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Abstract

The Pareto distribution is a popular distribution with many applications in real
world extreme events. Many existing estimation methods for the Pareto distribution
are based on estimating the tail index. There are bias and infinite moments issues.
In this paper, we first use a truncation method to overcome these difficulties, then
propose a nonparametric kernel distribution estimation method. The paper also studies
an example of real world applications on extreme values by using the proposed method.
We compare the results on goodness-of-fit tests by applying the proposed methods and
also existing parametric methods with real-world data.

Keywords: Extreme value, heavy tailed distributions; goodness of fit test; order statistics;
Pareto distribution.

1. Introduction

Natural disasters such as earthquakes, hurricanes, wild fires, air pollution or floods can
cause huge damage. Scientists study these extreme events. In the literature, extreme
value problems are modelled as heavy tailed distributions, especially the Pareto distrib-
ution. However, there are some difficulties in estimation of Pareto distributions. First,
the Pareto distribution has infinite moments in some heavy tailed cases. Therefore the
moment estimation method for the shape parameter cannot be used in these situations.
Several authors suggest using a truncated Pareto distribution (TPD), which has finite
moments (e.g., Beg, 1981; Aban, et al, 2006).
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In some situations, data behaves in a complicated manner. For example, losses from
hurricane damage may not be fitted to a single Pareto distribution with an estimated
tail index. In this paper we propose a nonparametric method to study an example of
49 most damaging Atlantic hurricanes occurring between years 1900 and 2005 (U.S.
National Hurricane Center, 2008). Figure 1.1 gives the costs standardized to 2005 USD.
Figure 1.2 is a histogram of Atlantic hurricane losses.

Figure 1.1. The 49 costliest Atlantic hurricanes between the years 1900-2005.

Figure 1.2. Histogram of hurricane loss data

Huang and Zhao (2013) used the Pareto and truncated Pareto models to fit the
data set. The maximum likelihood estimator (MLE) and the moment estimator for the
shape parameter were used. The results are shown in a log-log plot in Figure 1.3. Huang
and Zhao (2013) also used Kolmogorov-Smirnov, Anderson-Darling, and Cramer-von-
Mises goodness of fit tests. We note that the two estimated (by MLE and moment
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method) truncated Pareto curves fit the data set quite well in Figure 1.3; they fit much
better in the tail than the original Pareto distribution (which is in a straight line).
But the truncated Pareto curves do not fit the data uniformly well, especially for the
middle value data. We observed that the pattern of data may not fit a single parameter
distribution. This motivates us to try a nonparametric estimation method to find a
suitable distribution to fit this empirical data better.

In this paper, we review the Pareto distribution and truncated Pareto distribution
with their estimation methods in Section 2. We propose a nonparametric kernel distri-
bution estimator (KDE) in Section 3. In Section 4, we perform Kolmogorov-Smirnov,
Anderson Darling, and Cramer-von Mises goodness of fit tests to analyze the hurricane
data by using the KDE and three other existing estimation methods (see Figure 4.2).
The results show that the proposed nonparametric method is superior to other existing
estimation methods.

Figure 1.3. Log-log plot of hurricane example with estimated distribution curves. The
red circles are the data; the black straight line is the original Pareto distribution; the
green dot line is the MLE estimated truncated Pareto distribution; the blue dash line
is the moment estimated truncated Pareto distribution.
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2. Pareto Distribution and Truncated Pareto Distribution

Definition 2.1. The probability density function (p.d.f.) and the cumulative distribution
function (c.d.f.) of a random variable Y having the Pareto distribution are given by

fp(y; γ, α) =
αγα

y(α+1)
, 0 < γ ≤ y <∞, α > 0, (2.1 )

Fp(y; γ, α) = 1−
µ
γ

y

¶α

, 0 < γ ≤ y <∞, α > 0, (2.2 )

where α is the shape parameter.
When 0 < α ≤ 1, which is a heavy tailed case, the mean and variance of Y are

infinite, and the distribution is heavier in the right tail as α decreases.
The truncated Pareto distribution was originally used to describe the distribution

of oil fields by size. It has a lower limit γ, an upper limit ν and a shape parameter α.
In fact, it has been shown that the truncated Pareto distribution fits better than the
non-truncated Pareto distribution for positively skewed populations (Beg, 1981).

Definition 2.2. The p.d.f. and c.d.f. of a random variable X having the truncated
Pareto distribution are given by

f(x; γ, ν, α) =
αγαx−α−1

1− (γν )α
, 0 < γ ≤ x ≤ ν <∞, α > 0, (2.3 )

F (x; γ, ν, α) = 1− γα(x−α − ν−α),

1− (γν )α
, 0 < γ ≤ x ≤ ν <∞, α > 0, (2.4 )

where γ and ν are the left and right truncation points.
The quantile function of the truncated Pareto distribution is

F−1(u) =

µ
1− u

γα
+

u

να

¶− 1
α

, 0 ≤ u ≤ 1, α > 0. (2.5 )

The mean, second moment and variance of X are

μ =
αγα(γ1−α − ν1−α)

(α− 1)(1− (γν )α)
, 0 < γ < ν <∞, α > 1; (2.6 )

