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Abstract

Threshold autoregressive (TAR) model is a wildly used class of nonlinear time series

models in many fields. However, when the number of thresholds is large, the estimation of

the thresholds is often computationally infeasible. In this work we employ the Minimum

Description Length (MDL) Principle to develop a criterion function to estimate the number

of thresholds and the corresponding AR order and parameter values in each regime. A

genetic algorithm is developed to efficiently solve this optimization problem. This can be

interpreted as the spatial version of AutoPARM of Davis, Lee and Rodriguez-Yam (2006).

keywords: Genetic Algorithm, Minimum Description Length (MDL) Principle, Multiple-threshold

1 Introduction

The r + 1-regime threshold autoregressive (TAR) model, given by

Xt =
r+1∑
j=1

(
ΦjX

(j)
t + σjet

)
I(θj−1 < Xt−d ≤ θj) , et ∼ IID(0, 1), (1)

where X
(j)
t = (1, Xt−1, . . . , Xt−pj ), describes the data by different autoregressive structure

depending on the range of values of Xt−d. The integer d is known as the delay parameter
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and the parameters −∞ = θ0 < θ1 < · · · < θr < θr+1 = ∞ are called the thresholds.

Proposed by Tong (1978), the TAR model has received great attention in the nonlinear time

series literature and has been widely used in many areas including finance, econometrics and

engineering. Surveys on TAR models can be found in Tong (1990, 2012).

For estimating Threshold models, Chan (1993) studied the Least Square Estimation (LSE)

of a two-regime TAR model established its asymptotic properties. The theory is extended by Li

and Ling (2011) to multiple-regime TAR models. In particular, when the number of threshold is

known, the estimated thresholds are n-consistent and asymptotically independent. Also, each

threshold estimate converges weakly to the smallest minimizer of a one-dimensional two-sided

compound Poisson process. Moreover, the AR parameters in each regime are
√
n-consistent

and asymptotically normal.

Despite the well developed theoretical background of the estimation theory, the estimation

procedure of TAR models is still computational demanding due to the irregular nature of the

threshold parameters. (see, e.g., Li and Ling (2011)). In particular, for a r + 1-regime TAR

model, the global minimum of the least squares criterion requires a multi-parameter grid-based

search over all possible values of r threshold parameters, which is of order Cn
r . To tackle this

problem, Tsay (1989) connects (1) to a change-point model and proposed a graphical approach

to determine the number and the locations of the thresholds. Coakley, Fuertes and Perez (2003)

used similar techniques to provide an efficient estimation approach using QR factorizations of

matrices. When the number of threshold r is unknown, Gonzalo and Pitarakis (2002) suggest

a binary segmentation procedure for choosing r when σjs are equal. We are not aware of any

results for more general models.

In this paper, motivated by the connection between change-point model and TAR model

suggested by Tsay (1989), we propose an automatic procedure to estimate the number and

location of thresholds and order selection of autoregressive model in each regime. The proce-

dure is based on an objective function derived from the minimum description length (MDL)

principle (Davis et al. (2006)).

The paper is organized as follows. In Section 2 we develop the objective function for TAR

model based on MDL and present a genetic algorithm for the optimization. Some simulation

studies are given in Section 3.
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2 Estimation for TAR models

2.1 MDL for TAR models

In this section, we derive an objective function for estimating TAR models based on MDL

and propose a genetic algorithm for the optimization. The MDL principle was developed by

Rissanen (1989) as a general method for model selection by choosing the model which enables

the best compression of data. See Hansen and Yu (2001) and Lee (2001) for basic introductions.

Let M be the class of TAR model satisfying (1). Any model from this class is denoted

by F ∈M. The MDL principle asserts that the information storage of the observations {Xt}

requires a codelength given by

CL({Xt}) = CL(F̂) + CL(ê|F̂) , (2)

where F̂ is the fitted model and ê is the residuals under F̂ . That is, the codelength of the

data is the sum of the codelength of the fitted model and codelength of the residuals given the

fitted model. Note that CL(ê|F̂) can be interpreted as a measure of lack of fit and CL(F̂)

can be regarded as a penalty for model complexity. The MDL principle suggests that the best

model is the one that minimizes CL({Xt}).

