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Abstract
The optimal progressive censoring schemes are examined for the nonparametric confidence in-

tervals of population quantiles. The results obtained can be universally applied to any continuous
probability distribution. By using the interval mass as an optimality criterion, the optimization pro-
cess is free of the actual observed values from the sample and needs only the initial sample size n
and the number of complete failures m. Using several sample sizes combined with various degrees
of censoring, the results of the optimization are presented here for the population median at se-
lected levels of confidence (99%, 95% and 90%). With the optimality criterion under consideration,
the efficiencies of the worst progressive Type-II censoring scheme and ordinary Type-II censoring
scheme are also examined in comparison to the best censoring scheme obtained for fixed n and m.

Key Words: confidence interval, nonparametric inference, optimal censoring scheme, order statis-
tic, progressive Type-II censoring, quantile

1. Introduction

In order to set a warranty period of a new product or even to compare alternative manufac-
turing designs, the estimation of quantiles is routinely performed in reliability and lifetime
analysis. If one applies a parametric procedure to estimate a quantile, an important pre-
sumption underlying the method is that the model fits the data well. Unless this is verified
in the very first stage of analysis, the inferential results may lose power considerably and
lead the analyst to a severely distorted conclusion. One way to overcome this is to apply
a nonparametric procedure which does not specify the model structure a priori so that the
results of inference are free from violation of the model assumption.

Another common feature frequently encountered by statistical analysts and practition-
ers is censoring. Censored data arise when the experiments involving lifetimes of testing
units have to be terminated earlier. Although a complete collection of data is the most
favorable scenario prior to the actual analysis, for the reasons of cost reduction and time
constraint, intentional censoring is unavoidable in practice, especially for reliability ex-
periments. One general form of censoring considered in this paper is progressive Type-II
right censoring, the importance of which lies in its efficient exploitation of the available
resources compared to the traditional sampling. Withdrawn unfailed testing units can typi-
cally be used in other experiments in the same or at a different facility.

The focus of this paper is to review the procedure of constructing an exact nonparamet-
ric confidence interval for a population quantile of interest under progressive Type-II right
censoring and to numerically investigate the associated problem of selecting the optimal
censoring schemes using the expected interval mass as an optimality criterion. Recently,
the problem of optimal scheduling and optimal censoring has received much attention in the
reliability literature. Balakrishnan and Aggarwala (2000) have addressed this problem in
general and investigated it using the trace and determinant functions based on the variance-
covariance matrix of BLUEs (Best Linear Unbiased Estimators) as optimality criteria for
several continuous parametric distributions including exponential, normal, extreme-value,
and log-normal.
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In this paper, we look at the case of progressive Type-II censoring in a nonparametric
setting and discuss the optimal progressive censoring schemes in the construction of non-
parametric confidence intervals for population quantiles. This work is based on the recent
results of Guilbaud (2001, 2004) and Balakrishnan, Childs and Chandrasekar (2002) on
some representations of distributions of progressively Type-II right censored order statis-
tics from a continuous distribution.

2. Nonparametric Confidence Intervals for Quantiles

First, we illustrate a simple nonparametric procedure to construct a confidence interval for
a given quantile based on complete observations (viz., no censoring). It is assumed that the
random sample is from a continuous distribution F (t) = Pr[X ≤ t], and ξp is the given
p-quantile that satisfies

Pr[X ≤ ξp] = F (ξp) = p, 0 < p < 1, (1)

where X is a random variable whose cdf is F (t). Then, suppose that a sample of size n
is taken from this population and ordered so that X1:n < X2:n < . . . < Xn:n denote the
order statistics from the sample. The probability of the interval (−∞, Xj:n] covering ξp is
then given by the lower tail binomial probability,

Pr[Xj:n > ξp] = Pr[Xj:n ≥ ξp] =

j−1∑
k=0

(
n

k

)
pk(1− p)n−k = bj , (2)

for each j = 1, 2, . . . , n. Using (2), for integers r and s which satisfy 1 ≤ r < s ≤ n, the
probability of Xr:n ≤ ξp ≤ Xs:n is obtained as

Pr[Xr:n ≤ ξp ≤ Xs:n] = Pr[Xs:n ≥ ξp]− Pr[Xr:n > ξp] = bs − br =
s−1∑
k=r

(
n

k

)
pk(1− p)n−k.

