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Abstract
Large entry-level courses are commonplace at public 2- and 4-year institutions of higher education
(IHEs) across the United States. Low pass rates in these entry-level courses, coupled with tight
budgets, have put pressure on IHEs to look for ways to teach more students more effectively at a
lower cost. Efforts to improve student outcomes in such courses are often called “course redesigns.”
The difficulty arises in trying to determine the impact of a particular course redesign; true random-
controlled trials are expensive and time-consuming, and few IHEs have the resources or patience to
implement them. As a result, almost all evaluations of efforts to improve student success at scale
rely on observational studies. At the same time, standard multi-level models may be inadequate
to extract meaningful information from the complex and messy sets of student data available to
evaluators because they throw away information by treating all passing grades equally. We propose
a new Bayesian approach that keeps all grading information: a Partially Ordered Multinomial Probit
Model with random effects fit using a Markov Chain Monte Carlo algorithm, and a Logit model
can be fit with importance sampling. Simulation studies show that the Bayesian Partially Ordered
Probit/Logit Models work well, and the parameter estimation is precise in large samples. We also
compared this model with standard models considering Mean Squared Error and the area under the
Receiver Operating Characteristic (ROC) curve.

Key Words: Markov Chain Monte Carlo, latent variable models, multilevel logistic regression,
online learning, model diagnostics

1. Introduction

Multilevel models (i.e., random effect or hierarchical models) have become a popular
choice in applied statistics. Raudenbush (1988) reviewed statistical methods in educational
statistics and concluded that multilevel linear models were a prominent theme in modeling
education data. Kaplan and Elliott (1997) summarized that the application of multilevel lin-
ear regression methods had resulted in extraordinary advances in school process research
since multilevel linear models account for the clustered sampling schemes in education
research. Their popularity has only increased over time.

Common models used for categorical response data are probit/logit models (Wong and
Mason, 1985; Stiratelli et al., 1984) and ordered probit/logit models (Schaafsma and Osoba,
1994; Fullerton, 2009; Hedeker, 2008). These approaches enable the researcher to model
binary or ordinally scaled dependent variables with one or more independent variables.
The response data for ordered probit/logit models has to be ordered with equal distance
between each point, for example, a 5-point Likert scale. All of these models can be easily
fit in software packages such as SAS (PROC GLIMMIX, NLMIXED, and LOGIT among
others) and R (nlme and polr libraries among others). Maximum likelihood estimation is
primarily used by these procedures.
∗sonksen@stat.unm.edu
†xueqin@unm.edu

JSM 2013 - Section on Bayesian Statistical Science

2850



However, we often have data that does not fit into one of these scenarios. For example,
assume that we observe students’ letter grade with possible values: A, B, C, D, F and CR
(Pass with Credit), NC (Fail with No Credit). This variable is partially ordered because,
while an A is clearly greater than a D, a CR is not necessarily greater or less than an A, B,
or C. In order to fit a multilevel probit/logit model to this type of data, we must collapse
all passing grades together and all failing grades together. Similarly, to fit an ordered pro-
bit/logit model we must only consider the fully ordered letter grade (A-F). Both of these
approaches result in a loss of information by either trucation or exclusion.

For computational reasons, we consider Bayesian models in this work. Albert and Chib
(1993) first brought a Bayesian method using a latent variable to model dichotomous and
polychotomous ordered and unordered response data. This paper expands the model of
Albert and Chib (1993) to partially ordered response data with random effects in a fully
Bayesian approach. We also extend the results to a logit model using the idea of O’Brien
and Dunson (2004). We applied this model to an example of a course redesign evaluation
at a large public university, which we will call the University, in the southwestern United
States.

1.1 Motivating Example

There are a number of large-enrollment, entry-level courses at the University that students
are placed into, and must pass, in order to take subsequent courses or satisfy University
core curriculum requirements. The course undergoing a redesign that we evaluated in this
study, which we will call the Course, enrolls more than 2500 students each year and has
a historical failure rate that is over 50%. Prior to the Fall Semester 2012, all sections of
the Course had 60 students in which each instructor chose the method of instruction. His-
torically, most instructors chose a traditional lecture model, although some instructors had
tried different approaches to improve student performance. No formal evaluation on any of
these efforts was ever undertaken.

