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Abstract: The problem of obtaining lower prediction and tolerance bounds for a future 

observation from a Rayleigh population at field use (design) level of stress, using Type II 

censored accelerated life test data from higher than design stress levels is considered. 

Maximum Likelihood Predictive Density method to derive a predictive density for a future 

observation as described by Jayawardhana and Samaranayake (2003) is used for this study. 

The mean life of the Rayleigh distribution is assumed to have an inverse power relationship 

with the level of stress. The use of lower percentile points of the predictive density as a lower 

prediction and tolerance bounds is investigated using Monte Carlo simulation. The results 

show that reasonable prediction and tolerance bounds can be provided using the predictive 

density.  

Key words: Prediction Intervals, Tolerance Intervals, Rayleigh Distribution, Maximum 

Likelihood Predictive Density 

 

 

1. Introduction 

Most of the modern products are designed with high quality to last a long time under 

normal working conditions. These products are subjected to stresses such as humidity, 

temperature, voltage, pressure, and use rate. Testing under normal working conditions 

will be time consuming and not very useful in a continuously improving production 

process.  Accelerated life tests (ALT) are designed to collect data in a timely manner 

under high levels of stress. Information from tests at high levels of stress is extrapolated 

through a physically reasonable statistical model, to obtain estimates of life at lower, 

normal levels of stress (Escobar and Meeker 1995).   These tests are used to characterize 

durability properties or the life distribution of materials or sample components (Meeker 

and Escobar 1998). In production processes, estimating a lower quantile is of interest for 

reasons such as warranty assurance.  

 

Most parametric ALT models have the following two components: 1) A parametric 

distribution for the life of a population of units at a particular level(s) of an experimental 

variable or variables; and 2) A relationship between one (or more) of the distribution 

parameters and the acceleration or other variables (Meeker and Escobar 1998).  We 

assume a Rayleigh life distribution and the mean life of the Rayleigh distribution to be 
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inversely related to the levels of stress.   We also assume that the two factors have no 

statistical interaction. Escobar and Meeker (2006) describe that the inverse power 

relationship is generally considered as an empirical model because it has no formal basis 

from knowledge of the physics/chemistry of the modeled failure modes.  They further 

state that the inverse power relationship is commonly used because the engineers have 

found that it often provides a useful description of certain kinds of accelerated test data, 

for example with factors such as pressure, voltage, cycling rate, electric current, and 

humidity.  The Raleigh distribution is widely used in communications engineering 

(Akhter and Hirai, 2009).         

 

For predicting a lower bound for a single future observation from a Weibull 

distribution, Jayawardhana and Samaranayake (2003) used the method of Maximum 

Likelihood Predictive Density (MLPD) with one stress factor and two levels of 

acceleration under Type II censoring.  In 2004, using the same method, Jayawardhana 

and Samaranayake explored two stress factor ALT experiments using the Exponential life 

distribution. In the current paper, the results are further extended to two stress factor ALT 

experiments with two levels of higher than the design-factor levels of stress in each factor 

using Rayleigh distribution.  According to Escobar and Meeker (1995), there is both 

practical and physical motivation for ALT models without interactions and one should 

choose factor definitions to minimize statistical interactions among the factors.   

 
2. Maximum Likelihood Predictive Density 

Suppose  1 2
, ,...,

n
X X X X   is a set of observations from a distribution ( ; )f x   

and  1 2
, ,...,

m
Y Y YY   is a set of future observations, independent of X , from the 

same distribution.  Let Z  be some statistic based on Y .  Our objective is to find an 

estimate of the density of Z based on the observed values X .   

Lejeune and Faulkenberry (1982) proposed the Maximum Likelihood Predictive 

Density function  ( | ) ( )sup ( ; ) ( ; )ˆ z x k x f x g zf


 


  as an estimated density 

function of Z , where ( ; )f x   is the joint probability density of X ’s, ( ; )g z   is the 

probability density function of the statistic Z ,   is the parameter space of unknown 

parameter , and  k x  is a normalizing constant. Parameter  is then replaced in 

function f  by its Maximum Likelihood Estimate (MLE), ̂ . The estimator ̂  is a 
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function of both X  and Z .  Resulting predictive density is the MLPD of Z .   

