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Abstract 
Food-borne infection is caused by intake of foods or beverages contaminated with 
microbial pathogens.  Dose-response modeling is used to estimate exposure levels of 
pathogens associated with specific risks of infection or illness.  When a single dose-
response model is used and confidence limits on infectious doses are calculated, only data 
uncertainty is captured.   We propose a method to estimate the lower confidence limit on 
an infectious dose by including model uncertainty and separating it from data uncertainty.  
The infectious dose is estimated by a weighted average of effective dose estimates from a 
set of dose-response models via a Kullback information criterion.  The confidence 
interval for the infectious dose is constructed by the delta method, where data uncertainty 
is addressed by a bootstrap method.  The actual coverage probabilities of the lower 
confidence limit are addressed under dose-response shapes that can be commonly found 
in real data sets.  Our model-averaging method achieves coverage close to nominal in 
almost all cases, thus providing a useful and efficient tool for accurate calculation of 
lower confidence limits on infectious doses. 
 
Key Words: bias-skewness correction; confidence limit; data uncertainty; food 
safety; Kullback information criterion 
 
 

1. Introduction 
 
Food safety is a critical issue in public health. The Centers for Disease Control and 
Prevention (CDC, 2011) estimated that there are 48 million illnesses, 128 thousand 
hospitalizations, and 3000 deaths due to foodborne pathogens every year in the United 
States. Among well-known pathogens, Norovirus and Salmonella are included in the top 
five pathogens causing domestically acquired foodborne illness and resulting in 
hospitalization and death. Another well-known pathogen, E. coli O157, was included in 
the top five pathogens causing domestically acquired foodborne illnesses resulting in 
hospitalization. 
 
In order to control diseases caused by microbial contaminants in food, it is essential to 
assess their dose-response relationships as accurately as possible. However, definitive 
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dose-response data on humans at low levels of contamination likely to occur in practice 
are scarce to nonexistent. Hence, when sufficient animal or human data at high doses are 
available to allow dose-response modeling, allowable contamination levels of specific 
microorganisms in food can be derived using infectious dose (ID) levels derived from 
these models as “points of departure” for low-dose extrapolation. This approach to setting 
exposure levels is equivalent to the benchmark dose (BMD) approach used in chemical 
risk assessment (EPA, 2000). Reliable methods for deriving such IDp levels (0.01 ≤ p ≤ 
0.10) are essential, where IDp is defined as a dose that causes a response (infection or 
illness) at a predetermined risk level, p. 
 
Dose-response models with one, two, and three parameters have been proposed for dose-
response modeling in microbial risk assessment (MRA) (Kodell et al, 2002; Marks et al, 
1998; Moon et al., 2004). The simplest model is the one-parameter exponential model, 
ܲሺ݀; ሻߙ	 ൌ 1 െ ሻ݀ߙሺെݔ݁ , ߙ  0, which can be derived from basic biological 
assumptions considering low numbers of pathogens as discrete particles (Haas, 1983). 
Even though the exponential model has low-dose linearity, it is often not flexible enough 
to provide an adequate fit to dose-response data on pathogenic microorganisms.  The 
Beta-Poisson (BP) model (Haas, 1983; Furumoto and Mickey, 1967; Haas et al., 1999), 
which includes slightly more complex biology, has been used in MRA(WHO, 2001a, 
2001b, 2002). However, the adequacy of the BP model as a potential “default” model for 
MRA has been questioned (Marks et al., 1998). It can be shown that the exponential and 
the BP models are dose-response pattern-specific so that they may not be suitable models 
under a certain dose-response pattern (e.g. a hypothetical sublinear pattern in Figure 1).  
Other two-parameter models include the Log-Normal (LN), the Log-Logistic (LL), and 
the Extreme-Value (EV) models (Pinsky, 2000). The best-known three-parameter model 
is the Weibull-Gamma (WG) model (Farber et al., 1996). However, three-parameter 
models require data at four or more dose levels, which may not be readily available for 
many microbial agents.  It was noted that the BP and LL models are special cases of the 
WG model (Kodell et al, 2002). 
 
