0.5000 12.3636 0.6182 22.0000 0.7333 

Common 
Neighbors 4.5714 0.4571 12.3636 0.6182 22.0000 0.7333 

Jaccard’s 
Coefficient 5.6000 0.5600 15.0000 0.7500 23.0000 0.7667 

Preferential 
Attachment 4.0000 0.4000 11.2000 0.5600 18.0000 0.6000 
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3.3  Imputation Using Data from Two Types of Tie 

Consider now that we have information about an additional type of tie connecting the 
same 7 individuals.  We wish to use this information in order to better inform our link 
prediction procedure.  As before, we induce missing data scenarios by assuming that 
random patterns of 10, 20, and 30 out of the 42 possible directed dyads in the loving 
relation L are unobserved (i.e., missing).  Additionally, we introduce the improving 
relation I, where we assume that the existence of an improving relation implies a 
propensity toward the existence of a loving relation.  In Figure 5 below, we illustrate the 
complete network diagram for the improving relation I0, together with the “partially 
observed” network diagram for the loving relation L0, which has the same (randomly 
selected) 10 dyads missing as before.   
 

 
 

Figure 5: (a) (Partially observed) network diagram for loving relation;  
(b) (Fully observed) network diagram for improving relation 

 
In Figure 6 below, we illustrate link prediction using the common neighbors method.  
With a threshold of s* = 5, we impute the five vertex pairs with the highest ranked score 
values.  It is clear that a link is imputed for the vertex pairs (1, 5), (2, 6), and (5, 4) with 
the highest score values.  Then, since there are 3 vertex pairs with score(x, y) = 6, we 
randomly select 2 pairs from among these for which to impute a link in L0.   
 
Again, since there are multiple ways to randomly select 2 pairs of vertices to impute from 
the three pairs with the same score value, we consider all possible selections (i.e., 3 
possible imputations) in evaluating the efficiency of link prediction methodology.  We 
then compute the average number of correct predictions and prediction accuracy rate 
from all 3 possible resulting imputations, which are reported in Table 2 below.  Bold 
values in Table 2 indicate that imputation using information from multiple relations 
performs at least as well as or better than imputation using data from a single relational 
tie.  
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1.  Start with observed data 2.  Set missing values = 0 to obtain L0 &  I0 
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3.  (Continued) 4.  Rank vertex pairs by score(x, y) 
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10. score(7,6) = 4 

 
 

Figure 6: Illustration of common neighbors link prediction methodology on  
example commune, with 10 dyads missing 
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Table 2:  Link prediction results for imputation of missing data in loving relation, 
multiple tie case (with zero dyads missing in improving relation) 

 

Link 
Prediction 

Method 

10 dyads missing 
(s* = 5) 

20 dyads missing  
(s* = 6) 

30 dyads missing  
(s* =  8) 

Average  
# Correct 

Average 
Prediction 
Accuracy 

Rate 

Average  
# Correct 

Average 
Prediction 
Accuracy 

Rate 

Average  
# Correct 

Average 
Prediction 
Accuracy 

Rate 

RANDOM  5.0000 0.5000 11.6000 0.5800 18.2667 0.6089 

Graph 
Distance 5.0000 0.5000 13.0000 0.6500 20.0000 0.6667 

Common 
Neighbors 4.0000 0.4000 13.4286 0.6714 22.2857 0.7429 

Jaccard’s 
Coefficient 5.2000 0.5200 13.3333 0.6667 22.0000 0.7333 

Preferential 
Attachment 4.0000 0.4000 12.0000 0.6000 22.6667 0.7556 

 
When multiple relations are present, it is possible that there is missing linkage data in the 
secondary relation.  We consider three missing data scenarios, where we randomly 
impose patterns of 10, 20, and 30 of the 42 possible directed dyads of the improving 
relation I are missing.  Again, the objective is to reliably impute missing data in the 
loving relation L.  In each of these cases, we utilize the observed data in I to inform our 
prediction of links in L.  Tables 3 to 5 outline the link prediction results for each of these 
missing data scenarios.  Again, bold values in Tables 3 to 5 indicate that imputation using 
information from multiple relations performs at least as well as or better than imputation 
using data from a single relational tie.     
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Table 3:  Link prediction results for imputation of missing data in loving relation, 
multiple tie case (with ten dyads missing in improving relation) 