To proceed, we derive an expression for CL(F̂). Since a TAR model (1) is completely

specified by r, θjs, σ
2
j s, pjs and Φjs, CL(F̂) can be decomposed into

CL(F̂) = CL(r) + CL(θ1, θ2, · · · , θr) + CL(p1, · · · , pr+1)

+ CL(Ψ1) + CL(Ψ2) + . . .+ CL(Ψr+1) ,
(3)

where Ψj := (Φj , σ
2
j ) = (φj0, φj1, . . . , φjpj , σ

2
j ) is the parameter vector in the j-th regime.

In general, to encode an arbitrage integer I, approximately log2(I) bits are needed. Thus

CL(r) = log2(r) and CL(pj) = log2(pj). To calculate CL(Ψj), we use the result of Rissa-

nen (1989): A maximum likelihood estimate of a real parameter computed from N observa-

tions can be effectively encoded with 1
2 log2(N) bits. Let nj be the number of observations

in the j-th regime. Then each of the pj + 2 parameters of Ψj can be viewed as the Gaussian

likelihood estimate computed from nj observations, giving CL(Ψj) = (pj + 2) log2(nj)/2 (see

(5) below). Since each threshold θj divides the domain of {Xt−d} into regimes, they can be

represented by the order statistics of the series {Xt−d}. As a result, θj can be coded by the
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maximum of the nj observations in the j-th regime. As the maximum value of a set of real

number is the maximum likelihood estimate of the upper bound of a uniform distribution,

CL(θ1, θ2, · · · , θr) =
∑r

j=1 log2(nj)/2. Putting together, we obtain

CL(F̂) = log2(r) +
1

2

r∑
j=1

log2(nj) +
r+1∑
j=1

log2(pj) +
r+1∑
j=1

pj + 2

2
log2(nj). (4)

Next, we derive an expression for CL(ê|F̂). From Shannon’s classical results in information

theory, Rissanen (1989) demonstrated that the codelength of ê is given by the negative log-

likelihood of the fitted model F̂ . Given the thresholds θjs and the order of autoregressive

models pjs, the log-likelihood of the data can be approximated by the conditional log-likelihood

l(Ψ1, · · · ,Ψr+1;x)

= −1

2

n∑
t=1

r+1∑
j=1

(
log(2πσ2j ) +

(Xt − ΦjXt)
2

σ2j

)
I(θj−1 ≤ Xt−d < θj)

= −1

2

r+1∑
j=1

(
njlog(2πσ2j ) +

∑nj

t=1(Y
(j)
t − ΦjY

(j)
t )2

σ2j

)
, (5)

where {Y (j)
t } are the observations in the j-th regime, sorted in an ascending of Xt−d and Y

(j)
t

is a vector containing the pj previous observations of Y
(j)
t . For example, if Xa < Xb are the two

smallest observations greater than θj−1, then Y
(j)
1 = Xa+d, Y

(j)
1 = (1, Xa+d−1, . . . , Xa+d−pj ),

Y
(j)
2 = Xb+d, Y

(j)
2 = (1, Xb+d−1, . . . , Xb+d−pj ). For simplicity, we take Xt = 0 for t ≤ 0.

It can be checked readily that minimizing the function inside the summation in (5) gives

nj(log(2πσ̂2j ) + 1), where σ̂2j =
∑nj

t=1(Y
(j)
t − Φ̂jY

(j)
t )2/nj and Φ̂j is the least square estimator

in Li and Ling (2011). Thus the codelenght of the residuals given the model is

CL(ê|F̂) =
n

2
+

1

2

r+1∑
j=1

nj log(2πσ̂2j ) . (6)

Combining (2), (4) and (6), we obtain

MDL(r, θ1, · · · , θr, p1, · · · , pr+1) := CL({Xt})

= log2(r) +
r∑

j=1

log2(nj)

2
+

r+1∑
j=1

log2(pj) +
r+1∑
j=1

pj + 2

2
log2(nj)

+
1

2

r+1∑
j=1

nj log(2πσ̂2j ) +
n

2
. (7)
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The best model is then chosen by minimizing MDL(r, θ1, · · · , θr, p1, · · · , pr+1) with respect to

r, θjs and pjs. For simplicity we have assumed that d is known. In general the estimation

procedure can be repeated for various d to select the best model.

