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Abstract 
 
In statistical practice, rectangular tables of numeric data are commonplace, and are 
often analyzed using dimension reduction methods like the singular value 
decomposition (SVD) and its close cousin, principal component analysis (PCA). This 
analysis produces score and loading matrices representing the rows and the columns 
of the original table and these matrices may be used for both prediction purposes and 
to gain structural understanding of the data. In some situations, the data entries are 
necessarily non-negative and so the matrix factors meant to represent them should 
arguably also contain only non-negative elements. This thinking, and the desire for 
parsimony, underlies such techniques as rotating factors in a search for “simple 
structure.” The recent development of non-negative matrix factorization, or NMF, is 
an attractive alternative. Rather than attempt to transform a loading or score matrix of 
mixed signs into one with only non-negative elements, it directly seeks matrix factors 
containing only non-negative elements. The resulting factorization often leads to 
substantial improvements in interpretability of the factors. We illustrate this potential 
by using synthetic examples.  
 
KEY WORDS: Principal component analysis, PCA, Singular value decomposition, SVD, 
Non-negative matrix factorization, NMF, latent dimensions.  
 

 
1. INTRODUCTION 

Rectangular tables of numeric data are wide-spread in statistical practice – for example in 
psychometrics where n subjects are scored on p items in a test; in microarrays where n 
tissues are tested with p probes; in the geosciences where p constituents are measured in n 
strata. Each of these settings gives rise to an n × p data matrix X. Whereas in the past, p 
was typically small, many emerging areas give rise to data matrices where n and/or p may 
be in the thousands or tens of thousands, challenging traditional multivariate analysis 
approaches.  
 
A lower-rank matrix approximation data matrix X is 

X = LRT + E 

where the left matrix L has n rows and k columns, the right matrix R has p rows and k 
columns, and E is a matrix of “errors”. Superscript T indicates the transpose of a matrix. 
Each row of L represents one “case”; each row of R represents one “variable” and the k 
columns of both L and R represent k underlying latent variables or dimensions that relate 

JSM 2013 - Section on Statistical Learning and Data Mining

2873



the rows and the columns of X. The hope of this approximation is that a k value much 
smaller than n and p will nevertheless be enough to give a small E and so to capture 
nearly all the structure in X. Then the data matrix X itself can be discarded, and 
interpretation focused on L to explicate relationships between the cases, and on R to 
explicate those between the variables.  
 
The most familiar way of getting a lower-rank approximation (Greenacre and Underhill 
1982) is through the Singular Value Decomposition, or SVD, and its close cousin 
Principal Component Analysis, or PCA. Starting with the exact spectral decomposition of 
X 
 X = A Λ BT 

where A are the row singular vectors, B the column singular vectors, and Λ a diagonal 
matrix of the singular values, defining  
 L = AΛr;   R = BΛ1-r  
for any selected r gives an exact representation X = LRT. 

 

The eigenvalues of principal component analysis are the squares of the singular values in 
Λ and PCA’s eigenvectors are the column singular vectors. Retaining just the first k 
columns of L and R of the exact spectral decomposition then gives a lower rank 
approximation to X. This approximation is optimal in a least squares sense– there is no 
other approximation using k latent variables that more accurately represents X as 
measured by sum of squared deviations.    
 
Factor analysis (FA), a related method, also relies on the equation X = LRT + E.  
However, unlike the setting with the SVD, the E matrix of FA is modeled as having 
independent normal elements, conceptually making FA a quite different methodology 
from the SVD, despite their superficial similarity.   
 
The representation of the approximation given by the SVD is not unique. If we retain the 
first k columns of L  and R and let C be any non-singular k × k matrix, replacing L by L* 
= LC and R by R*  = R(CT)-1   or more compactly R*  = RC-T  gives an approximation  

X ≈ L*R*T  = (LC) (RC-T) = LRT 
This factorization gives identical approximations to all elements of X, but uses left and 
right factors L* and R* that may look very different from L and R. This fact underlies the 
variety of methods used for example in factor analysis to rotate a hard-to-interpret loading 
matrix to one whose elements are easier to interpret, as summarized in the mantra of 
“simple structure.” 
 
When performing a PCA or a SVD, it is common to center the columns of X by 
subtracting a column (or sometimes a global) mean from each element of X, however this 
centering is not central to the methods.  Frequently, leaving the data uncentered and 
adding one latent dimension to the fit to accommodate the mean leads to essentially the 
same structure as is obtained from the centered data, as will be illustrated later in this 
paper. 
  