In the Fall Semester of 2012, the University ran two pilot sections of the Course that
used computer-based instruction, which we will call the Redesigned Course. An important
component of the redesign for this analysis is that students were required to show mastery
of individual topics before moving on to the next topic, and students who did not show
mastery of all required topics by the end of the term were given a grade of Incomplete and
were allowed to continue working without re-enrolling in the course the following semester.
A total of 216 students (about 16.5%) enrolled in the pilot of the Redesigned Course, and
1,092 students enrolled in a standard section of the Course. The research team first set out
to answer the following questions:

1. What is the impact of the Course redesign on student success?

Available resources and time pressure did not permit the University to evaluate the pi-
lot Redesigned Course using a true experimental paradigm. Thus, the only available
option was to do an observational study that models student success using student and
instructor covariates to predict students’ course grades. Additionally, a large percent-
age of students enrolled in the pilot course (54.6%) received a grade of Incomplete,
and so it was not possible to determine whether they would eventually be successful
or not at the time of the study. In the process of trying to answer the first question,
the research team came to a second question:

2. What are good model structures for analyzing this kind of data?
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1.2 Data Description

The data was obtained from the University’s grade repository. The original data consists
of information for 1308 students enrolled in the Course during the Fall Semester of 2012.
We dropped variables that were not relevant to our research questions. The cleaned and de-
identified data contains the following variables: a math achievement score that combines
normalized SAT and ACT scores (different students took different standardized tests, so
it was necessary to combine them into a single variable), course credit-hour load for Fall
2012, Fall 2012 semester GPA (excluding grades from the course), high school attended,
high school graduation year, gender, race/ethnicity, and Course instructor. The instructor
variable was treated as a random effect in all models described here because we are inter-
ested in comparing students’ performance in the Redesigned Course to that of students in
the standard version of the Course, and both sections of the Redesigned Course were taught
by the same instructor in the Fall Semester of 2012. Our response variable is the students’
letter grades (Yi): A, B, C, D (with +/-), F , CR (Passing), NC (Failing), W (Withdrawal),
I (Incomplete), AUD (Auditing). The remaining variables were assumed to be fixed inde-
pendent covariates in all models considered in this work.

Choosing a model for all of this data is complicated because the possible values for
Yi are letter grades that are not totally ordered. The data is discrete with more than two
categories, but has additional structure than a standard multinomial likelihood model can
adequately handle. Many authors who have contributed to this literature discarded infor-
mation in the data in order to use a standard model such as a multilevel (possibly ordered)
probit/logit models.

1.3 Limitations of Common Models

One option for modeling partially ordered data such as letter grades is a multilevel logistic
model (Wong and Mason, 1985; Gilmour et al., 1985; Gelman and Hill, 2007), in which,

Yi|pi
ind∼ Bern(pi)

logit(pi) = Xi
′β +Zi

′τ i = 1, 2, . . . , n.
τj |σ2

τ ∼ N(0, σ2
τ ) j = 1, 2, . . . , J.

Yi is a binary response variable.Xi andZi are fixed and random design vectors for student
i; Xi contains the student’s demographic and achievement information and Zi indicates
which instructor the student had. β = (β1, β2, . . . , βk)′ is a vector of unknown fixed effects
and τ = (τ1, τ2, . . . , τJ)′ is the vector of unknown instructor random effects. σ2

τ is the
variance of the random effect τ , and n is the number of students, while k is the number
of covariates and J is the number of instructors. A probit model can be used by simply
replacing the logit function with the inverse standard normal cdf.

With this model, we are forced to make our letter grade response variable into a binary
variable (pass or fail). This means that the passing letter grades (A+, A, A- ,B+, B, B-, C+,
C, CR) are treated equally. Similarly, the failing letter grades (C-, D+, D, D-, F, NC) are
also treated equally. It is important to note that this model cannot describe student success
precisely. Suppose there are two classes of 20 students each; in one class, 10 students passed
the course with an A and 10 failed with a F, while 10 students in the other class passed the
course with a C and 10 failed with a F. The pass rate is the same between the two classes,
50%, but the student performance is actually different. Another issue in our data is that
many students in the Redesigned Course (54.6%) received an Incomplete at the end of the
term. How should we interpret these Incompletes: as a passing letter grade? As a failing
letter grade? These students had not yet completed all of the course topics, but they were
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still working. Both options are extreme because this “go at your own pace” course can be
completed over several semesters; there is simply not enough information available to make
this determination a priori. We could leave these students out of the study, but eliminating
over half of our treatment group would be highly problematic.