2.2 Optimization Using Genetic Algorithms (GA)

In this section, following Davis, Lee and Rodriguez-Yam (2006, 2008) and Lu, Lund and

Lee (2010), we propose a Genetic Algorithm (GA) to conduct the optimization in (7) efficiently.

The basic idea of genetic algorithm (GA) can be described as follows. An initial set (population)

of possible solutions to the optimization problem is generated. The possible solutions, known

as chromosomes, are presented in vector forms and are free to “evolve” in the following way:

Parent chromosomes are randomly chosen from the initial population with probability inversely

proportional to the objective criterion to be minimized. Then offspring are produced by mixing

two parent chromosomes through a crossover operation, so that the good features from the

parents may be combined. Offspring may also be produced from a mutation operation of a

single parent chromosome so that all possible solutions may be explored. With crossover and

mutation, a second-generation of offspring is produced. This process is repeated for a number

of generations until the an individual chromosome is found to be optimizing the objective

function.

The details implementation of the GA is described as follows.

Chromosome Representation.

In GA, a chromosome should carry complete information about the model, i.e., the number of

threshold r, the threshold values θj and the AR orders pj . Once these quantities are specified,

maximum likelihood estimates of other model parameters can be uniquely determined. Here a

chromosome is a vector δ = (r, p1, (R1, p2), · · · , (Rr, pr+1)) of length 2(r+1), where R1 < R2 <

. . . < Rr are integers from {1, . . . , n−d} corresponding to the ordered value of {Xt−d}t=d+1,...,n.

That is, the j-th threshold θj is represented by the Rj smallest value of {Xt−d}t=d+1,...,n,

j = 1, . . . , r. Note that the number of observations in the i-th regime is ni = Ri+1 − Ri + 1.

By imposing a minimum span constrain where Ri+1 − Ri > nA for some integer nA, we can

avoid having too few observations in one regime.

Initial Population Generation.
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First the number of threshold r is generated from the Poisson distribution with mean equals 2.

Then R1 to Rr are sampled from 1, . . . , n− d with uniform probability. Next, we find the set

of Ris that violates the minimum span condition with nA = 20. Delete one at a time randomly

until the condition is satisfied. Next, for j = 1, . . . , r + 1, the AR order pj for the j-th regime

is generated uniformly from the integers {0, 1, . . . , P0}. We use P0 = 12 to allow sufficient

flexibility and to capture possible seasonal effects.

New generations.

Once a set of initial random chromosomes is generated, new chromosomes are generated by

either one of the crossover or the mutation operations. In our implementation the probability

for conducting a crossover operation is set to be πC = 0.9.

For the crossover operation, two parent chromosomes are chosen from the current popu-

lation of chromosomes with probabilities inversely proportional to their ranks sorted by their

MDL values. Thus, chromosomes with smaller MDL will have a higher chance of being se-

lected. From these two parents, a now offspring is produced as follows. First, the offspring’s

AR order of the first segment is chosen from one of the parents with equal probabilities. Then

we combine and sort the parents’ threshold values and select each threshold and its associ-

ated AR order with probability 0.5. For example, consider two parents (2, 1, (105, 2), (333, 0))

and (3, 0, (212, 4), (349, 2), (788, 1)). First we select the order of the first segment randomly

form the set (1, 0), say giving 0. Then, the set of thresholds from the parents are combined

and sorted to be (105, 212, 333, 349, 788). Next, each of the threshold value is selected with

probability 0.5, say yielding (105, 333, 788). Then the offspring chromosome is constructed as

(3, 0, (105, 2), (333, 0), (788, 1)).

For mutation, one offspring is reproduced from one parent. In particular, a new parent is

generated to crossover with the selected parent. Contrary to the ordinary crossover operation,

the probabilities of selecting a threshold is πP for the selected parent and 1 − πP for the

new parent. To allow a higher degree of mutation, we take πP = 0.3. After an offspring

is produced, for each regime, with probability πN = 0.3 we randomly draw an AR order to

replace the existing one. Of course, at the end of each crossover and mutation operation, the

procedure that ensures the minimum span condition will be performed.