In some settings X consists of non-negative elements, apart, perhaps, from a few negative 
elements resulting from measurement error.  For example intensities in microarrays, 
chemical compositions in geology and biological chemistry, and test scores in 
psychometrics are usually non-negative. When this is the case, it is generally desirable to 
use matrix approximations 
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X ≈ LRT 
whose L and R factors are also comprised of non-negative numbers. This will greatly 
simplify interpretation, since negative values in L and R are hard to make sense of.  In 
psychometric testing, for example, a negative loading in the R matrix would imply that 
item was negatively associated with the latent aptitude being tested which, unless the item 
was designed with a reversed scale, would make no sense.  But the SVD approximation 
does not give non-negative factors L and R – the orthogonality of the successive singular 
vectors makes this impossible except in the degenerate case that the singular vectors are 
some permutation of the identity matrix. This challenge leads to the rotation methods that 
take a loading matrix with mixed signs and attempt to find a non-singular transformation 
that will give an equally explanatory matrix consisting of more interpretable numbers – 
for example with few or no negative elements. But this post-processing of a SVD 
approximation to something even approximating non-negativity is a daunting task.   
 
Note that if X is non-negative, mean-centering will create a matrix of mixed sign, and so 
mean centering is not performed when one is interested in non-negative factorization.  An 
alternative method that will remove column effects but not destroy the non-negativity is to 
subtract the column minimum from all elements of each column.  However this approach 
is not widely used. 
 
Focusing on the issue of identifying the underlying structure, suppose that a matrix X that 
is non-negative, except perhaps for some random noise, is in fact generated by two non-
negative k-column matrices: 

X = LRT + E 
To uncover the generating mechanism, we would like to recover L and R, the generating 
vector pairs. The fact that the SVD is a minimum-variance approximation of any given 
rank is a mixed blessing, as it can lead to multiple mechanisms being conflated in a single 
latent variable. Suppose that we are looking at a data matrix of subjects and their gene 
expression data and we have a diagnosis for each person: diseased or not. Now, we are 
given one named disease, but there may be multiple etiologies that lead to the same 
symptoms and hence the one named disease/condition; metabolic syndrome is a good 
current example. It is quite possible that any of several etiologies might lead to the same 
clinical picture, for instance, overweight especially in the upper body, insulin resistance, 
metabolic abnormalities, clinical failure, or other clinical indications. SVD will tend to 
conflate the different etiologies, putting all of them into the first component with positive 
coefficients, and then differentiating them in subsequent components by giving one 
etiology positive coefficients and another one negative coefficients. While the true nature 
of the different etiologies can in principle be recovered by rotating the different 
components to separate them out, this can be an uncertain and tedious operation.  
 
Non-negative matrix factorization, (Lee and Seung 1999), where the elements of the 
factoring matrices are also non-negative, addresses this problem head-on. Unlike the 
SVD, NMF is not able to conflate the mechanisms in different components with mixed 
signs, and will instead tend to identify each of the syndromes with its own component, 
making interpretation transparent.  
 
Not all data matrices are conceptually generated by the product of non-negative matrices 
plus random noise.  We have mentioned many examples where this is the case, but there 
are many others where the signs in X are genuinely mixed; when this is the case, NMF 
would not be a good choice for factorization and could lead to seriously misleading 
results. 
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Over the years, there has been accumulating evidence from many different fields that 
NMF is capable of finding parts - see the NMF review paper of Devarajan (2008). All 
this evidence raises a question of why and when NMF is much better at finding parts than, 
say, principal components analysis.   
 
The paper by Donoho and Stodden (2003) (D&S) considers the "why" question, 
producing a set of rules describing “Separable Factorial Articulation Families”, and shows 
that if these rules are satisfied there is a unique exact non-negative factorization.  These 
are sufficient, but not necessary conditions.   
 
An additional issue is that D&S’s sufficient conditions relate to the underlying true 
generating model, whereas all an analyst typically has is a data matrix, whose underlying 
generating model is unknown, and for whom the sufficient conditions can not be checked.  
This uncertainty may be tolerable for the data analyst who can fit the NMF model and 
decide whether it makes sense in subject-matter terms, but it is an issue one would like to 
see resolved. 
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In this paper, we provide some clean synthetic examples and counter-examples that 
contrast SVD and NMF. Finally we make some summary points in a discussion and point 
out some intriguing open questions about NMF. 
 