Several dose-response models often provide reasonably good fits to the data in the 
experimental dose range but can yield very different infectious dose (ID) estimates in the 
low-dose range, even with infection rates as high as 0.01 ≤ p ≤ 0.10. Hence, it is 
undesirable to choose only one model and estimate an ID based on the chosen model. In 
order to account for model uncertainty, model averaging (MA) methods have been 
proposed (FDA/FSIS, 2003; Moon et al., 2004, 2005; Bailer et al., 2005; Faes et al., 
2007; Wheeler and Bailer, 2007; Namata et al., 2008). 
 
Kang et al. (2000) used four two-parameter models to demonstrate how model 
uncertainty can be addressed in MRA using the Akaike information criterion (AIC) 
(Akaike, 1974) to average the individual-model IDs.  Kodell et al. (2002) presented a 
general framework for generating dose-response models in the interest of deriving 
potential competitors for the three-parameter Weibull-Gamma (WG) model (Farber et al., 
1996).  Moon et al. (2004) suggested that two-parameter dose-response models for MRA 
reflected at least as much model uncertainty as three-parameter models.  Moon et al. 
(2005) used maximum likelihood estimates (MLEs) from a binomial log-likelihood 
function to estimate parameters of dose-response models and integrated model 
uncertainty into estimating IDs using weights obtained from the Kullback information 
criterion (Cavanaugh, 1999; Kim and Cavanaugh, 2005) as a measure of model 
variability. 
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Faes et al. (2007) showed the necessity of model averaging by comparing the ID based on 
a set of fractional polynomials to the ID from the selected best model. Namata et al. 
(2008) also investigated model averaging in MRA using fractional polynomials, 
suggesting that the common two-parameter models were not sufficiently diverse to give 
appropriate confidence coverage in model averaging. 
 
Bayesian model averaging provides a coherent approach for accounting for model 
uncertainty (Hoeting et al., 1999). Bailer et al. (2005) illustrated Bayesian model 
averaging with a simple Bayesian information criterion (BIC) approximation (Schwarz, 
1978; Kass and Wasserman, 1995) under the assumption of the unit information prior on 
the parameter space for addressing uncertainty in the selection of models when 
generating risk estimates. Their emphasis was on the Bayesian analysis of model 
uncertainty to obtain a model-averaged summary. 
 
Recently, Wheeler and Bailer (2007) investigated an alternative MA approach to estimate 
IDs (benchmark doses, or BMDs, in their terminology) based on a weighted “average 
model” and illustrated their method with dose-response lung cancer data on rats. Their ID 
estimates are obtained by solving the weighted average model, and the weights are 
determined by AIC. The lower confidence bound on the ID was obtained by the bootstrap 
percentile method. They investigated the coverage of their ID lower confidence estimates 
with linear and sublinear dose-response patterns. 
 
We propose a new method to estimate the lower confidence limit (LCL) for an ID under 
the consideration of both model uncertainty and data uncertainty. Following Moon et al. 
(2004), four two-parameter dose-response models are considered a sufficiently diverse 
set of models. Parameters of the models are estimated by the method of maximum 
likelihood. The ID is estimated by a KIC-weighted average of effective dose (ED) 
estimates from the dose-response models. We introduce a new variance formula and 
calculate the variance of the ID estimate with separate components for model uncertainty 
and data uncertainty via a bootstrap method. The LCL for the ID is constructed assuming 
the ID is log-normally distributed. The delta method is used to approximate the variance 
of the log-ID estimate. 
 
The use of the natural log transformation of ID estimates to normalize the ID distribution 
is not unusual. In a similar line of this study, Faes et al. (2007) used a log-normal 
assumption, and their equation (8) is similar to our idea, but with a different algebraic 
expression. The log transformation of ID estimates makes the distribution more 
symmetric. Even after the log-transformation, skewness still exists.  By the same token, 
Figure 5 in Wheeler and Bailer (2007) showed a skewed distribution at low doses.  
However, our proposed method with nonparametric quantile estimation further adjusts 
the skewness via the BCa bootstrap method. 
 