Another option for modeling this type of data is to use an ordered multinomial logit
model, which enables us to model ordinally scaled or unordered nominal dependent vari-
ables with independent variables. For early descriptions of ordered logit models see McK-
elvey and Zavoina (1975), McCullagh (1980), and Winship and Mare (1984). An ordered
multinomial logit model is an extension of the above logistic models, but the response
data can have more than two categories. Ordered multinomial logit models are widely
used in economics, education and psychology. Common examples of ordered categories
are the Likert scale “strongly dissatisfied, dissatisfied, neutral, satisfied, strongly satisfied”
or frequency “Always, frequently, sometimes, rarely, never”, income “0−10K/year, 10−
20K/year, 20− 30K/year, 30− 60K/year,> 60K/year". With this model, the depen-
dent variable has to include ordered cases with equal distance between each point. While
some of our response data are ordered (A,B,C,D (with +/-s), F ), some are not ordered
and overlap (CR,NC,W, I,AUD). Note that NC,W, I are not necessarily better than D
or F, and CR is not necessarily better than A, B, or C. Thus, only part of our data qualifies
for the ordered multinomial logit model, and we would have to remove observations with
responses CR,NC,W, I,AUD to use these models. This would result in a loss of infor-
mation. Again, a probit version of this model can be easily considered by changing the link
function.

In this paper, we propose two new models, the Bayesian Partially Ordered Multinomial
Probit and Logit Models, which can accommodate data which have some ordering but
are not fully ordered. This rest of this paper is organized as follows. Section 2 describes
the new model we employed in this study. Section 3 presents computational strategies for
fitting the models. The advantages of utilizing the new models are summarized in Section
4. We conduct a simulation study in Section 5. Section 6 applies the new models to our
Redesigned Course evaluation at the University.

2. A Description of Our Proposed Models

Assume that each student has a latent grade, Si, a numerical score for student i. If we knew
the score, a reasonable model would be a hierarchical linear model:

Si = X ′iβ +Z ′iτ + εi (1)

With

εi|σ2
ε

iid∼ N(0, σ2
ε )

τj |σ2
τ

iid∼ N(µτ , σ2
τ )

for i = 1, 2, . . . , n and j = 1, 2, . . . , J . Where, Xi and Zi are the fixed and random
design vectors, respectively, β = (β1, β2, . . . , βk)′ is a vector of unknown fixed effects,
and τ = (τ1, τ2, . . . , τJ)′ is the vector of unknown instructor random effects. We denote
the sample size by n, the number of fixed effects by k, and the number of instructors by J .

In our example, we do not know Si. However, our observed letter grade Yi gives us
information on the latent score Si. For example, if student i passed, we know that Si > 73
if 73 is the cut-off point for passing the course.

JSM 2013 - Section on Bayesian Statistical Science

2853



Albert and Chib (1993) examined the situation where Yi is either a pass or fail with a
Bayesian probit model. Note that, if we assume εi

iid∼ N(0, 1)

P (Si > 73|β, τ ) = 1− Φ(73−Xiβ − Ziτ) = Φ(−(73−Xiβ − Ziτ)).

Which gives us a probit-style probability. For the case of ordered Yi (for example A, B, C,
D, F), Albert and Chib (1993) assumed a latent continuous random variable distributed as
N(Xβ, 1), and the observed categorical response Yi = j if γj−1 < Si ≤ γj , where the bin
boundaries γ1, ..., γJ−1 are unknown, and γ0 = −∞, γJ = ∞ are defined. So Si|β, γ, Y
is truncated normal. This forms a Bayesian ordered probit model.

In our case, including CR, NC, I, W, AUD as possible letter grades, we can only par-
tially order the responses. However, each possible grade does yield a range of possible
values of Si, for example, we can view Yi = A+ ⇒ 97 ≤ Si, Yi = A− ⇒ 93 ≤
Si < 97, . . . Yi = F ⇒ 0 ≤ Si < 60. For the unorderable grades, we assume that
Yi = CR ⇒ 73 ≤ Si, Yi = NC ⇒ 0 ≤ Si < 73, Yi = W ⇒ 0 ≤ Si < 73,
Yi = I ⇒ 0 ≤ Si ≤ 100, and Yi = AUD ⇒ 0 ≤ Si ≤ 100. This assumes that we have
little knowledge what the course score of a student receiving an Incomplete, Withdrawal,
or Audit was at the time he or she left the course. See Table 1 for these ranges based on
the Course grading scale. The key purpose of this formulation is that we know the con-
ditional distribution of the latent data Si conditional on the parameters (β, τ , σ2

τ , σ
2
ε ) and

letter grade (Yi) has a truncated normal distribution:

Si|β, σ2
ε , τ , Yi, σ

2
τ
ind∼ TN(Xiβ +Ziτ ,σ

2
ε , LYi , UYi).