For a selected confidence coefficient 1 − α, the values of r and s can be searched so
that Pr[Xr:n ≤ ξp ≤ Xs:n] ≥ 1 − α holds. Substituting the observed values xr:n and
xs:n for Xr:n and Xs:n, the two-sided 100(1 − α)% confidence interval for ξp is obtained
as [xr:n, xs:n]. It should be noted that it is not always possible to find r and s to give
the conventional 0.90, 0.95, 0.99 values for 1 − α. Especially with small sample sizes,
it becomes more difficult to produce a confidence interval nonparametrically with a high
level of confidence. Nevertheless, the confidence interval constructed as above is free of
any particular form of the probability distribution F (t) as long as the underlying parent
distribution is continuous.

3. Progressive Type-II Censoring and Some Representations

The two traditional forms of censoring which have been studied extensively in the liter-
ature are Type-I and Type-II censoring. Type-I censoring occurs when the experiment is
terminated at a prefixed time T , independent of the failure times. While Type-I censoring
specifies the time of termination, Type-II censoring restricts the number of failures to be
observed. As such, in Type-II right censoring, there would be a pre-fixed number m (< n)
so that the experiment is terminated at the time of the mth failure and all the remaining
units are removed from the experiment.

In order to introduce flexibility, a more general type of censoring called progressive
censoring has been discussed in the literature. Progressive censoring can also be of either
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Type-I or Type-II, and these do in fact include the conventional Type-I and Type-II cen-
soring as special cases. Progressive Type-I right censored samples are observed when a
pre-specified number or proportion of unfailed units are continuously removed during the
experiment at pre-specified time points. Similarly, progressive Type-II right censored sam-
ples arise when a pre-specified number of surviving units are continuously withdrawn from
the experiment at each observed failure time until the pre-fixed number of units have failed.

In this paper, we focus on progressive Type-II right censoring as it possesses more
tractable and interesting mathematical properties. Consider a life-testing experiment in-
volving n experimental units, and suppose m complete failures are to be observed for
2 ≤ m ≤ n. Let R = (R1, R2, . . . , Rm) be the planned progressive censoring scheme to
be adopted here, where Ri ≥ 0 for i = 1, 2, . . . ,m and

m∑
i=1

Ri +m = n.

As mentioned before, the conventional Type-II right censoring is a special case whenR1 =
R2 = · · · = Rm−1 = 0 and Rm = n − m > 0, while the complete sample case (viz.,
no censoring) corresponds to the case with m = n and R1 = R2 = · · · = Rm = 0.
The failure times of the testing units since time zero can be viewed as a random sample of
size n from cdf F (t), and the corresponding order statistics of the successive failure times
are denoted as before by X1:n < X2:n < · · · < Xn:n. As the parent distribution F (t) is
assumed to be continuous, X1:n, X2:n, . . . , Xn:n are distinct with probability 1. Suppose
these order statistics are not all observable, and that the implemented progressive censoring
leads to m observable uncensored order statistics Y1 < Y2 < · · · < Ym that are available
for inference.

Guilbaud (2001, 2004) has then shown that each observed progressively Type-II right
censored order statistic in Y = (Y1, Y2, . . . , Ym)T can be represented as a mixture of un-
derlying ordinary order statistics X = (X1:n, X2:n, . . . , Xn:n)T . Let ŵi,j be the indicator
of the event Yi = Xj:n, which equals 1 if the event occurs and 0 otherwise. Thus, ŵi,j’s
simply tell which of the order statistics in X is selected as one in Y. Then, the m × n
random matrix Ŵ = (ŵi,j) composed of the indicators holds the relationship

Y = ŴX, (3)

with ŵ1,1 = 1 since Y1 = X1:n by definition. Using the idea of sequential and independent
simple random sampling without replacement, Ŵ can be further decomposed into a product
ofmmatrices that are mutually independent of each other and of X. If the expectation of Ŵ
is denoted by W = (wi,j), one can see that for each i = 2, 3, . . . ,m, (ŵi,1, ŵi,2, . . . , ŵi,n)
has multinomial distribution with parameters 1 and (wi,1, wi,2, . . . , wi,n). Given the in-
dependence of Ŵ and X, the mixture representation in (3) thus holds with the weights
wi,j = Pr[Yi = Xj:n] = Pr[ŵi,j = 1] = E[ŵi,j ] for 1 ≤ i ≤ m and 1 ≤ j ≤ n, and the
mixture weights are given by the non-random matrix W = E[Ŵ ]. It should be noted that
W is completely determined by n, m and R = (R1, R2, . . . , Rm), and the computation
of all the elements of W can be carried out via an efficient recursive relation described in
Guilbaud (2001).