 

2. Methods 
 
2.1 Infectious Dose Estimation 
Let ܫ  denote the number of independent dose groups. Let ݊  denote the number of 
independent subjects in the ݅ -th group, ݅ ൌ 1, 2, … , .ܫ  Let ܺ  denote the number of 
subjects infected or with symptoms in the ݅-th group. Assume that ܺ  has a binomial 
distribution with ݊  and ܲሺ݀; 	ሻ, where ܲሺ݀; 	ሻ is a dose-response model and 	 is a 
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parameter vector. The estimation of 	 is accomplished by maximizing the binomial log-
likelihood function (Kodell et al., 2002), ݈ሺ	ሻ ∝ ∑ ሾ ܺlnሼܲሺ݀, 	ሻሽ  ሺ݊ െ ܺሻlnሼ1 െ

ூ
ୀଵ

ܲሺ݀, 	ሻሽሿ. 
 
In this paper, four two-parameter dose-response models are used as shown in Table I. The 
two-parameter models include the Beta Poisson (BP), log-normal (LN), log-logistic (LL), 
and extreme-value (EV) models. The maximization is performed by employing the SAS 
procedure NLMIXED (SAS code is available from the authors upon request). It is found 
that the dose levels may be scaled by a constant scale factor in order to achieve greater 
stability in the maximum likelihood estimates. The model fitting procedure is invariant to 
the transformation. Therefore, the estimates of the effective doses are the same regardless 
of scaling. 
 
When the parameters of a dose-response model are estimated, the effective dose at a 
specific risk level p (EDp) for a given model, which itself can be regarded as a fixed 
“parameter,” can be estimated by substituting the “other” parameter estimates and solving 
for dose d. Every two-parameter model in this study has a closed-form solution for ݀. If a 
model has no closed-form solution, the bisection method, a simple and robust root-
finding algorithm, can be employed to obtain the estimate of EDp. Estimates of effective 
dose at risk levels of 1% (ED01) or 10% (ED10) represent how many microorganisms can 
produce a 1% or 10% increase in infection or illness, relative to the control response 
(usually assumed to be zero). These effective dose levels (ED01 and ED10) correspond to 
the lower and upper limits of the risk range (1% and 10%) generally recommended for 
restricting the calculation of BMDs in chemical risk assessment (correspondingly, IDs in 
microbial risk assessment). For quantal data, an excess risk above background risk of 
10% is known as the default benchmark risk (BMR) (Nordberg et al., 2007), which here 
we term the IDR. 
 
In order to estimate an ID, effective doses obtained from the two-parameter models (BP, 
LN, LL and EV) are averaged using Kullback weights. We let m be the dimension of the 
parameter vector. The KIC is defined as ܥܫܭ ൌ െ2݈൫	൯  3݉. We define the Kullback 
weight for the ݆ -th model, denoted by ݓ

ூ ൌ exp൫െ∆
ூ/2൯/∑ exp൫െ∆

ூ/2൯,
ୀଵ  

where ∆
ூൌ ܥܫܭ െ min	ሺܥܫܭଵ, ,ଶܥܫܭ … , ∑ ሻ, the sum of the weightsܥܫܭ ݓ

ூ
ୀଵ ൌ 1, 

and K represents the total number of candidate dose-response models. The model with the 

Table I:  Dose-response models for microbial risk assessment 
Name Model Domain of 

Parameters 

Beta Poisson (BP) ܲሺ݀; ,ߙ ሻߚ ൌ 1 െ ൬1 
݀
ߚ
൰
ିఈ

ߙ   0, ߚ  0 

Log-normal (LN) ܲሺ݀; ,ߙ ሻߚ ൌ Φቆ
lnሺ݀ሻ െ ߙ

ߚ
ቇ െ∞ ൏ ߙ ൏ ∞, ߚ  0 

Log-logistic (LL) ܲሺ݀; ,ߙ ሻߚ ൌ 1  exp ൬െ
ln ݀ െ ߙ

ߚ
൰൨
ିଵ

 െ∞ ൏ ߙ ൏ ∞, ߚ  0 

Extreme-value 
(EV) 