Let LYi denote the lower bound and UYi denote the upper bound of Si given student i
received letter grade Yi. Then, Si is truncated on the boundaries of each letter scale, and we
know that Si ∈ (LYi , UYi). Table 1 displays the boundaries of course scores corresponding
to each letter grade. If a student earned an A+, his course score is between 97 and 100, an
A is between 93 and 97, . . . , and an F is between 0 to 60. We used 73 as the cutoff passing
score because a C- is not considered a passing grade for this Course, so the score for CR is
between 73 and 100, while NC is between 0 and 73. A “W” is treated as a failure for this
work. “I" and “AUD" do not give us much information about students’ score, so “I" and
“AUD" can take any value between 0 and 100.

Letter LYi UYi Letter LYi UYi

Grade Grade
A+ 97 100 D+ 67 70
A 93 97 D 63 67
A- 90 93 D- 60 63
B+ 87 90 F 0 60
B 83 87 CR 73 100
B- 80 83 NC 0 73
C+ 77 80 W 0 73
C 73 77 I 0 100
C- 70 73 AUD 0 100

Table 1: The range of course scores corresponding to each letter grade LYi is the lower
limit score of a letter grade, and UYi is the upper limit of the letter grade.

If a logit style model is desired, O’Brien and Dunson (2004) showed that a simple
change of the distribution of εi results in a logit marginal distribution. The logit link can
be implemented in the model listed in Equation (1) by changing the distribution of ε to
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εi
ind∼ logistic(Xiβ + Ziτ , σ

2
ε ). The predicted probability with the logit link is easier to

interpret than with the probit link.
The key point to take away from this model is that Si is unknown, and we only observe

the partially ordered categorical variable Yi. However, the letter grade a student receives
does provide information on the possible value of Si. With this latent variable represen-
tation, we can not only model ordered and unordered multinomial response data, but also
partially ordered categorical outcomes. The knowledge from the partial ordering is also
preserved. Latently, our model has exactly the form of a linear mixed model with random
effects. We included random effects in the model because the grades of students taught by
the same instructor may be correlated.

In this work, we utilize a Bayesian approach for several reasons. First, the computation
is easier for predictions. Sampling from the posterior allows us to make predictions while
taking into account parameter uncertainty. Second, Bayesian analysis can easily incorporate
truncated distributions and also allows us to use subjective information in our priors.

To complete a Bayesian analysis, we need prior distributions for β, τ , µτ , σ2
τ , and σ2

ε .
For computational convenience, we assumed an improper uniform prior for β, a normal
prior for the instructor random effects τ (conditional on hyperparameters), an improper
uniform prior for the average instructor random effect µτ , and inverse gamma priors for
the variance of the instructor random effects σ2

τ and the latent score error variance σ2
ε .

Symbolicly:

π(β) ∼ 1

τj |µτ , σ2
τ

iid∼ N(µτ , σ2
τ ) for j = 1, 2, . . . , J

π(µτ ) ∝ 1

σ2
τ

iid∼ IG(aτ , bτ )

σ2
ε

iid∼ IG(aε, bε)

where, aτ , bτ , aε, bε are fixed constants. In practice, these may be chosen to reflect subjec-
tive knowledge or prior ignorance. Typical conditional independence is assumed, meaning:

π(β, τ , σ2
τ , σ

2
ε ) = π(β|τ , µτ , σ2

τ , σ
2
ε )π(τ |µτ , σ2

τ , σ
2
ε )π(µτ |σ2

τ , σ
2
ε )π(σ2

τ |σ2
ε )π(σ2

ε )
= π(β)π(τ |µτ , σ2

τ )π(µτ )π(σ2
τ )π(σ2

ε )

for all unobservables. In the examples considered in this work, we set aτ = aε = 300 and
bτ = bε = 6. This was based on our previous experience with course grades.