Another representation that is computationally very efficient is due to Balakrishnan,
Childs and Chandrasekar (2002). Adopting the usual conventions that

∏0
i=1 ui ≡ 1 and∑0

i=1 ui ≡ 0, the density function of Yr is given by

fYr(yr) = cr

r−1∑
i=0

ci,r−1(R1 + 1, R2 + 1, . . . , Rr−1 + 1)f(yr)
(

1− F (yr)
)R′′i −1

, (4)
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−∞ < yr <∞ for r = 1, 2, . . . ,m, where

cr = n(n−R1 − 1) · · · (n−R1 − · · · −Rr−1 − r + 1),

R′′i = n−
r−i−1∑
j=1

(Rj + 1),

and f(t) denotes the pdf corresponding to F (t). The coefficients ci,r−1(R1+1, . . . , Rr−1+
1) in (4) are given by

ci,q(uq) =
(−1)i(∏i

j=1

∑q−i+j
k=q−i+1 uk

)(∏q−i
j=1

∑q−i
k=j uk

) ,
defined for any real vector uq = (u1, u2, . . . , uq) of length q ≥ 1. Integrating the density
function in (4), the corresponding distribution function of Yr is obtained as

FYr(yr) =

∫ yr

−∞
fYr(yr) dy = cr

r−1∑
i=0

ci,r−1(R1 + 1, R2 + 1, . . . , Rr−1 + 1)

× 1

R′′i

(
1−

(
1− F (yr)

)R′′i )
, (5)

−∞ < yr <∞ for r = 1, 2, . . . ,m.

4. Confidence Intervals for Quantiles under Progressive Type-II Censoring

In Section 2, a procedure to construct a nonparametric confidence interval for the popu-
lation quantile ξp was illustrated in the complete sample case. Using the mixture repre-
sentation for Y given in (3) or the expression of the distribution function of Yr in (5), a
nonparametric confidence interval for ξp under progressive Type-II right censoring can be
constructed in a similar way as described in Guilbaud (2001, 2004). Now, let b = (bj) be
the n × 1 matrix whose elements are defined by (2) and a = (aj) be the m × 1 matrix
whose elements are defined in terms of W = (wi,j) through the relationship

a = Wb. (6)

Then, the vector a is simply a collection of the probabilities of covering ξp by each Yr,
since

Pr[Yr ≥ ξp] = Pr[Yr > ξp] =
n∑

j=1

wr,jPr[Xj:n ≥ ξp] =
n∑

j=1

wr,jbj = ar, (7)

for r = 1, 2, . . . ,m. It is clear that a1 ≤ a2 ≤ · · · ≤ am as Y1 < Y2 < · · · < Ym with
probability 1. Now, suppose that r and s are some integers satisfying 1 ≤ r < s ≤ m. The
coverage probability of the interval estimator [Yr, Ys] for ξp can then be easily expressed in
terms of the elements of a as follows:

Pr[Yr ≤ ξp ≤ Ys] = Pr[Ys ≥ ξp]− Pr[Yr > ξp] = as − ar. (8)

Once a has been evaluated using (6), the integers r and s can be determined so that the
confidence level of this interval is at least a specified value 1− α (i.e., as − ar ≥ 1− α).

Since the coverage probability in (7) is determined through the matrix operation in (6),
the expression in (5) offers another efficient way to compute (7) without going through
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the direct computation of the matrix W . This is particularly useful when one wants to
estimate only one or few elements of a and to avoid the intensive computation required for
determining the whole matrix W . In this case, using (5), the coverage probability in (7)
can be explicitly expressed as

Pr[Yr ≥ ξp] = Pr[Yr > ξp] = 1− Pr[Yr ≤ ξp] = 1− FYr(ξp)

= 1− cr
r−1∑
i=0

ci,r−1(R1 + 1, R2 + 1, . . . , Rr−1 + 1)

× 1

R′′i

(
1− (1− p)R′′i

)
,

and the last step follows directly from the definition of ξp in (1).

5. Optimal Progressive Censoring Schemes

5.1 Optimality Criterion and Optimal Schemes

In the previous section, the exact nonparametric confidence interval has been derived for
any population quantile of interest based on a progressively Type-II right censored sam-
ple. Then, as pointed out by Balakrishnan and Aggarwala (2000), some natural questions
arise here: “how can a practitioner decide on which censoring scheme to be used out of
numerous censoring schemes?”; “Is the decision made strictly on the basis of convenience,
or can one select a censoring scheme which makes the most sense within some statistical
settings?”. From a practical point of view, the question of choosing the optimal values for
R = (R1, R2, . . . , Rm) is certainly indispensable and it has to be addressed when one
designs a progressive Type-II censoring experiment as the number of distinct censoring
schemes becomes very large even for moderate values of n and m.