ܲሺ݀; ,ߙ ሻߚ ൌ 1 െ expሾെexpሺߙ  ߚ ln ݀ሻሿ െ∞ ൏ ߙ ൏ ∞, ߚ  0 
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minimum ܥܫܭ has the most contribution to the ID estimate. The point estimate of the ID 
is obtained as 

ܦܫ ൌ ∑ ݓ
ூܦܧ,


ୀଵ ,............................................................(1) 

where ܦܧ, represents the effective dose estimate from the ݆-th model at p (1% or 10%) 
risk level. 
 
2.2 Lower Confidence Limit on Infectious Dose 
In this paper a method to construct a lower confidence limit (LCL) on an IDp at excess 
infection rate IDR = p is proposed. We assume that the distribution of ID estimates is not 
symmetric but approximately log-normal (see also Faes et al., 2007). The proposed 
method incorporates model-averaging with KIC-weights (Moon et al., 2005) and our 
nonparametric quantile estimator ݖఈ∗  via the bias-corrected and accelerated (BCa) 
bootstrap method (Efron, 1987; Efron and Tibshirani, 1993) in order to adjust for both 
bias associated with empirical estimates of infectious doses (ID) and skewness in the 
sampling distributions of log-ID. The main contribution of the paper is the inclusion of 
model uncertainty and separation of the model uncertainty from data uncertainty to 
estimate the lower confidence limit on an ID. 
 
It is reasonable to assume that each ܦܧ  has expectation ܦܧ  and that the ܦܧ s 
themselves have expectation ܦܫ ൌ ∑ ݓ

ூܦܧ

ୀଵ  as similar to assumptions of Faes et al. 

(2007). In order to obtain an LCL on an ID at excess risk BMR, we propose the variance 
of ID as follows: 

ሻܦܫሺݎܸܽ ൌ ܸܽݎሺ



ୀଵ

ݓ
ூܦܧሻ  2  ݒܥ



ୀାଵ



ୀଵ

൫ݓ
ூܦܧ, ݓ

ூܦܧ൯, (2) 

where the variance term can be decomposed to 
ݓ൫ݎܸܽ

ூܦܧ൯ ൌ ݓ൫ܧ൛ݎܸܽ
ூܦܧหܯ൯ൟ  ݓ൫ݎ൛ܸܽܧ

ூܦܧหܯ൯ൟ, (3) 
and the covariance term can be obtained as 

ݓ൫ݒܥ
ூܦܧ, ݓ

ூܦܧ൯ ൌ ݓ൫ൣݒܥ൛ܧ
ூܦܧหܯ൯, ሺݓ

ூܦܧ|ܯሻ൧ൟ, (4) 

where ܯ  indicates the model k. The proposed formula is based on the law of total 
variance shown in basic statistics textbooks (Devore, 1991; Burnham and Anderson, 
2002). It is also similar to one used in Faes et al. (2007). However, a main difference 
from the one in Faes et al. (2007) is that the weight vector ݓ is treated as a random 
quantity inside the variance and covariance operators rather than a fixed quantity because 
even the weights vary from dataset to dataset. We note that there is no covariance among 
the model means other than the underlying variance itself because ID estimates for each 
model do not co-vary in any defined or measurable way. Hence, we consider only data 
uncertainty in the covariance term. Therefore, equation (2) with equations (3) and (4) can 
be rewritten as 

ሻܦܫሺݎܸܽ ൌ ܸܽݎ൛ܧ൫ݓ
ூܦܧหܯ൯ൟ



ୀଵ

ܧ൛ൣݒܥ൫ݓ
ூܦܧหܯ൯, ሺݓ

ூܦܧ|ܯሻ൧ൟ



ୀଵ



ୀଵ

. 

 
(5) 

 
In this framework the first and second terms in equation (5) represent model 
uncertainty and data uncertainty, respectively. We estimate ܸܽݎሺܦܫሻ  via 
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bootstrapping by generating B bootstrap samples and by estimating ݓ
ூ and ܦܧ 

for each dose-response model in each bootstrap sample. 
 