This implies that our posterior distribution satisfies:

π(S,β, τ , σ2
ε , σ

2
τ |y) ∝ f(S|y,β, τ , σ2

ε )π(β)π(τ |µτ , σ2
τ )π(µτ )π(σ2

ε )π(σ2
τ ).

Using these priors insures that the full conditional distributions are known, which is the
conditional distribution of a parameter given all of the other parameters in the model and
the data; we define a Gibbs sampler utilizing the latent S in Section 3.1.

Indentifiability is always an issue in latent variable models. Unidentifiable models can
lead to issues of convergence when attempting to fit the model (Gelfand and Sahu, 1999)
and interpretation (Dawid, 1979). The existence of an intercept in Equation (1) would pro-
duce an unidentifiable model because the random effects have a non-zero mean. Following
Albert and Chib (1993), the variance of the εi are identifiable because we fixed the bin
boundries. If these boundries are unknown and random, we would need to fix this variance
as well. For a greater discussion of identifiability in latent probit models see Huang and
Bandeen-Roche (2004), Xu and Craig (2009), and Qu et al. (1996).
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3. Computation

Bayesian inference revolves around the posterior distribution, the distribution of the param-
eters given observables. Unfortunately, computing the posterior often involves computing
high dimensional integrals rarely available in a closed form. Instead, it is often easier to
sample from the posterior distribution. Those samples can be used to conduct inference on
parameters and to make predictions. The Gibbs sampler (Geman and Geman, 1984; Tan-
ner and Wong, 1987) is a Markov Chain Monte Carlo (MCMC) method for obtaining a
sequence of random samples from a probability distribution for which direct sampling is
difficult to do. Gibbs sampling constructs a Markov Chain which has stationary distribution
equal to the target posterior distribution. For an introduction to Gibbs sampling see Casella
and George (1992).

3.1 Gibbs Sampler for The Probit Model

Gibbs sampling can work well when it is easy to sample from the full conditional dis-
tributions of each unknown parameter (the distribution of that parameter given all other
parameters and the data). Iteratively sampling from the full conditionals builds the Markov
chain. Following Tanner and Wong (1987) and Albert and Chib (1993), we use the latent
grade as a parameter to facillitate the Gibbs sampler.

Recall that conditional on the observed letter grade yi and all other parameters, Si fol-
lows a truncated normal distribution (the letter grade tells us the range of possible values).
The conjugacy of this model makes the full conditionals of each parameter known. Gener-
ally, β, τ , are µ normal while σ2

τ and σ2
ε are inverse gamma.

A Gibbs Sampler is described as follows: at the tth iteration, each parameter is updated
by sampling from the full conditional distributions:

β(t) ∼ π(β|τ (t−1), µ(t−1)
τ , σ2

τ
(t−1)

, σ2
ε
(t−1)

,y)
τ (t) ∼ π(τ |β(t), µ(t−1)

τ , σ2(t−1)
τ , σε

2(t−1),y)
µ(t)
τ ∼ π(µτ |β(t), τ (t), σ2(t−1)

τ , σ2(t−1)
ε ,y)

σ2(t)
τ ∼ π(σ2

τ |β(t), τ (t), µ(t)
τ , σ

2
τ
(t−1)

, σ2
ε
(t−1)

,y)

σ2(t)
ε ∼ π(σ2

τ |β(t), τ (t), µ(t)
τ , σ

2
τ
(t)
,y)

S(t) ∼ π(S|β(t), τ (t), µ(t)
τ , σ

2
τ
(t)
, σ2

ε
(t)
,y)

The elements of β and τ are updated in blocks to improve mixing. We assessed conver-
gence by monitoring trace plots and the Gelman-Rubin diagnostic (Gelman and Rubin,
1992).

3.2 Importance Sampling for the Logit Model

Recall that in Section 2 we described how a logit model may be implemented by chang-
ing the distribution of S in the model on Equation (2) from Normal with variance σ2

ε to a
logistic distribution with scale parameter σ2

ε . This model is no longer conditionally conju-
gate, ruling out using an easy Gibbs Sampler for model fitting, but similar to O’Brien and
Dunson (2004) we may use importance sampling.

Importance sampling can reduce variance and increase the efficiency of Monte Carlo
algorithms for estimating integrals (Ferrenberg and Swendsen, 1988; Geweke, 1989). In-
stead of drawing from the target distribution, importance sampling samples from an easier
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“importance” distribution. The ratio of the target distribution’s density to the importance
distribution’s density is used as weights to estimate expectations of the target distribution.