 

Link 
Prediction 

Method 

10 dyads missing 
(s* = 5) 

20 dyads missing 
(s* = 6) 

30 dyads missing 
(s* =  8) 

Average    
# Correct 

Average 
Prediction 
Accuracy 

Rate 

Average  
# Correct 

Average 
Prediction 
Accuracy 

Rate 

Average  
# Correct 

Average 
Prediction 
Accuracy 

Rate 

RANDOM 5.0000 0.5000 11.6000 0.5800 18.2667 0.6089 

Graph 
Distance 4.2857 0.4286 12.3636 0.6182 19.3333 0.6444 

Common 
Neighbors 6.0000 0.6000 12.0000 0.6000 22.3333 0.7444 

Jaccard’s 
Coefficient 6.0000 0.6000 14.0000 0.7000 24.0000 0.8000 

Preferential 
Attachment 4.0000 0.4000 10.0000 0.5000 18.8571 0.6286 

 
 

 
 
 
 

 
 

Table 4:  Link prediction results for imputation of missing data in loving relation, 
multiple tie case (with twenty dyads missing in improving relation) 

 

Link 
Prediction 

Method 

10 dyads missing 
(s* = 5) 

20 dyads missing  
(s* = 6) 

30 dyads missing  
(s* =  8) 

Average    
# Correct 

Average 
Prediction 
Accuracy 

Rate 

Average  
# Correct 

Average 
Prediction 
Accuracy 

Rate 

Average  
# Correct 

Average 
Prediction 
Accuracy 

Rate 

RANDOM  5.0000 0.5000 11.6000 0.5800 18.2667 0.6089 

Graph 
Distance 4.2857 0.4286 14.0000 0.7000 20.0000 0.6667 

Common 
Neighbors 4.0000 0.4000 14.0000 0.7000 22.6667 0.7556 

Jaccard’s 
Coefficient 4.0000 0.4000 14.0000 0.7000 24.0000 0.8000 

Preferential 
Attachment 2.0000 0.2000 12.0000 0.6000 20.0000 0.6667 

JSM 2013 - Social Statistics Section

3109



Table 5:  Link prediction results for imputation of missing data in loving relation, 
multiple tie case (with thirty dyads missing in improving relation) 

 

Link 
Prediction 

Method 

10 dyads missing 
(s* = 5) 

20 dyads missing  
(s* = 6) 

30 dyads missing  
(s* =  8) 

Average 
# Correct 

Average 
Prediction 
Accuracy 

Rate 

Average  
# Correct 

Average 
Prediction 
Accuracy 

Rate 

Average  
# Correct 

Average 
Prediction 
Accuracy 

Rate 

RANDOM  5.0000 0.5000 11.6000 0.5800 18.2667 0.6089 

Graph 
Distance 5.0000 0.5000 13.3333 0.6667 20.2500 0.6750 

Common 
Neighbors 4.0000 0.4000 11.5000 0.5750 19.2000 0.6400 

Jaccard’s 
Coefficient 4.0000 0.4000 12.0000 0.6000 19.0000 0.6333 

Preferential 
Attachment 2.0000 0.2000 8.5000 0.4250 16.0000 0.5333 

 
 

4.  Discussion 
 
It is worth noting that many real world interactions occur (or fail to occur) for reasons 
independent of network structure.  Therefore, the raw performance of some link 
predictors is understandably low, with the lowest prediction accuracy rate of 0.2000.  It is 
for this reason that we base the quality of our predictions on comparisons with the 
performance of random imputation—imputing a random subset of vertex pairs from 
among all missing pairs.          
 
4.1  Imputation Using Data from a Single Type of Tie 
 
By inspection of Table 1 above, we make several key observations about the accuracy of 
link prediction in our example network, with a single type of tie connecting individuals.  
In the case of the smallest degree of missingness, most of these link prediction methods 
perform at or below the level of random imputation, with the exception of Jaccard’s 
coefficient.  However, as the degree of missingness increases, each predictor performs 
increasingly well and increasingly better than random imputation.  This suggests that 
utilizing the network topology in making link predictions is particularly important as the 
level of missingness in the network increases.    
 