To construct an LCL on an ID, we apply the delta method. We assume that lnሺܦܫሻ is 
approximately normally distributed with mean lnሺܦܫሻ and variance ܸܽൣݎlnሺܦܫሻ	൧.  The 
ሻܦܫሺݎܸܽ ൧ can be approximated by	ሻܦܫlnሺൣݎܸܽ  ଶ using the delta method. Then, anܦܫ/
LCL on lnሺܦܫሻ can be estimated as 

ܮܥܮ ൌ ln൫ܦܫ൯  ∗ఈݖ
ටܸܽݎሺܦܫሻ

ܦܫ
, 

 
(6)

where ܸܽݎሺܦܫሻ  is obtained by equation (5). A critical value ݖఈ∗  corresponding to the 
100ሺ1 െ  ሻ% confidence level is estimated byߙ

∗ఈݖ ൌ
ln൫ܦܫ൯

ሺሻ
െ ݉

ݒ√
, 

 
(7)

where ln൫ܦܫ൯
ሺሻ

 is the LCL estimate for ln	ሺܦܫሻ from the BCa bootstrap method, and ݉ 

and ݒ  are the mean and variance of log-ID estimates from the B bootstrap samples, 
respectively. An LCL on the ID is obtained by applying the anti-log transformation 
expሺܮܥܮ ሻ. 
 
The estimation of ln൫ܦܫ൯

ሺሻ
 is summarized as follows: First, from each bootstrap sample, 

B bootstrap estimates of ID’s are obtained. Next, the bias correction factor ݖ is obtained 
as ̂ݖ ൌ Φିଵ൫#ൣln൫ܦܫ൯ ൏ ln൫ܦܫ൯൧/ܤ൯ , where ln൫ܦܫ൯  can be estimated from the B 
bootstrap samples ሺܾ ൌ 1, 2, … ,  .൯ can be estimated from the original dataܦܫሻ, and ln൫ܤ

Next, the acceleration factor ܽ  can be obtained as ොܽ ൌ ∑ ൣlnሺܦܫሻ∗തതതതതതതതതത െ ln൫ܦܫ൯൧
ଷ

ୀଵ /

6 ቀ∑ ൣlnሺܦܫሻ∗തതതതതതതതതത െ ln൫ܦܫ൯൧
ଶ

ୀଵ ቁ
ଷ/ଶ
൨ , where  lnሺܦܫሻ∗തതതതതതതതതത  is the mean of the bootstrap 

estimates ln൫ܦܫ൯.  Finally, we estimate ln൫ܦܫ൯
ሺሻ

 by calculating  ܮ ൌ ܤہ ൈ  where ,ۂଵߙ

ଵߙ ൌ Φሾ̂ݖ  ሺ̂ݖ  ఈሻ/ሺ1ݖ െ ොܽሺ̂ݖ   .ఈሻሻሿݖ
 
This process is computationally intensive. Instead of using one thousand or more 
bootstrap samples, a smaller bootstrap sample size was determined by a simulation study. 
The mean differences between ݖఈ∗  obtained from a bootstrap sample size of 1000 and ݖఈ∗  
obtained from bootstrap sample sizes less than 1000 were compared using both a t-
statistic and a Wilcoxon rank sum statistic as a nonparametric alternative. The bootstrap 
sample size ܤ ൌ 700	was selected based on p-value > 0.10. 

Table II:  Echovirus 12 virus data (Teunis et al., 1996) from human volunteers 
1Dose (݀ሻ 

2Total (݊) 
3Infection ( ܺ) 

4Probability () 
330  50  15  0.3000  

1000  20    9  0.4500  
3300  26  19  0.7308  
10000 12  12  1.0000  

1Dose: ingested numbers of pfu (plaque forming units) 
2Total: number of subjects at a certain dose 
3Infection: number of subjects with infection (excretion of echovirus or seroconversion, or both) 
4Probability: sample proportion ( ܺ/݊ሻ 
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3. ILLUSTRATIONS 
 
3.1 Infectious Dose Estimation 
The proposed method is illustrated with Echovirus 12 data (Teunis et al., 1996) from 
human volunteers (Table II). This section is not intended as a formal risk assessment for 
Echovirus 12, but is simply an illustration of the proposed method on a real dataset. In a 
formal risk assessment, it is likely that different IDs would be estimated for 
subpopulations of differential sensitivity (e.g., FAO/WHO, 2004). Consideration of that 
and other sources of uncertainty is beyond the scope of this paper. 
 