μ(2) =
αγα(ν2−α − γ2−α)

(2− α)(1− (γν )α)2
, 0 < γ < ν <∞, α > 2; (2.7 )

σ2 =
αγα(ν2−α − γ2−α)

(2− α)(1− (γν )α)2
− α2γ2α(ν1−α − γ1−α)2

(1− α)2(1− (γν )α)2
, 0 < γ < ν <∞, α > 2. (2.8 )
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Let X1,n,X2,n, ...,Xn,n be order statistics of a random sample X1,X2, ...,Xn from
the TPD in (2.3). Three estimation methods for the shape parameter α are given by

1. Hill Estimator (original Pareto distribution in (2.1)):
The Hill (1975) MLE for α is defined as

bαHill =

"
r−1

rX
i=1

{lnXn−i+1,n − lnXn−r,n}
#−1

, (2.9 )

where Xi,n is the ith smallest order statistic, and r is the cut off point.

2. Moment Estimator (truncated Pareto distribution in (2.3)):
A moment estimator bαM for α can be obtained by solving the following equation:

1

n

nX
i=1

Xi =
bαMγαM (γ1−αM − ν1−αM )

(bαM − 1)(1− (γν )αM ), (2.10 )

where 0 < γ ≤ Xi ≤ ν <∞, bαM > 0.

3. MLE method (truncated Pareto distribution in (2.3))
The MLE for α (Aban et al, 2006) is obtained by solving the following equation:

nbαAban + n(γν )bαAban ln(γν )
1− (γν )αAban

−
nX
i=1

[lnXn−i+1,n − ln γ] = 0, (2.11 )

where Xi,n is the ith smallest order statistic, γ ≤ Xi,n ≤ ν, i = 1, 2, ..., n.

We use bγ = min(X1,X2, ...,Xn), bν = max(X1,X2, ...,Xn) in (2.10) and (2.11).

3. A Nonparametric Kernel Distribution Estimator (KDE)

We apply the kernel density estimation method (Silverman, 1986) which is given by
Definition 3.1. The kernel density estimator for a true density function (d.f) f from
a random sample X1,X2, ...,Xn is defined by

cfn(x) = 1

nh

nX
i=1

K

µ
x−Xi

h

¶
, x ∈ <, (3.1 )

where K(•) is a symmetric density function, and h > 0 is a bandwidth.

Definition 3.2. The kernel distribution estimator (KDE) for a true distribution func-
tion (c.d.f) F from a random sample X1,X2, ...,Xn is defined by

cFn(x) = ∞Z
−∞

cfn(x)dx = ∞Z
−∞

1

nh

nX
i=1

K

µ
x−Xi

h

¶
dx. (3.2 )

We will compare the KDE estimator and other estimators in the next section.
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4. Applications

4.1. Kernel Estimation Method

Now we apply the four estimation methods to the hurricane example.
1) Pareto distribution in (2.1) with Hill estimator bαHill in (2.9);
2) Truncated Pareto distribution in (2.3) with Aban MLE estimator bαAban in (2.10);
3) Truncated Pareto distribution in (2.3) with Moment estimator bαMoment in (2.11);
4) Kernel density estimator and kernel distribution estimator in (3.1) and (3.2),

where we use a standard normal kernel

K(t) =
1√
2π

e(−x
2/2), −∞ < t <∞; (4.1 )

and optimal bandwidth (Silverman, 1986, p.40)

hopt =

½Z
t2K(t)dt

¾−2/5½Z
(K(t))2 dt

¾1/5½Z ¡
f 00(x)

¢2
dx

¾−1/5
n−1/5 = 1.23899,

(4.2 )
where K(t) and f(x) are given in (4.1) and (2.1) respectively.

Figure 4.1. Histogram with four estimated density curves of hurricane loss data. The
red circles are the data; the black straight line is the original Pareto distribution; the
green dot line is the MLE estimated truncated Pareto distribution; the blue dash line
is the moment estimated truncated Pareto distribution; the thick red line is the kernel
estimated distribution.

JSM 2013 - Section on Statistical Computing

2910



Figure 4.1 displays the histogram of hurricane losses with four estimated densities.
We note that the KDE density fits the histogram well, including the multiple modes.
The other three parametric estimated Pareto and truncated density curves miss some
modes.

Table 4.1 gives bα, bμ, Median, 5% Value-at-Risk (VaR) and 1% VaR of each of the
four estimation methods. We note that the KDE method gives the smallest mean,
largest median, smallest 5% VaR and 2nd largest 1% VaR.