To guarantee the monotonicity of the algorithm, an additional step, the elitist, is per-
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formed. That is, the worst chromosome of the next generation is replaced with the best

chromosome of the current generation.

Migration.

To gain computational efficiency from parallel computing, we implement the island model that

can speed up the convergence rate and to reduce the chance of converging to suboptimal

solutions (Forrest (1991); Martin, Lienig, and Cohoon (2000); Alba and Troya (1999, 2002)).

Rather than running GA in one giant population, the island model simultaneously runs NI

GAs in NI different subpopulations (Islands). The key feature is that some chromosomes are

migrated periodically among the islands according to some migration policy. In this article we

adopt the following migration policy: After every Mi generations, the worst MN chromosomes

from the j-th island are replaced by the best MN chromosomes from the (j − 1)st island,

j = 2, . . . , NI . For j = 1, the best MN chromosomes are migrated from the NIth island. In

our simulations we used NI = 50,Mi = 5,MN = 2, and a subpopulation size of 100.

Declaration of Convergence.

At the end of each migration, the overall best chromosome (i.e., the chromosome with the

smallest MDL) is noted. If the best chromosome does not change for 10 consecutive migrations,

or if the total number of migrations exceeds 20, then this chromosome is taken as the solution

to the optimization problem.

Remark 1. In the GA, once the thresholds are given, there is no need to check the indicator

function I(θj−1 < Xt−d < θj) for each t to categorize the observations into regimes. Recall that

the thresholds are specified by (R1, . . . , Rr), the order of the Xt−ds. Thus, the observations

in the j-th regimes are those Xts with Xt−d ranking between Rj−1 + 1 and Rj . Therefore,

to categorize the observations into regimes, we only need to sort {Xt−d} and arrange the

corresponding values of Xt and Xt in the order of {Xt−d}, see Tsay (1989). This greatly

reduces the computational burden.
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3 Simulation experiments

In this section we demonstrate the MDL procedure of TAR models with a simulation experi-

ments. In particular, a series is of length 2000 is generated from the four-regime TAR model

xt = −0.7xt−1I(xt−1 ≤ −0.8) + 0.8xt−1I(−0.8 < xt−1 ≤ −0.3)

− 1.25xt−1I(−0.3 < xt−1 ≤ 0.5)− 2xt−1I(0.5 < xt−1) + et,
(8)

where et
iid∼ N(0, 1). Figure 5.1 shows a realization of model (8). We applied the MDL

procedure to that realization and obtained three threshold breaks located at θ̂1 = −0.798,

θ̂2 = −0.299 and θ̂3 = 0.502. Also, the procedure correctly identified the AR orders (p̂1 = p̂2 =

p̂3 = p̂4 = 1) for this realization.

Figure 1: A realization from the TAR Model (8).

To study the accuracy, we applied the MDL procedure to 200 realizations of the process

(8). Table 1 lists the percentages of the estimated number of regimes. Note that the number

of thresholds are correctly identified in all the 200 realizations. Table 1 also reports the sample
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mean and standard deviation of the three estimated thresholds. All estimated thresholds have

small bias and standard deviations.

Table 2 summarizes the relative frequencies of the estimated AR orders in the four regimes.

Of the 200 realizations, 96% correctly identify the model, i.e., detecting three thresholds and

specifying that the AR orders in all regimes are 1. From Tables 1 and 2, we can see that the

proposed method performs well for the TAR process (8), especially in locating the thresholds.

Table 1: Estimated number and locations of thresholds for the TAR process (8)

Number
of Threshold Values

Thresholds % Mean SE Mean SE Mean SE

3 100.0 -0.804 0.011 -0.3 0.026 0.499 0.015
4 0

≥ 5 0
All 100.0

Table 2: Relative frequencies of the estimated AR order of the TAR process (8)

Order 0 1 2 3 ≥ 4

p1 0 97.0 2.0 1.0 0
p2 1.0 98.0 1.0 0 0
p3 0 98.0 2.0 0 0
p4 0 99.0 1.0 0 0
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