We propose our method in the following section but make a deviate from the true 

MLPD method.  Our MLE, ̂  has two other unknown parameters.  At the beginning we 

proceed as we know the two parameters. If these parameters are estimated using both X  

and Z , the resulting predictive distribution does  not have  a recognizable from. Instead, 

we use only X  to estimate the two extra unknown parameters.  This makes our method 

different from the method proposed by Lejeune and Faulkenberry (1982).   

 

3. The Proposed Method 

Suppose the mean life of a product is dependent on two stress factors, factor 1 and 

factor 2. Each factor has three levels: design, low, and high, denoted by D, L, and H, 

respectively. Let the observation
ijkX , denotes the product life of 

thk test item subject to 

stress level i  of factor 1 and stress level j  of factor 2.  For example, 4LHX denotes the 

4
th
 test item subject to low level of stress of factor 1 and high level of stress of factor 2. 

Correspondingly, 
ij

 denote the mean lifetime of product under stress level i of factor 1 

and the stress level j of factor 2.  In addition, let 1iV denote the stress value at level i  of 

factor 1, and 2iV  denote stress value at level i  of factor 2.  

 

We make the following model assumptions:  

1) Product life has a Rayleigh distribution with p.d.f. 
 2

2

2

2( ) ,
xx

f x e 





  0,x   

0  . 

2) Mean lifetime / 2
ij ij    is related to the stress levels by 

1 20 1 2
ln ln ln ln

i jij
V V      , where 

0
0  , 

1
0  , 

2
0  , and 

, { , , }i j D L H .   

3) The product lifetimes are independent of each other. 

4) Without loss of generality, we assume 
1 2

1
D D

V V  . Note that under such 

assumptions 
0DD

  . 

5) We assume that 
1 1 1D L H

V V V   and 
2 2 2D L H

V V V  , and hence 
DD LH HH

     

and 
DD HL HH

    . 

 

Suppose that a total of 
LH

n  items are subject to test at low level of factor 1 and high 

level of factor 2. Let
1 2
, ,...,

LH
LH LH LHr

x x x be the first 
LH

r  ordered failure times among 
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all 
LH

n  test items.  Similarly, assume 
HL

n  items are subjected to test at high level of 

factor 1 and low level of factor 2 and 
HH

n  items are subjected to test at high levels of 

both factors.  And let 
1 2
, ,...,

HL
HL HL HLr

x x x be the first 
HL

r  ordered failure times among 

all 
HL

n  test items, let 
1 2
, ,...,

HH
HH HH HHr

x x x be the first 
HH

r  ordered failure times 

among all 
HH

n  test items.  Note that we do not include the case of low stress levels on 

both factors.  

 

Let Z  be a single future observation obtained at designed levels of both factors. The 

probability density function of Z  is: 

2

22

2
( ) ,DD

z

DD

z
f z e





 
 
   0z  . The relationship 

between 
ij

  and 
ij

  is: / 2
ij ij
  . 

Let  1 2 1 2 1 2
, ,..., , ,..., , ,...,, ,

LH HL HH
LH LH LHr HL HL HLr HH HH HHr

x x x x x x x x xx


 . 

Then the joint likelihood function of 
DD

 , 
LH

 , 
HL

 , and
HH

  given x  and z  can be 

written as:   

 
 

 
1

2

2 2

1

2

( , , , | , )

!
exp

! 2

LH

i

LH

DD LH HL HH

LH

r iLH

r

LH

i

r

LH

r

LH LH LH LH
LH i

LH LH LH

L x z

x n r x x
n

n r

   

 
 

 
  

 
  

 
 

 

 

 
 

 

 
 

 

1

2

1

2

2 2

1

2

2 2

1

2

!
exp

!

!
exp

!

2

2

HL

i

HL

HH

i

HH

HL

r iHL

HH

r iHH

r

HL

i

r

HL

r

HH

i

r

HH

r

HL HL HL HL
HL i

HL HL HL

r

HH HH HH HH
HH i

HH HH HH

x

x

n r x x
n

n r

n r x x
n

n r





















 
  

 
  

 
 

 
  

 
  

 
 









 

2

2 2
exp

2DD DD

z z

 

 
  

 
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For the Rayleigh distribution, the mean lifetime is given by 
1 2

0

1 22
ij ij

i jV V 
 

 
  . By 

making a substitution 
* 0
0

/ 2





 , we have 

1 2

*
0

1 2

ij

i jV V 


 . Without loss of 

generality, we let 
*

0 1   in simulations which makes 1
DD

  .  