2. METHODS 
2.1 Singular Value Decomposition via Alternating Least Squares (ALS) 
Good (1969) points out that the SVD of a matrix is central to the computing of many 
statistical methods. He gives the alternating least squares algorithm for computing a SVD 
in a few sentences. See Outbox 1. Modifications to ALS by Gabriel and Zamir (1979) 
and by Liu et al. (2003) can be used to compute an analog of SVD that is both robust to 
outliers and accommodates missing information.  Common practice in fitting the SVD is 
to center the columns by subtracting their means.  This is not an essential feature of the 
SVD, and so to better highlight the similarities and differences of the SVD and NMF, we 
will not center the data in what follows.  
 
The ALS algorithm is a key to understanding both how to obtain a good approximation to 
a given data matrix and to why, in the case of SVD, that the approximation can lead to 
confusion. In addition to mixing generating vectors, which restricts interpretability, SVD 
can pull in noise as if it were a feature (Faber et al., 1995). This is in addition to the 
interpretability problems of having a possibly user-unfriendly basis in a k-dimension space 
that can be transformed in many ways.  
 
The mean centering is described as optional. If omitted, the first singular triplet (left and 
right singular vector and singular value) tends to accommodate the data location and then 
the more interesting structure emerges from the second singular triplet on, so 
operationally, centering tends to remove one component which captures the general mean. 
Due to the orthogonality issue, SVD produces factors that include both positive and 
negative elements.   
 

2.2 Non-negative matrix 
factorization 
The ALS algorithm for the SVD 
described above finds the latent 
dimensions sequentially, one at a 
time. Lee and Seung (1999, 2001) 
describe an algorithm for NMF based 
on multiplicative update rules, but 
fitting all k terms of the factorization 
at the same time. The algorithm does 
not require that all elements of the 
data matrix X be non-negative, and so 
can accommodate the situation that 
the original matrix X contains a few 
negative elements.  As long as these 
negatives are few and moderate, the 
factor matrices will contain only non-
negative elements. See Outbox 2.  
Suggestions for the necessary initial 
values are given later. 
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3. SYNTHETIC EXAMPLES 
In all of the synthetic examples to follow, the data matrices were constructed by matrix 
multiplication of left and right generating vectors, X=LRT. The left vectors are termed 
weighting vectors, and the right vectors are called spectral vectors. The elements of both 
generating matrices L and R are either zero or uniformly distributed, U(1,2). A small, 
normally-distributed noise with mean 0 and standard deviation 0.1 was added to each cell. 
The generating vectors and the data matrices are presented visually as heatmaps. Our goal 
will be to retrieve the generating vectors of the synthesized matrices. Thus, for all 
synthetic examples we will compute SVD and NMF on the original, uncentered data 
matrices with their known rank. The choice of the factorization rank, which in real 
situations is unknown, will be discussed briefely in Section 4. 
 
3.1 Orthogonal generating vectors 
There are four generating left and right vectors. The vectors are orthogonal (Figure 1). 
This is as simple a situation as imaginable, so matrix factorization should return the 
generating vectors. 
 

 

 

 
Figure 1: Simple synthetic example with four generating left 
and right vectors. The vectors are orthogonal. 
 
We computed the SVD and NMF on this synthetic dataset. SVD recovered four vector 
pairs with singular values of 25.2, 24.7, 23.3 and 23.1. We also computed the NMF with 
four vector pairs. For this fully orthogonal example, both SVD and NMF (data not shown) 
recover the correct left and right generating vectors. 
 
3.2 Realistic synthetic mixture 
We now turn to another synthetic but more realistic example. There are two right and left 
generating vectors, but there are four kinds of individuals (Figure 2). Group 1 individuals 
are normal controls. Groups 2, 3 and 4 are diseased, but although there is but one named 
disease, say diabetes, there are two different etiologies, E1 and E2. Groups 2 and 3 suffer 
from one of these two “pure” etiologies. The unfortunate people in Group 4 suffer from 
both etiologies. Finally, there are a number of genes that do not participate in either 
etiology. These non-participatory columns add a “real” non-participatory noise 
component. There are two right generating vectors, each having ten active genes, one set 
for etiology 1 and the other for etiology 2. There are 20 inactive genes. A small normal 
noise with mean 0 and standard deviation 0.1 was added to each cell in the table. 
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Figure 2: More realistic synthetic example. Two generating 
vectors lead to four kinds of individuals - normal controls and 
three disease groups with two etiologies. 