Before selecting the optimal censoring scheme, one must first devise an optimality
criterion or an objective function to be optimized, as done by Balakrishnan and Aggarwala
(2000) in the case of point estimation. Consequently, the meaning of the optimal censoring
scheme is restricted to the criterion of one’s choice. In the case of nonparametric interval
estimation for a quantile ξp with n and m fixed, a simple optimization with respect to the
choice of R = (R1, R2, . . . , Rm) is to select R which enables to find r and s in (8) that
satisfy as − ar ≈ 1 − α and ar ≈ 1 − as. This constraint is equivalent to finding r and
s such that ar ≈ α/2 and as ≈ 1 − α/2 in order to yield a symmetric confidence interval
when possible.

In the complete sample case, a reasonable objective function for choosing r and s
is the index difference s − r corresponding to the interval [Xr:n, Xs:n] with the level of
confidence at least 1−α. Minimizing this function is to minimize the expected probability
mass F (Xs:n) − F (Xr:n) of the underlying distribution within the interval. This clearly
reflects the purpose of the interval estimation, which is to produce the shortest interval with
a desired confidence level. Under progressive Type-II right censoring, it follows from (3)

that Yi =
n∑

j=1

ŵi,jXj:n and the expectation of F (Yi) =
n∑

j=1

ŵi,jF (Xj:n) is therefore equal

to

ei = E [F (Yi)] =

n∑
j=1

wi,j
j

n+ 1
, (9)

for i = 1, 2, . . . ,m. An alternate expression for ei in (9), obtained through a generalization
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of Malmquist’s transformation, is simply given by

ei = 1−
m∏

j=m−i+1

δj
δj + 1

,

where

δj = j +
m∑

k=m−j+1

Rk,

for i = 1, 2, . . . ,m. Hence, the expectation of the probability mass within the interval
[Yr, Ys] is simply equal to es − er for 1 ≤ r < s ≤ m. Then, for given n and m, it
is quite reasonable to determine the optimal progressive Type-II censoring scheme for the
nonparametric confidence interval for ξp by minimizing the expected interval mass

M(R) = min
(r,s)∈S

{es − er}, (10)

where S is a subset of the binary Cartesian product of positive integers (r, s) such that
1 ≤ r < s ≤ m and as − ar ≥ 1 − α. If S happens to be an empty set for some R’s,
M(R) is simply defined to be 1. It should be noted that the objective function M(·) and
the index set S are both depending on the choices of n, m, R, and α for a given quantile
ξp, but M(R) is minimized with respect to every possible progressive censoring scheme
R = (R1, R2, . . . , Rm) when n, m and α are all pre-fixed along with ξp. This provides
great flexibility to the practitioners as the number of units to be put on the test and the
number of complete failure times to be observed are both to be decided a priori by the
experimenter based on the availability of units and experimental facilities. If one or both
of these are to be determined in the planning stage, one may also use the tables presented
here to decide upon the values of n and m which are feasible given an agreeable value of
the objective function.

In this finite sample case, to minimize (10) with all the other values given, one may
list every possible choice of censoring scheme and the corresponding value of the objective
function. After determining the best value, the value that minimizes the expected interval
mass M(·) in (10), or a certain region of satisfactory values from this list, one can pick
out either the best censoring scheme or one that gives a value close to the best but may
be practically more convenient (i.e., a sub-optimal censoring scheme). For the purpose
of comparing different censoring schemes with the selected objective function, a sensible
definition of the efficiency of a censoring scheme RA with respect to a scheme RB can be
given by

Efficiency(RA,RB) =
M(RA)

M(RB)
× 100%. (11)

This is simply a ratio of the interval masses and if one is interested in searching for a region
containing a number of satisfactory censoring schemes, such a region can be defined in
terms of efficiencies, as done by Balakrishnan and Aggarwala (2000). For example, an
experimenter may be pleased with any censoring scheme which is at least 95% as efficient
as the optimal (best) scheme. Moreover, one can see that for any fixed values of n and
m, the efficiency of the conventional Type-II censoring scheme with respect to the optimal
censoring scheme would be at most 100%; consequently, by using the optimal censoring
scheme, there is no loss in efficiency over the conventional one.

5.2 Numerical Study

A numerical study has been conducted with some selected values of parameters and the
results are presented in Tables 1–10. In the original computation performed, the choices
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of the sample size n ranged from 10 to 100 with an increment of 5 and the pre-determined
number of failure observations m ranged from 2 to n with a unit increment for each choice
of n. In addition, the choices of m were restricted in such a way that the total number
of available censoring schemes

(
n−1
m−1

)
does not exceed 8.0 × 107 in order to keep the

computational time and space manageable. To examine a variety of quantiles, p of ξp was
selected from 0.05 to 0.95 with an increment of 0.05. Moreover, corresponding to the
conventional 99%, 95% and 90% confidence intervals, α was chosen to be 0.01, 0.05 and
0.10, respectively.