One hundred and eight healthy human volunteers participated in a microbial dose-
response experiment with Echovirus 12. The subjects were divided into four dose-level 
groups: 330, 1000, 3300, and 10000 pfu (plaque forming units). Then the subjects were 
exposed to the microbial pathogen, Echovirus 12, and their binary response (infected or 
not infected) was recorded. The estimates of ID01 and ID10 from the four two-parameter 
dose-response models and their Kullback weights were obtained by the methods 
illustrated in Section 2.1 (See Moon et al., 2005). Figure 1 shows a plot of the Echovirus 
12 data overlaid with the four fitted two-parameter dose-response models. A superlinear 
pattern is apparent in the plotted data and in the fitted models. Since the lowest dose-level 
is 330 pfu with estimated infection probability 0.30 (See Table II), an extrapolation is 
inevitable even to estimate ID at risk levels p = 0.01 and p = 0.10. 
 
As shown in Table III, the estimate of the ID at risk level p = 0.01 varies from 1.75 pfu 
(EV) to 17.11 pfu (LN). At risk level p = 0.10, it varies from 60.86 pfu (EV) to 104.26 

 
Figure 1.  Four two-parameter dose-response models fitted to Echovirus 12 data 
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pfu (BP). Note that even though the models appear inseparable at low doses in Figure 1, 
in reality there is considerable model-to-model variation. In the estimation of ID01 and 
ID10, the EV model is known to be conservative (Moon et al., 2004), and the result is also 
reflected in Echovirus 12 data. Using equation (1) in Section 2.1, the estimates of ID at 
risk levels p = 0.01 and p = 0.10 are 7.62 pfu and 83.67 pfu, respectively. Based on the 
maximum likelihood value, the EV model results in the best fit to the data; thus the 
estimate from the EV model has the most contribution in the estimation of ID. Faes et al. 
(2007), Wheeler and Bailer (2007), and Namata et al. (2008) also accommodated the 
different ID estimates from competitive models via model-averaging based on AIC 
weights as proposed by Buckland et al. (1997). The estimation of ID should not be 
sensitive to the choice of KIC or AIC in Echovirus 12 data because sample size is 
relatively large. In fact, the AIC-based estimates of ID are identical to KIC-based 
estimates because every model has the same number of parameters (݉ ൌ 2ሻ  in this 
example. 
 
We note that the BP model evaluated is an approximation. However, the parameter 
estimates ( ) are consistent with use of the approximation for the Echovirus data set. For 
the BP model shown in Table I it is known that if (/)d is very small (e.g. much less 
than one), P(d | , )  (/)d. Thus the relationship between the dose and the 
probability of infection (or illness) is approximately linear (with the slope of /) if the 
condition is met. In the Echovirus data, the estimated parameters for ሺߙ,  ,ሻare (1.0563ߚ
994.0256), and the estimated effective dose corresponding to p = 0.01 (ED01) is 9.5032 
from the BP model. From this result, at low dose, ߙො/ߚመ ൎ .001 is an “approximate” slope 
for the approximate linear relationship between dose and probability of infection.  We 
can see that ߙො/ߚመܦܧଵ ൌ ሺ1.0563/994.0256ሻ ∗ 9.5032 ൌ .0101 ൎ .01, which is 
consistent with the result for the Echovirus dataset. 
 