4.2  Imputation Using Data from Two Types of Tie 
 
In some instances, we have supplemental information in the form of additional relations 
connecting individuals in a network.  In Tables 2 through 5 above, we present the results 
of link prediction for various levels of missingness in the secondary relation. 
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We make several key observations about the accuracy of link prediction in our example 
network, now with two types of tie connecting individuals.  First, we examine link 
prediction when we have full information on the secondary relation (Table 2).  With the 
smallest degree of missingness, we observe that most link prediction methods do not 
perform better than random imputation, except Jaccard’s coefficient.  However, as the 
degree of missingness increases, all methods outperform random imputation.  This is 
analogous to the single tie case, reaffirming the importance of utilizing network topology 
to make link predictions as the level of missingness increases. 
 
We then consider various levels of missingness on the secondary relation I.  Tables 3 to 5 
outline the link prediction results when there are 10, 20, and 30 dyads missing from the I 
relation.  In each instance, there is no prior imputation on I.  Instead, all entries missing in 
I are assumed to be nonexistent for the purpose of this study.  Through inspection of 
Tables 3 to 5, we make several key observations.  With 10 dyads missing on I, most 
predictors continue to outperform random imputation at predicting linkages in L.  In fact, 
this is also true for the scenario in which there are 20 dyads missing on I.  However, as 
the level of missingness in I increases to 30 dyads, the efficiency of link prediction 
methods tends to decrease, with greater numbers of predictors performing worse than 
random prediction.  We anticipate that there exists a threshold of missingness on the 
secondary relation, at which point the use of additional information is no longer a benefit 
to link prediction on the primary relation.  Investigating this threshold is a topic of further 
research.  However, the improvement upon random imputation in cases where up to half 
of the data in the secondary relation are missing suggest that the use of even incomplete 
supplementary information leads to better link prediction outcomes.   
 
4.3  Future Directions 
 
A caveat regarding our exploratory study concerns the fact that only a single random 
draw of missing links was investigated for counts of 10, 20, and 30 dyads in our example 
network.  A much more extensive analysis should be carried out as a next step, in which 
many possible missing patterns of sizes 10, 20, and 30 dyads are investigated.  We would 
then ask, “Which pattern(s) of missing data are associated with the best imputation 
result?”  We anticipate that there is a connection between the structure of the original 
network and the pattern of missing data that is associated with best performance of the 
link prediction methodology for local imputation. 
 
A second feature of future studies should include imputation on the secondary relation (I) 
prior to imputation on the primary relation (L).  Here, we investigate whether missingness 
in the secondary relation is ignorable or non-ignorable.  That is, we ask whether there is a 
benefit to an initial imputation of missing elements in the secondary relation over the use 
of raw data.  To fully explore this question would require that we consider many pairs        
(L, I) with diverse patterns of missingness on each relation.  Then, we anticipate that 
there will be special (L, I) pairs for which link prediction methods are particularly 
efficient.  Understanding of these structural details lies in the future.     
 

5.  Conclusions 
 

In this paper, we have presented link prediction methodology as an alternative to 
conventional and random imputation strategies when faced with the problem of item non-
response in social network surveys.  We have explored the use of social network 
topology in making informed prediction of network linkages, and we have examined the 
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accuracy of local predictions across various imputation methods.  Additionally, we have 
extended these methods to investigate the influence of additional relational information 
on the accuracy of imputation of network links.  An illustrative social network from 
Zablocki’s Urban Communes Data Set [13] serves as an investigative example, where we 
have considered the quality of prediction of missing links when utilizing both single and 
multiple relational data.  In both instances, the benefits of link prediction methodology 
for imputation are most apparent in the most severe levels of missingness, suggesting that 
the use of network topology in making predictions is particularly important when very 
limited network information is available.  An example of this type of application is covert 
networks such as gangs, criminal networks, and terrorist groups.  Because of the sensitive 
nature of the goals and functionality of covert networks, much information about network 
linkages is often missing.  However, it is particularly important in these instances to make 
accurate predictions of potential linkages among network members in order to intercept 
and prevent any attempts at criminal and malicious behavior.  
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