Due to the constraint on space, only selected tables for the population median ξ0.5
are presented here and the tables are intended to shed some light on the general behavior
of this discrete optimization. With fixed n and m, each table lists the best progressive
censoring scheme and the worst progressive censoring scheme along with conventional
Type-II censoring scheme for the sake of comparison. The best censoring scheme is simply
the one that minimizes the objective function M(R) given in (10) and the worst censoring
scheme is, on the other hand, the one that maximizes

M̄(R) = max
(r,s)∈S

{es − er}.

In the tables, the meaning of 0 ? k with some positive integer k is to repeat zero k times.
Hence, it simply denotes a zero vector of size k embedded in the censoring scheme R, and
the meaning of 1 ? k is to be interpreted in a similar way. In each table, count denotes
the total number of distinct progressive censoring schemes which can produce at least one
interval with the confidence level greater than or equal to the nominal level 1− α. In other
words, it is the number of censoring schemes for which S in (10) is a non-empty set. Since
the nonparametric confidence interval depends on the order or the index of the uncensored
observations, the confidence interval is given in the form of [r, s] with the corresponding
confidence interval being [Yr, Ys]. In each table, the actual level of confidence for each
interval estimator is also provided along with its expected probability mass. Moreover,
efficiency was calculated using (11) with respect to the best censoring scheme found for
the pre-fixed values of n, m, p and α. Naturally, in cases where a certain censoring scheme
can not yield any interval with the desired level of confidence, the efficiency is simply noted
as not available.

6. Discussion

Based on the results of the numerical study presented in Section 5.2 and Tables 1–10, a
number of interesting observations can be made. First of all, for certain choices of n and
m, the available progressive censoring schemes which can produce confidence intervals for
a given quantile with a desired level of confidence can be few. Moreover, the higher the
required level of confidence is, the fewer the choices of such censoring schemes. One can
also observe that for fixed n, m and α, the actual level of confidence increases initially and
then decreases as p increases. Consequently, when the quantile of interest is too small or
too large, there may not be any censoring schemes to generate a confidence interval with a
selected level of confidence unless n and m are both reasonably large.

Then, how large should m be compared to n? It was found that the size of m related to
n is also a significant factor to boost up the available censoring schemes which can yield
confidence intervals with a desired level. By examining tables, it was observed that if m
is too small compared to n or too close to n for fixed ξp and α, the number of censoring
schemes which can yield confidence intervals with a desired level decreases. This in turn
reduces the number of sub-optimal censoring scheme choices whose efficiencies are close
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to that of the best scheme. To one’s surprise, this finding also implies that the case without
any censoring actually performs worse than the case with an appropriate censoring while
constructing a nonparametric confidence interval for a quantile. Therefore, the censoring
proportion n−m

n is an important factor to consider at the planning stage of a progressive
Type-II censoring experiment if one wishes to construct a confidence interval with a desired
coverage probability.

Another general observation relating to n andm is that raising nwithm fixed enables to
find the optimal censoring schemes for small quantiles like ξ0.05 and ξ0.10 within a limited
range. On the other hand, increasing m with fixed n enables to find the optimal censoring
schemes for a large range of quantiles of interest. Although it is not shown in the tables,
it was observed that the maximum level of confidence could be achieved by the censoring
scheme R = (n − m, 0 ? (m − 1)) in any case where none of the censoring schemes
examined could produce an interval with at least the nominal level. Thus, withdrawing
every unit immediately after observing the first failure time is the best in a sense that the
interval [Y1, Ym] attains the highest confidence level. Nevertheless, it turned out to be also
the worst censoring scheme in some situations when we could in fact locate the optimal
censoring scheme. This is because [Y1, Ym] bears the highest probability mass within the
interval.