Although synthetic, this model is based on a real situation. The Pima Indians in Arizona 
have a very high incidence of diabetes (Baier and Hanson 2004). The genetics is 
complicated and it is still not well understood, but it is believed to involve multiple 
mechanisms. Furthermore, it is believed that some people have more than one mechanism; 
therefore, that situation would correspond to this synthetic example.  
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Figure 3: Two dimensions capture nearly all variance. Score plot 
shows four groups, but is oriented unhelpfully. “0” are disease free; 
“+” are Etiology 1; “◊” are Etiology 2; “x” have both diseases. 
 

3.2.1 SVD analysis 
How well does SVD treat this data set? Two vector pairs capture nearly all of the variance 
in the matrix, 99.5%, with singular values of 45 and 27.8. 
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The score plot clearly shows the four groups, but it has oriented the groups along a non-
diseased/diseased principal axis. Component 2 contrasts the two etiologies, but does not 
provide useful information about how they differ (Figure 3). 
 
It is a simple fact that the two generating vector pairs are equally important, yet SVD has 
very unequal singular values. SVD’s first component (Figure 4) simply contrasts all 
affected and non-affected samples with no clues to the deeper structure of the data.  Its 
second component does provide the additional insight on the structure of the data, but 
only by rotating the two components is there a clear picture of the two mechanisms.  
 

 
 Figure 4: Heatmaps of SVD left and right singular vectors.  
Generating vectors are not recovered. 
 
Plots of the scores, elements of the left factoring vectors, correctly show four distinct 
groups, however, assessing the nature of the data set is complicated. Singular vector pair 1 
contrasts diseased versus non-diseased and singular vector pair 2 seems to contrast one 
etiology with the other, Groups 2 and 3, but the contrast is, at best, not clear.    
 
3.2.2 NMF analysis 
NMF analysis has no such difficulties of interpretation. The left vectors clearly show that 
there are four types of people. The right vectors show that there are two etiologies (Figure 
5). This exactly matches the generating mechanism. Regarding variance explained, SVD 
is a least squares method and gives the minimum residual variance possible from any k 
component approximation. NMF, as we are using it here, is also a least-squares method, 
but with non-negativity constraints, and so its residual variance is necessarily at least as 
large as that of a SVD with the same number of components.  In this data set, NMF 
recovers 99.5% of the variance, almost as high as the SVD and providing an indication 
that the non-negativity constrained NMF solution is an adequate fit to the data.  
 

 
Figure 5:  Heatmaps of the left and right vectors by NMF, showing perfect agreement 
with the real generating vectors. 
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The NMF score plot (Figure 6) gives a very satisfying 2x2 factorial layout. Controls are 
at the origin, the single etiologies are on each axis and the double etiologies are just where 
they should be.  
 

 

1
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3

4

Group

 
Figure 6: NMF score plot, showing 2x2 factorial layout with 
controls at the origin, single etiologies along each axis, and double 
etiologies loading on both axes. 
 
 

 
Figure 7:   Even more realistic synthetic example. Two generating vectors lead to four 
kinds of individuals - normal controls and three disease groups with two etiologies. A 
third generating vector leads to a group of genes which are activated in multiple disease 
groups, e.g. inflammation genes, including both etiologies of the disease at issue. 
 
3.3 Extended realistic mixture 
We extend our realistic example by adding a set of 10 genes that are activated in either or 
both etiologies E1 and E2 (Figure 7). This situation can arise with a number of medical 
conditions. When a person gets sick from any of a number of diseases, multiple genes – 
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for example for inflammation – are turned on. These general response genes are not 
specific to the disease at issue and can cause great confusion as they can be taken as 
markers for the disease. 
 
Three SVD vector pairs capture nearly all of the variance in the matrix, 99.7%, with 
singular values of 60.8, 26.2 and 13.1. NMF also recovers 99.7% of the variance.  
However, now that "inflammation genes" are turned on for all groups except the control 
group, NMF does not find the groups well and has a “ghost” in one of the NMF vectors 
(Figure 8). This clearly illustrates how deviations from D&S’s sufficient conditions can 
not always be surmounted, even with a SVD-based initialization scheme. 
 

 
Figure 8:  Heatmaps of NMF left and right singular vectors. The 
generating vectors are not recovered. Note the “ghost” of the third 
set of genes in the first right NMF vector. 