3.2 Estimation of the Lower Confidence Limit on ࡰࡵ 
Under the assumptions of unbiasedness and perfect symmetry (normality) of log-ID 
estimates (i.e., using z0.05 = 1.645), 95% lower limits of ID are estimated as 1.09 and 
33.32 for p = 0.01 and p = 0.10, respectively, by equation (6) with z0.05 = 1.645. On the 
other hand, using the proposed variance formula with ݖఈ∗  as illustrated in Section 2.2, 
95% lower limits for ID01 and ID10 are 0.71 and 28.04 pfu, respectively, by equations (6) 
and (7). Corresponding values of ݖ.ହ

∗  for p = 0.01 and p = 0.10 in equation (7) are 
estimated as 2.02 and 1.95, respectively. After correcting bias and skewness, the 
estimated 95% LCLs are lower than before the corrections. 
 
It is not surprising to observe the substantially different estimates of LCLs between using 
z and using ݖఈ∗ . As shown in Figures 2 and 3, the sampling distribution of log-ID from 
bootstrap samples does not exhibit perfect symmetry. The bootstrap sample skewness is 
0.49 and 0.67 for log-ID01 and log-ID10, respectively. Furthermore, the estimate of ID 

Table III.  Estimates of ID01 and ID10 for Echovirus 12 with Kullback Information 
Criterion and Kullback Weight 
Model m ܦܫଵ ܦܫଵ ML Value KICj ∆

ூ ݓ 
ூ  

BP 2 9.5030  100 1.0426  102 61.0565 128.1130 1.5706 0.1841 
LN 2 1.7107  101 1.0239  102 60.8679 127.7358 1.1934 0.2223 
LL 2 7.1644  100 9.0319  101 61.0262 128.0524 1.5100 0.1898 
EV 2 1.7499  100 6.0855  101 60.2712 126.5424 0.0000 0.4038 
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is known to be biased, and the sampling distributions of the number of infections are 
highly skewed especially in the low-dose group as discussed by Wheeler and Bailer 
(2007). As illustrated in the simulation study, corrections in bias and skewness are 
desired to improve the accuracy of coverage rate regardless of dose-response shapes, 
sample sizes, and risk levels. Obtaining an LCL on a ID takes about 30 minutes, mostly 
for the estimation of model parameters using the Newton-Raphson algorithm in SAS 
NLMIXED repeated in B = 700 bootstrap samples. However, the computation of ݖఈ∗  does 
not require additional time for the model-fitting procedure. The proposed method is a 
useful and efficient tool for the estimation of lower confidence limits with higher 
accuracy. 
 
 

4. Discussion 
 
The main contribution of the paper is the inclusion of model uncertainty, and the 
separation of model uncertainty from data uncertainty to estimate the lower confidence 
limit on an ID. The proposed method incorporates model-averaging with KIC-weights 
(Moon et al., 2005) and our nonparametric quantile estimator ݖఈ∗  via the BCa bootstrap 
method in order to adjust for both bias of the ID estimate and skewness in the sampling 
distributions of log-ID. We note that the estimation of a lower confidence limit on an ID 
should not be sensitive to the choice of KIC-weights or AIC-weights when the dose-
response models have the same number of parameters. In our study, the number of 
parameters m is 2 for every model in model-averaging. 
 
Although the typical BCa bootstrap method (without the proposed variance formula) 
accounts for both bias and skewness in data uncertainty to improve the bootstrap 
percentile method, it does not properly account for model uncertainty. As a result, the 
coverage rates do not meet the desired confidence level 0.95 (Moon et al., 2013). This 
result highlights the importance of properly accounting for model uncertainty in a model-
averaging method. Our nonparametric quantile estimator ݖఈ∗  using the BCa bootstrap 

 
Figure 2.  Sampling distribution of log(ID01) from bootstrap samples 
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method consistently outperforms z from the normality assumption regardless of dose-
response patterns, risk levels, and sample sizes. In other words, ignoring bias and 
skewness may lead to inaccurate coverage of the LCL on the ID. 
 