Although the tables presented here could be used for reference for practitioners who are
designing a progressive Type-II censoring experiment, it is rather difficult to see whether
there is a universal pattern or a mathematical trend of the best censoring schemes or the
worst censoring schemes. However, it can be clearly pointed out that if one randomly
chooses a progressive censoring scheme for an experiment in which a large censoring takes
place, it will be less likely to obtain a desired nonparametric confidence interval for the
quantile of interest. Hence, a careful planning of an experiment is important from an in-
ferential point of view. Another interesting observation is that in a few cases, the best
censoring scheme coincides with the conventional Type-II censoring scheme. For example,
for n = 25 and m = 20, the conventional Type-II censoring scheme turns out to be the
best censoring scheme to construct a 90% confidence interval for ξ0.35. But, in most cases,
the ordinary Type-II censoring scheme could not even produce a single confidence interval
with an acceptable level and the efficiency gained by the optimal censoring scheme turns
out to be quite substantial compared to the conventional Type-II censoring scheme as well
as to the worst censoring scheme.
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Table 1: Optimal PC Schemes for Nonparametric CIs of ξ0.50 with n = 15 and m = 10

(total 2002 progressive Type-II censoring schemes examined)
α Count Category Censoring Scheme (R) CI1 Actual CL2 CI Mass Efficiency

0.01 212
Best PC3 ( 4, 0?8, 1) [ 2, 10] 0.9904 0.6818 100.00 %
Worst PC ( 1?5, 0?5) [ 1, 10] 0.9901 0.8328 81.87 %
Type-II ( 0?9, 5) [ 1, 10] 0.8491 0.5625 NA4

0.05 1831
Best PC ( 0?3, 3, 0?5, 2) [ 4, 10] 0.9524 0.5000 100.00 %

Worst PC ( 0?4, 1, 0, 0, 1, 3, 0) [ 1, 10] 0.9501 0.7370 67.84 %
Type-II ( 0?9, 5) [ 1, 10] 0.8491 0.5625 NA

0.10 1992
Best PC ( 0, 0, 1, 0?4, 1, 0, 3) [ 4, 10] 0.9004 0.4288 100.00 %

Worst PC ( 0?3, 2, 0, 0, 2, 1, 0, 0) [ 4, 10] 0.9609 0.6100 70.30 %
Type-II ( 0?9, 5) [ 1, 10] 0.8491 0.5625 NA

Table 2: Optimal PC Schemes for Nonparametric CIs of ξ0.50 with n = 20 and m = 10

(total 92378 progressive Type-II censoring schemes examined)
α Count Category Censoring Scheme (R) CI Actual CL CI Mass Efficiency

0.01 32
Best PC ( 0?4,10, 0?5) [ 4, 10] 0.9922 0.6825 100.00 %

Worst PC ( 8, 1, 1, 0?7) [ 1, 10] 0.9905 0.8542 79.91 %
Type-II ( 0?9,10) [ 1, 10] 0.4119 0.4286 NA

0.05 3550
Best PC ( 0, 0, 8, 0?6, 2) [ 4, 10] 0.9507 0.5143 100.00 %

Worst PC ( 4, 1, 1, 2, 1, 0, 1, 0?3) [ 1, 10] 0.9500 0.8317 61.83 %
Type-II ( 0?9,10) [ 1, 10] 0.4119 0.4286 NA

0.10 27873
Best PC ( 7, 0?8, 3) [ 4, 10] 0.9143 0.4396 100.00 %

Worst PC ( 0, 1, 0, 3, 1, 1, 4, 0?3) [ 1, 10] 0.9000 0.8024 54.78 %
Type-II ( 0?9,10) [ 1, 10] 0.4119 0.4286 NA

Table 3: Optimal PC Schemes for Nonparametric CIs of ξ0.50 with n = 20 and m = 16

(total 3876 progressive Type-II censoring schemes examined)
α Count Category Censoring Scheme (R) CI Actual CL CI Mass Efficiency

0.01 3876
Best PC ( 0?12, 1, 0, 0, 3) [ 5, 16] 0.9902 0.5442 100.00 %

Worst PC ( 0, 0, 1, 1, 0?5, 1, 1, 0?5) [ 4, 15] 0.9967 0.6655 81.77 %
Type-II ( 0?15, 4) [ 4, 16] 0.9928 0.5714 95.24 %

0.05 3876
Best PC ( 0?6, 1, 0?3, 1, 0?4, 2) [ 6, 14] 0.9503 0.4258 100.00 %

Worst PC ( 0, 1, 1, 0?8, 1, 1, 0?3) [ 5, 14] 0.9761 0.5140 82.84 %
Type-II ( 0?15, 4) [ 6, 15] 0.9586 0.4286 99.36 %

0.10 3876
Best PC ( 0?8, 1, 0?6, 3) [ 7, 14] 0.9015 0.3550 100.00 %

Worst PC ( 0?5, 2, 0, 2, 0?8) [ 6, 13] 0.9484 0.4457 79.65 %
Type-II ( 0?15, 4) [ 6, 14] 0.9216 0.3810 93.18 %
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Table 4: Optimal PC Schemes for Nonparametric CIs of ξ0.50 with n = 25 and m = 10