Table 4.1 Four Estimation Methods for Hurricane Example

Method bα bμ Median 5% VaR 1% VaR

Pareto(Hill) 0.8126 ∞ 8.68 billion 147.68 billion 1070.30 billion
MLE(Aban) 0.6206 21.10 billion 9.73 billion 85.15 billion 136.17 billion
Moment 0.6476 20.48 billion 9.47 billion 82.55 billion 134.90 billion
KDE - 20.48 billion 11.83 billion 81.16 billion 157.04 billion

Figure 4.2. Log-log plot of hurricane example with estimated distribution curves. The
red circles are the data; the black straight line is the original Pareto distribution; the
green dot line is the MLE estimated truncated Pareto distribution; the blue dash line
is the moment estimated truncated Pareto distribution; the thick red line is the kernel
estimated distribution.
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Figure 4.2 exhibits data and four estimated log-log distribution curves. We note that
the original Pareto distribution does not fit data well in the right tail. The moment
and Aban estimated truncated Pareto fit the data well in the right tail, but not so well
in the smaller or middle values data. The kernel distribution estimator overcomes this
problem, and has the best fitting to the data over the whole range. Figure 4.2 suggests
a single distribution may not totally represent how natural data is distributed, and the
estimated distribution by the kernel nonparametric method realistically represents the
data.

The result in Figure 4.2 is a visual observation. It is necessary to run goodness of
fit tests to confirm which estimated distribution best fits the hurricane data.

4.2. Goodness of Fit Tests

In this section we conduct three goodness of fit tests: Kolmogorov-Smirnov, Anderson
Darling, and Cramer-von Mises. All three tests are based on the distance between the
empirical distribution function and the proposed distribution function: original Pareto
distribution in (2.1) or truncated Pareto distribution in (2.3), or the KDE method in
(3.2).

Each test considers the same null and alternative hypothesis:

H0 : F (x) = F ∗(x) vs H1 : F (x) 6= F ∗(x),

where F (x) is the unknown true distribution of the sample data and F ∗(x) is one of our
proposed four estimated distributions by using:

1) Pareto distribution in (2.1) with Hill estimator bαHill;
2) Truncated Pareto distribution in (2.3) with Aban MLE estimator bαAban;
3) Truncated Pareto distribution in (2.3) with Moment estimator bαMoment;

4) Kernel Distribution Estimator (KDE) in (3.2).

We will run a test for each estimated distribution as F ∗(x).

(1) The Kolmogorov-Smirnov (K-S) test (Kolmogorov, 1933). The test statistic is
given by,

T = sup
x
|F ∗(x)− Sn(x)| , −∞ < x <∞, (4.3 )

where Sn(x) is the empirical distribution function.

(2) Anderson and Darling (A-D) (1952). This test introduced a measure of "dis-
tance" between the empirical distribution Sn(x) and the proposed c.d.f. F ∗(x) by using
a metric function space,

W 2
n = n

∞Z
−∞

[Sn(x)− F ∗(x)]2 ψ (F ∗(x)) dF, where ψ(u) =
1

u(1− u)
. (4.4 )
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(3) Cramer-von Mises (C-v-M) (Anderson and Darling, 1952). This test proposed
using ψ(u) = 1 in (4.2). Thus under H0 the test statistic is given by

nω2 =
1

12n
+

nX
j=1

µ
uj −

2j − 1
2n

¶2
. (4.5 )

Table 4.3 Goodness of Fit Tests n = 49 for Hurricane Example

Goodness-of-Fit Tests
Method K-S Test A-D Test C-v-M Test

Test Statistic p-value Test Statistic p-value Test Statistic p-value

Pareto(Hill) 0.1340 0.2900 2.7141 0.0383 0.2057 0.2568
MLE(Aban) 0.0948 0.6282 2.3126 0.0622 0.0964 0.6030
Moment 0.1053 0.5308 2.3672 0.0582 0.1095 0.5402
KDE 0.0689 0.8408 0.2009 0.9902 0.0177 0.9987

Table 4.3 gives the values of the test statistics and p-value of each of three goodness-
of fit tests. We note that the KDE method has the smallest test statistics (i.e., smallest
errors) and the largest p-values in each of the three tests respectively (we highlighted
the values as bold in the table). This implies the cluster truncated Pareto distribution
has the best fitting to the hurricane data.

Table 4.4 Errors of Goodness of Fit Tests n = 49 for Hurricane Example

Goodness-of-Fit Tests
Method Absolute Error (AE) Integrated Error (IE)

r = 49 r = 18 r = 10 r = 49 r = 18 r = 10

Pareto(Hill) 0.1340 0.0584 0.0584 0.0032 0.0027 0.0027
MLE(Aban) 0.0948 0.0839 0.0832 0.0020 0.0018 0.0016
Moment 0.1053 0.0738 0.0737 0.0019 0.0015 0.0013
KDE 0.0689 0.0326 0.0172 0.0005 0.0003 0.0003

In Table 4.4, we took the r largest data in the sample. The absolute error and integrated
error are defined by

AE = sup
x
|F ∗(x)− Sn(x)| , −∞ < x <∞, (4.6 )

IE =
1

(Xn:n −Xn−r+1:n)

"Z Xn,n

Xn−r+1,n

(Sn(x)− F ∗(x))2dx

#1/2
. (4.7 )
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Table 4.4 gives absolute errors and integrated errors of the four estimation methods
in r = 49, 18, 10 cases. We note that the KDE method has the smallest errors in all 6
cases (we highlighted the values as bold in the table). This implies the nonparametric
kernel distribution estimator (KDE) method is superior in fitting the hurricane data
compared with the other existing methods.
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