In the Monte Carlo simulation study, the three configurations, superlinear, linear, and 
sublinear, represent various microbial risk patterns showing the relationship between the 
dose to an agent and the severity of associated adverse response relating to the food-
borne contamination process. The coverage rates from the proposed method in various 
simulation settings are near the nominal level except for sublinear with ni = 10 as shown 
in Moon et al. (2013). It may be due to a small sample size and an extreme sublinear 
pattern, which may lead to abnormally high estimates of IDp. None of the four compared 
methods meets the nominal coverage for the sublinear pattern with the small sample size. 
For ni = 10 and the given sublinear pattern, it is more likely to have zero binary responses 
in the low dose-levels, and the estimates of IDp become abnormal.  
 
The coverage of ID01 in the superlinear pattern with ni = 30 appears to be lower than the 
nominal level (Moon et al., 2013). It may be due to inadequate representation of model 
uncertainty because every model is fitted close to each other and an indistinguishable 
amount of model variation exists near the 1% level (Moon et al., 2013). Elimination of 
wrong models may be a possible remedy, but the determination of wrong models is 
another challenge. Furthermore, if a wrong model exists, it has been already treated by 
the Kullback information criterion by imposing a small or negligible weight in the 
estimation as a penalty for the poor fit. 
 
Another issue is the sample size for each dose group. In the superlinear pattern, the 
coverage for ID01 is consistently lower among the methods when the sample size per dose 
group is higher. In other words, increasing the sample size produces an inaccurate result, 
which is a contradiction to statistical common sense. Overall, the difference between the 
sample sizes ni = 10 and ni = 30 seems to be sensitive to patterns and/or risk levels. The 
exact relationship is still not revealed, and a further investigation is deferred to a future 
study. 
 

Figure 3.  Sampling distribution of log(ID10) from bootstrap samples 
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Moon et al. (2004) claimed that the two-parameter models (beta-Poisson, log-normal, 
log-logistic, and extreme value) reflected at least as much model uncertainty on average 
as the three-parameter models (Weibull gamma, exponential gamma, Weibull 
exponential, and shifted Weibull). Namata et al. (2008) studied model-averaging in MRA 
with K = 40 dose-response models including the same four two-parameter models in this 
study plus the family of fractional polynomial models with the combination of 3 negative 
powers and 4 positive powers. They claimed that the set of candidate models should be 
rich enough. We note that the richness may not be solely determined by the number of 
dose-response models considered in model-averaging. A set of fewer but diverse models 
may reflect as much model uncertainty in a more efficient manner. In our simulation 
study, we confirm that only the four two-parameter models are sufficient to account for 
model uncertainty in all three representative dose-response patterns. 
 
An ideal combination of dose-response models is unknown, or it may not exist. Our 
proposed method can be applied with any set of dose-response models. We note that the 
number of models in model-averaging and the number of model parameters may 
significantly influence the computational process. We also note that an alternative 
approach may be model selection based on classification of a model as “mechanistic” or 
empirical. Mechanistic models are plausible because of their interpretability. However, 
the underlying assumptions are sometimes strong, and there may be circumstances in 
which the assumptions are not valid. A good mix of mechanistic and empirical models is 
also a key point in model-averaging (selection of model space). If data arise from the 
assumed mechanism, and the mechanistic model fits the data well, then the model will be 
highly weighted. If assumptions are not met, our estimates will be weighted more by 
empirical models. 
 
In future studies, we may investigate if a subset of BP, LN, LL, and EV models performs 
well for all three representative patterns. We may be able to discover a pattern-specific 
subset of the two-parameter models or of any larger model spaces. For a simple 
illustration, if a real data set exhibits a sublinear pattern, the BP model appears to be 
eliminated because it is unable to fit the pattern. In the BP model, the second-derivative 
with respect to d (dose) is negative for all  > 0,  > 0, and d > 0; hence it is unable to be 
concave upward for any data points (See Figure 1). We note that Teunis et al. (1996) 
suggest that the BP model is the best-fit model for the Echovirus data set, although we 
assert that the Echovirus data exhibit a superlinear dose-response pattern. If a general 
guideline can be developed for a preferable pattern-specific subset of dose-response 
models, it may contribute substantially to MRA and it can be widely used in practice. 
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