In our example, we use the probit model (πprobit) as the importance distribution to
estimate moments of the logit model (πlogit). The importance sampling estimator for the
expected value of g(θ), g(·) is a function of any parameter θ, based on T draws from the
full posterior of the probit model is :

̂Eπlogit
(g(θ)) =

1∑T
i=1wi

T∑
t=1

g(θ(t))wt.

Where the importance weights are defined as:

wt =
πlogit(S(t),β(t), τ (t), µ

(t)
t , σ

2(t)
ε , σ

2(t)
τ |y)

πprobit(S(t),β(t), τ (t), µ
(t)
t , σ

2(t)
ε , σ

2(t)
τ |y)

and θ(t) is the tth draw of that particular parameter from the probit model samples. The
choice of using the probit model as the importance distribution is both because it is practical
(we outlined how to obtain these draws in Section 3.1) and in our experience it works well.

4. Gain in Using the Partial Ordered Probit/Logit Models and Extensions

The latent partially ordered representation described above allows us to model all the grad-
ing information in the data. That means we do not have to throw away information by
forcing the data into a logistic model or ordered probit/logit model. With our Redesigned
Course evaluation project, not only can students’ ordered letter grades A, B, C, D, F be
used in the model, but also other partially ordered grades such as CR, NC, W, I, AUD. We
can use all this information to give a more precise prediction of student performance, which
is measured by a latent variable course score Si. The predicted probability (P (S > 73))
of a student passing the course can be estimated based on the demographic and achieve-
ment data for a student (X: SAT/ACT, Course load, Semester GPA, gender, etc.) and which
instructor taught him or her (Z).

With this model, some categories which do not convey much information are treated
like missing data that falls within a broad range. For example, the course score for grades
“I” and “AUD” can be anything between 0 and 100; we don’t know these scores because
the students did not finish or their performance in the course was not actually recorded.
The course score of these students are predicted by the model from the data we have about
these students. This is based on the work of Muthén (2004) and Muthén and Muthén (2010)
who saw categorical outcomes as indicators of missingness and predicted the values with
a latent variable. With this approach, the missing response data are imputed automatically
by the model.

The latent grade model is easily interpreted for non-statisticians. Introducing the latent
variable makes the model take the same form as a linear regression model. Non-statisticians
do not have to have the knowledge about link functions and Bayesian modeling to interpret
the model at high level. Some knowledge in algebra is sufficient to interpret this model.

When only binary grades are observed the partially ordered model probit/logit collapses
to a standard probit/logit model. Similarily, when only ordered grades are observed, the
model collapses to an ordered probit/logit model. Thus, the partially ordered framework
includes both binary and ordered data as special cases.

It is easy to fit the model with Gibbs Sampling and importance sampling. Since our
probit model is conditionally conjugate, the Gibbs sampler can be used to fit it, then based
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on the probit model, importance sampling can be used to estimate the parameters of the
logit model. In practice, estimating parameters and making predictions takes Less than 30
minutes of computer time.

5. Simulation Study

To assess properties of this model in terms of estimation, we designed a simulation study.
We consider the case of k = 2 fixed effects and J = 12 different random effects. Specifi-
cally, we fixed β = (−1.45, 4.89), the random effect τ = (81.20, 79.67, 81.80, 81.10,
75.68, 78.85, 77.14, 76.36, 76.12, 78.00, 80.91, 78.44), and standard deviation of error terms
σε = 6.08. Each created observation was randomly assigned an Xi vector and assigned
a group for the random effect (Zi).The first element of Xi was generated following a
Bernoulli trial with probability of success 0.283. The second element of Xi was drawn
from a normal distribution.

Conditional on these parameters, fixed design vector, and random design vector, each
observation was generated a latent course score following Equation (1). This in turn implies
a letter grade (A-F). To incorporate the partial ordering, 5% of students were assigned to
earn CR and another 5% were graded NC. This process was repeated for sample sizes of
n = 500, 1000, 3000, 5000 and 10, 000.