(total 1307504 progressive Type-II censoring schemes examined)
α Count Category Censoring Scheme (R) CI Actual CL CI Mass Efficiency

0.01 21
Best PC ( 0?4,15, 0?5) [ 5, 10] 0.9903 0.6731 100.00 %

Worst PC ( 0,15, 0?8) [ 2, 10] 0.9979 0.8205 82.03 %
Type-II ( 0?9,15) [ 1, 10] 0.1148 0.3462 NA

0.05 766
Best PC ( 0?6,15, 0?3) [ 7, 10] 0.9577 0.5481 100.00 %

Worst PC (11, 0, 1?3, 0, 0, 1, 0, 0) [ 1, 10] 0.9502 0.8347 65.66 %
Type-II ( 0?9,15) [ 1, 10] 0.1148 0.3462 NA

0.10 7122
Best PC ( 0, 0,13, 0?6, 2) [ 5, 10] 0.9016 0.4423 100.00 %

Worst PC ( 8, 0, 3, 2, 0, 2, 0?4) [ 1, 10] 0.9000 0.8406 52.62 %
Type-II ( 0?9,15) [ 1, 10] 0.1148 0.3462 NA

Table 5: Optimal PC Schemes for Nonparametric CIs of ξ0.50 with n = 25 and m = 15

(total 1961256 progressive Type-II censoring schemes examined)
α Count Category Censoring Scheme (R) CI Actual CL CI Mass Efficiency

0.01 571742
Best PC ( 0?5, 9, 0?8, 1) [ 6, 14] 0.9903 0.5594 100.00 %

Worst PC ( 0, 1, 0, 1, 2, 0, 1?3, 2, 0, 1, 0?3) [ 1, 15] 0.9900 0.8649 64.68 %
Type-II ( 0?14,10) [ 1, 15] 0.7878 0.5385 NA

0.05 1908500
Best PC ( 0?7, 6, 0?6, 4) [ 8, 15] 0.9506 0.4038 100.00 %

Worst PC ( 1, 0?7, 1, 0, 1, 0, 4, 3, 0) [ 1, 15] 0.9500 0.7686 52.54 %
Type-II ( 0?14,10) [ 1, 15] 0.7878 0.5385 NA

0.10 1959458
Best PC ( 1, 0?6, 3, 0?6, 6) [ 8, 15] 0.9010 0.3405 100.00 %

Worst PC ( 0?3, 1, 0?6, 1, 1, 0, 3, 4) [ 2, 15] 0.9000 0.5680 59.95 %
Type-II ( 0?14,10) [ 1, 15] 0.7878 0.5385 NA

Table 6: Optimal PC Schemes for Nonparametric CIs of ξ0.50 with n = 25 and m = 20

(total 42504 progressive Type-II censoring schemes examined)
α Count Category Censoring Scheme (R) CI Actual CL CI Mass Efficiency

0.01 42504
Best PC ( 0?19, 5) [ 7, 20] 0.9906 0.5000 100.00 %

Worst PC ( 0, 1, 1, 2, 1, 0?15) [ 6, 18] 0.9924 0.5956 83.94 %
Type-II ( 0?19, 5) [ 7, 20] 0.9906 0.5000 100.00 %

0.05 42504
Best PC ( 0?10, 2, 0?8, 3) [ 8, 17] 0.9501 0.3817 100.00 %

Worst PC ( 0?4, 1, 0, 3, 1, 0?12) [ 7, 16] 0.9749 0.4660 81.90 %
Type-II ( 0?19, 5) [ 8, 18] 0.9567 0.3846 99.23 %

0.10 42504
Best PC ( 0?13, 1, 0?5, 4) [ 9, 17] 0.9010 0.3182 100.00 %

Worst PC ( 0, 1, 0, 1?4, 0?13) [ 8, 16] 0.9288 0.4051 78.54 %
Type-II ( 0?19, 5) [ 8, 17] 0.9245 0.3462 91.92 %

Table 7: Optimal PC Schemes for Nonparametric CIs of ξ0.50 with n = 30 and m = 10

(total 10015005 progressive Type-II censoring schemes examined)
α Count Category Censoring Scheme (R) CI Actual CL CI Mass Efficiency

0.01 17
Best PC (19, 0?8, 1) [ 2, 10] 0.9902 0.7038 100.00 %

Worst PC ( 1, 19, 0?8) [ 2, 10] 0.9911 0.8306 84.74 %
Type-II ( 0?9, 20) [ 1, 10] 0.0214 0.2903 NA