 
4. DISCUSSION 

The SVD and NMF are alternative ways to factor a data matrix. The major properties of 
SVD and PCA are well-known. The data matrix is decomposed into left (score) and right 
(loading) vector pairs. Adding more vector pairs allows better and better approximation to 
the elements of X. Conceptually the NMF is nothing more or less than an SVD in which 
negative elements in the left or the right singular vectors are prohibited. As such, in 
settings where the data matrix X consists of non-negative elements, the NMF factorization 
is likely to be more interpretable, and to more plausibly represent an actual generating 
mechanism. SVD can be looked at as optimizing the prediction of the elements of X, 
whereas NMF is attempting to explain the data via L and R, along the lines of Shmueli G. 
(2010), to predict or to explain. 
 
As the left and right factors of the NMF are conceptual analogs of the left and right 
singular vectors in a SVD, they may be used for all the same purposes – for example cases 
may be clustered using the rows of L, and variables may be interpreted using the rows of 
R.  
 
A graphic illustration of the power of the NMF method is in the dramatic picture in Lee 
and Seung (1999), showing the decomposition of photographs of faces into ears, eyes, 
nose, etc. by the successive columns of the NMF. Other papers have used such terms as 
“meta genes” to describe groups of genes that group together (Brunet et al. 2004). 
Clearly the utility of NMF is in the direction of interpretation. The elements of the 
factoring vectors lead to an interpretation of how the internal components of X are 
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combined in each sample. In the case of genes, sets of genes might be up or down 
regulated together. In the case of metabolites, molecules in a pathway might be up or 
down regulated together.  
 
Mixtures deserve serious mention. NMF appears to be able to decompose mixtures into 
their component parts. The earliest chemistry example of what is effectively NMF that we 
have found is Lawton and Sylvestre (1971). There, on page 628, equation (31) is the 
separability rule (R2) of D&S in the context of non-binary, spectro photometric curves 
(but for k=2). In psychometrics, NMF may prove a useful tool for resolving test data 
matrices into factor-like ability scores and matching subject loadings. In a more 
speculative vein for medical examples, vectors of R might correspond to different 
etiologies. For some people the disease may involve only one of the etiologies (i.e. right 
vectors), for other people it may involve multiple etiologies.  
 
The selection of the number of components k is a decision that has to be made. When you 
do a SVD, each new pair of singular vectors is orthogonal to all the vectors that went 
before. If you overfit by choosing too large a rank, you will be trying to interpret pairs of 
junk coefficient vectors generated by noise, a process with high potential for misleading 
conclusions. A common approach is to make a scree plot, a plot of the series of successive 
eigenvalues against the integers. Conceptually, the scree plot drops steeply while the terms 
are still capturing “structure” and then flattens once they are capturing “noise.”  Guided 
by this idea the analyst makes an “arts and crafts” judgment call on the value of k, the 
number of signal components. The scree plot is open to many objections: like the fact that 
its shape can depend a lot on whether you plot on a natural, a square or a log scale. While 
these objections are legitimate, the scree plot is still widely used. 
 
Unlike the SVD, the NMF with k components is not a concatenation of k successive 
optimal terms, but also seeks a best rank-k approximation to the original data matrix 
within the limitations that its left and right factors have only non-negative elements. So to 
the extent that NMF is finding a good rank-k approximation, it should be close to a linear 
transformation of the SVD. However, NMF does not have an orthogonality constraint, and 
so it is able to create a new dimension by, say, copying one of the row vectors and 
splitting the corresponding column vector into two parts. This has much less potential for 
confusion than does an over fitted SVD component. So getting k just right should not be 
as critical as with SVD. 
 
Questions remain over how to pick the dimensionality of a NMF, and of numeric 
diagnostics that can be applied to X to decide whether a NMF is likely to succeed.  By 
fitting a NMF and SVD of the same dimension to a data set and comparing their variance 
explained, the user will be alerted to the situation where the non-negativity constraints are 
not supported, but this still leaves open the possibility that some transformation of the left 
and right factors would lead to better interpretation.  Also of concern is that, because of 
non-convexity, fitting algorithms are not guaranteed to converge to the global optimum, 
but are to some degree at the mercy of their initialization.  These are all valuable avenues 
for further research. 
 
Data Sets and Software 
The synthetic data sets and SAS JMP scripts used in this paper can be downloaded from 
www.niss.org/irMF. Orange is an open source and free statistical analysis system based on 
Python, http://orange.biolab.si/. There is a module, Orange-NMF, for Orange that deals 
with various aspects of non-negative matrix factorization, http://orange.biolab.si/addons/.  
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