For each data set, we fit the model in Equation (1) with the prior distributions of Sec-
tion 2 using the algorithm of Section 3. We obtained one hundred thousand post-convergence
draws from the marginal distribution of each parameter and sample size. Figure 1 displays
kernel density estimates of the marginal posterior distribution of β1 and τ7 for each sample
size. The solid black vertical line represents the true value.
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Figure 1: The left and right panel display the kernel density estimates of the marginal
posterior distribution of β1 and τ7 respectively. Each color denotes a different sample size.
The true value is represented by the solid black line.

In both panels of Figure 1, the posteriors are more variable at the smaller sample sizes.
The posterior distribution from the smaller samples are also further from the true value. As
the sample size increases, the posteriors concentrate more around the true value. The plots
of the other parameters were so similar that we obmitted them from this work.
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6. Application to our Redesigned Course Evaluation

6.1 Results

Returning to the Redesigned Course evaluation, we applied the partially ordered multino-
mial probit/logit models to the data. We obtained 1,000,000 post convergence draws from
the posterior distribution of the partially ordred probit model using the algorithm described
in Section 3, and importance sampling was used to estimate the posterior mean of all pa-
rameters in the logit model. Table 2 displays the estimated posterior mean of all β param-
eters (fixed effects) for the probit and logit models. Figure 2 displays estimated marginal
posterior of the β parameters in the probit model.

Variable Probit Logit
SAT/ACT 3.732 3.073

Course load −0.618 −0.563
Semester GPA 10.213 10.237
HS grad. years −0.239 −0.255

High school 3.878 3.454
Gender 0.303 0.349

Asian 5.260 4.96
White 3.272 2.955

Hispanic 1.795 1.463

Table 2: The first column contains the variable name associated with each β, and column
under “Probit" and “Logit” are the estimated posterior means of the elements of β for each
independent variable, respectively.

From the table, we can see that the parameter estimates from the two models are simi-
lar. The coefficients for SAT/ACT and semester GPA are positive and large, which means
students who did well on the SAT and ACT or have a higher GPA in the semester tend to
do better in the Course. Course load has a negative coefficient, indicating that students who
took more courses tended to do worse in the Course. High school graduates did better than
GED certificate holders. Asian students did a little bit better than Whites, Whites did better
than Hispanics, and Hispanics did better in the Course than other races. Gender and high
school graduation years did not appear to be significant predictors.
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Figure 2: Boxplots of β estimated using draws from the posterior distribution.

Figure 3 displays boxplots of the marginal distribution of the instructor random effects
under the probit model. The random effects were centered about zero for easier comparison.
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Figure 3: Boxplots of instructor random effects (τ ). The draws were centered by subtract-
ing the overall mean (of all instructor effects). Instructor 12 is the Redesigned Course and
the numbers 1-11 represent different instructors who taught the traditional lecture sections.

Recall that we were primarily interested in how students in the Redesigned Course (the
experimental section) performed relative to other students. Looking at the box plots, we
see that the model estimates that the grade distribution in the Redesigned Course (listed
as Instructor 12) is similar to the instructors with the highest observed grade distributions
(instructors 9 and 5) and higher than most of the other instructors.

6.2 Prediction with The Paritially Ordered Probit/Logit Model

An advantage of fitting models through Markov Chain Monte Carlo approaches is that we
can easily make predictions about the course score for individuals. Consider a student who
is a white, male, high school graduate with average SAT/ACT score (the ACT Math score
19 or SAT Math score 463), average Semester GPA (2.97), average number of years since
high school graduation (2.6) and who was in the Redesigned Course. Using our fitted probit
model, his average predicted score is 80.3 and his probability of passing the Course is 0.75.
Figure 4 displays the posterior predicted grade distribution for this student under both the
probit and logit model.

If this student was instead taught by instructor 2, his average posterior predicted score
under the probit model would change to 72.2 while his probability of passing the course
drops to 0.47. Figure 5 displays the posterior predicted grade distribution for this student
under both the probit and logit model.

If the model is validated by future grade distributions that include the final grades for
students who received an Incomplete, this suggests that the ability to quickly make pre-
dictions for students allows us to quantify how much better a section would perform if the
format was changed to the Redesigned Course.
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Figure 4: Estimated posterior predictive distribution of scores for an example student from
the Redesigned Course section under the probit (left figure) and logit (right figure) model.
The vertical red line represents the passing score.
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Figure 5: Estimated posterior predictive distribution of scores for an example student from
instructor 2’s section under the probit (left figure) and logit (right figure) model. The verti-
cal red line represents the passing score.