0.05 436
Best PC ( 0, 19, 0?7, 1) [ 4, 10] 0.9540 0.5613 100.00 %

Worst PC (16, 3, 0?4, 1, 0?3) [ 1, 10] 0.9501 0.8554 65.62 %
Type-II ( 0?9, 20) [ 1, 10] 0.0214 0.2903 NA

0.10 2725
Best PC (17, 0?8, 3) [ 4, 10] 0.9145 0.4467 100.00 %

Worst PC (13, 6, 0, 0, 1, 0?5) [ 1, 10] 0.9000 0.8615 51.85 %
Type-II ( 0?9, 20) [ 1, 10] 0.0214 0.2903 NA
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Table 8: Optimal PC Schemes for Nonparametric CIs of ξ0.50 with n = 30 and m = 15

(total 77558760 progressive Type-II censoring schemes examined)
α Count Category Censoring Scheme (R) CI Actual CL CI Mass Efficiency

0.01 77558760
Best PC (12, 0?13, 3) [ 1, 9] 0.9905 0.4301 100.00 %

Worst PC ( 0?9, 1, 0, 1, 3, 10, 0) [ 1, 15] 0.9934 0.7029 61.19 %
Type-II ( 0?14, 15) [ 1, 15] 0.9904 0.4516 95.24 %

0.05 77558760
Best PC ( 0, 12, 0?5, 1, 0?6, 2) [ 1, 9] 0.9572 0.4230 100.00 %

Worst PC ( 0?11, 1, 2, 12, 0) [ 1, 15] 0.9720 0.6976 60.63 %
Type-II ( 0?14, 15) [ 1, 15] 0.9599 0.4516 93.66 %

0.10 77558760
Best PC ( 0?4, 9, 0?9, 6) [ 8, 15] 0.9001 0.3454 100.00 %

Worst PC ( 0?9, 1, 2, 5, 7, 0, 0) [ 1, 14] 0.9132 0.6007 57.50 %
Type-II ( 0?14, 15) [ 1, 14] 0.9145 0.4194 82.35 %

Table 9: Optimal PC Schemes for Nonparametric CIs of ξ0.50 with n = 30 and m = 20

(total 20030010 progressive Type-II censoring schemes examined)
α Count Category Censoring Scheme (R) CI Actual CL CI Mass Efficiency

0.01 20030010
Best PC ( 0?7, 4, 0?10, 1, 5) [ 8, 20] 0.9901 0.4742 100.00 %

Worst PC ( 0?14, 3, 6, 1, 0?3) [ 8, 20] 0.9945 0.6427 73.78 %
Type-II ( 0?19, 10) [ 1, 19] 0.9926 0.5806 81.66 %

0.05 20030010
Best PC ( 0?11, 1, 0, 1, 0?5, 8) [10, 20] 0.9500 0.3505 100.00 %

Worst PC ( 0?15, 1, 3, 4, 2, 0) [10, 20] 0.9672 0.5157 67.98 %
Type-II ( 0?19, 10) [ 6, 20] 0.9505 0.4516 77.62 %

0.10 20030010
Best PC ( 0?19, 10) [11, 20] 0.9013 0.2903 100.00 %

Worst PC ( 0?18, 10, 0) [11, 20] 0.9031 0.4516 64.29 %
Type-II ( 0?19, 10) [11, 20] 0.9013 0.2903 100.00 %

Table 10: Optimal PC Schemes for Nonparametric CIs of ξ0.50 with n = 30 and m = 25

(total 118755 progressive Type-II censoring schemes examined)
α Count Category Censoring Scheme (R) CI Actual CL CI Mass Efficiency

0.01 118755
Best PC ( 0?19, 1, 0?4, 4) [ 8, 22] 0.9904 0.4581 100.00 %

Worst PC ( 0?4, 1, 2, 2, 0?18) [ 8, 21] 0.9933 0.5259 87.11 %
Type-II ( 0?24, 5) [ 8, 23] 0.9948 0.4839 94.67 %

0.05 118755
Best PC ( 0?11, 1, 0, 1, 0?10, 3) [10, 20] 0.9500 0.3505 100.00 %

Worst PC ( 0?5, 1, 0, 0, 3, 1, 0?15) [ 9, 19] 0.9721 0.4141 84.66 %
Type-II ( 0?24, 5) [10, 21] 0.9572 0.3548 98.79 %

0.10 118755
Best PC ( 0?24, 5) [11, 20] 0.9013 0.2903 100.00 %

Worst PC ( 0, 1?3, 0, 0, 1, 1, 0?17) [ 8, 17] 0.9066 0.3605 80.53 %
Type-II ( 0?24, 5) [11, 20] 0.9013 0.2903 100.00 %
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