6.3 Comparison to Alternative Analyses

The main advantage of this model is that we can use all of the data while an ordered or stan-
dard probit model cannot. In our example, the standard probit model ignores the magnitude
of the letter grade by converting them to passing or failing grades and completely ignores
those who recieve a W, I or AUD. The standard ordered probit model similary ignores
grades of CR, NC, W, I, AUD. The ordered probit uses the least amount of observations but
has more detailed information than the standard probit model. The partially ordered probit
model uses all of the observations with all of the detail.

To quantify the impact of this loss of information, we utilized five-fold cross validation
with 2 measures of model fit: a mean squared error (MSE) and the area under the ROC
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curve (AUC). These measures are based on only predicting the probability of passing the
course. We chose this because the University is most interested in predicting pass rates. For
the ordered probit and standard probit, we used the Bayesian formulation from Albert and
Chib (1993) with the same random effects and predictors as the partially ordered model.

The data was randomly placed into 5 folds of equal size. For each of the five folds,
the data not in that fold was used to fit each of the three probit models. Predictions of
the passing rate were made for each student in that fold. From those predictions, the MSE
and AUC were calculated with the actual pass/fail results for those students. Students who
received a W, I, or AUD were excluded at this stage. Table 3 presents the average (over the
five folds) MSE and AUC for all three models.

Model MSE AUC
Partially Ordered Probit 0.310 0.654
Ordered Probit 0.327 0.599
Probit 0.348 0.642

Table 3: The first column lists the models used. The second column gives an estimated
MSE using five-fold cross validation. The third column gives an estimated AUC using five-
fold cross validation.

We see from the table that, in terms of MSE and AUC, the partially ordered model per-
forms the best. In other words, the information gained from using all grading information
for students does translate into a better fitting model. The ordered model performs worse
than the standard probit for this data in terms of AUC but better in terms of MSE. We at-
tribute this to it being unable to use the 158 students who received a CR or NC (no letter
grade). The extra detail of the ordered model could not compensate, in terms of model fit,
for the loss of these students. If there were no CR/NC students, we suspect that the ordered
model would perform better than the standard probit model.

7. Discussion

Student success is often measured using letter grades, which are sometimes totally ordered
but often have only a partial ordering. The Bayesian Partially Ordered Probit/Logit Models
presented in this work are a way of retaining all of this ordering information. These models
are generalizations of the standard models in the sense that totally ordered or binary re-
sponse variables, which are required for the standard models, are special cases of partially
ordered response variables. We used a Bayesian approach because prior knowledge about
the parameters can be incorporated into the model and the Gibbs sampler can easily to fit
the probit model and a logit model can be used with importance sampling. Modifications
to the model in Equation (1) can easily be made. Say we observe student performance in
courses for which the Course in question is a prerequisite: autoregressive error terms could
be utilized in this case to model students’ performance in all future courses. Additionally,
the model we present is understandable to non-statisticians.

The Partially Ordered Probit model out performs totally ordered and binary probit mod-
els in terms of cross-validated mean squared error and area under the ROC curve. This is not
surprising since it includes more information (the partially ordered subjects) in the same
general model structure. In a sense, the model automatically performs an imputation on
the partially ordered subjects. The gain we see is thus related to the gain in modeling the
“missing” data.

There are, however, limitations to the study and clear areas of needed future work. The
model has the potential to help fill in the missing data represented by the large number
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of Incompletes; however, the method we used assumed that Incompletes were randomly
assigned to students, when this may not be the case. While it is true that if a student gets
an Incomplete in a standard section where such grades are reserved for extreme situations
like an illness or family emergency, it may not be the case in a self-paced course that builds
such grades into its structure. In other words, it is reasonable to assume that the Incomplete
grades are randomly assigned in a standard section, but they may reflect something about
a student’s study skills, for example, in the Redesigned Course. Settling this issue will
require examining the actual grades that students eventually receive in the course, which is
data that was not available at the time of the study.

We developed this model specifically for the Redesigned Course evaluation discussed
in Section 1, but it is easily extended to other categorical data problems with a partially
ordered response variable. For example, criminal sentences are partially ordered: one year
in prison is clearly less than two years. But one year of prison with 3 years probation is
not necessarily less than 16 months in jail. A data set containing sentences, crimes, and
demographic characteristics of the criminal could be analyzed with this model. Our model
can be applied to this and other kinds of partially ordered categorical data.
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