 

Using the inverse power law relationship, the joint likelihood function can be re-written 

as  

1 2

*

0

! ! !
,

( )! ( )! ( )!
( , , | )

                        

LH HL HH

LH LH HL HL HH HH

n n n
x z

n r n r n r
L   

  


 

1 1 1

                     
LH HL HH

i i i

r r r

LH HL HH

i i i

x x x
  

   
   
   
  

 

 

1 2 1 2 1 22 2 2 2 2 2

1 2 1 2 1 2

2( 1)
*

0

LH LH HL HL HH HHr r r r r r

L H H L H H

N

V V V V V V z     






 
  
 
 

 

 

1 2 1 2 1 22 2 2 2 2 2 2

1 2 1 2 1 2

2
*

0

exp     (1)
2

L H LH H L HL H H HHV V A V V A V V A z     




 
   

 
 

        

where 
LH HL HH

N r r r   , 
2 2

1

( )
LH

r iLH

r

LH LH LH LH

i

LH n r x xA


   ,  

2 2

1

( )
HL

r iHL

r

HL HL HL HL

i

HL n r x xA


    and 
2 2

1

( )
HH

r iHH

r

HH HH HH HH

i

HH n r x xA


   .  

 

 

Taking natural log of
1 2

*

0
,( , , | )x zL    , we get 

   

   
1 2 1 2 1 2

1 2 1

2

*

0

*

0

2 2 2 2 2 2 2

1 2 1 2 1 2

1 1 1

2 2 2

,ln , , | 2 ln ln ln

2 2 1ln ln ln ln

L H LH H L HL H H HH

LH L HL H HH H

LH H HL L HH H

zL x C V V V

N

V V A V V A V V A z

r r r

r V r V r V

     

   

 

 

 

  

 

  



 
2

*

02

,


 

where C  is independent of all the parameters. Taking the partial derivative with respect 
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to 
*

0
  and solving for  

1 2

*

0*

0

,ln ( , , | )[ ] 0x zL   






, we obtain the MLE of 

*

0
 ,  

 

1 2 1 2 1 2
2 2 2 2 2 2 2

1 2 1 2 1 2*

0
ˆ

2( 1)

L H LH H L HL H H HH
V V A V V A V V A z

N

     


  




. 

 

Substituting the MLE of 
*

0
  back in the joint likelihood function in equation (1), we get 

the predictive density function of z , given by  

 

 1 2 1 2 1 2
11 2

2 2 2 2 2 2 2

1 2 1 2 1 2

( | , , )
N

L H LH H L HL H H HH

k z
f z x

x

V V A V V A V V A z     
 




  

, 

where  k x  is a proportionality constant.  

By letting  
0

0 1 2 1| , , ,f dzz x   


 ，we can easily show that the proportionality 

constant  1 2 1 2 1 22 2 2 2 2 2

1 2 1 2 1 2
( ) 2

L H LH H L HL H H HH

N

k x N V V A V V A V V A
     

   . 

 

Assuming 1  and 2 are known, we have 

 

 

1 2 1 2 1 2

1 2 1 2 1 2
1

2 2 2 2 2 2

1 2 1 2 1 2

1 2
2 2 2 2 2 2 2

1 2 1 2 1 2

2
ˆ ( | , , )

N

N

L H LH H L HL H H HH

L H LH H L HL H H HH

N zV V A V V A V V A
f z x

V V A V V A V V A z

     

     
 



 


  
, 

0z  .    (2) 

Consider the transformation 
2

u z , then 2du zdz , 
1

2

dz
J

du z
   and 

 
 

 

1 2 1 2 1 2

1 2 1 2 1 2
1

2 2 2 2 2 2

1 2 1 2 1 2

2 2 2 2 2 2

1 2 1 2 1 2

, 0

N

N

L H LH H L HL H H HH

L H LH H L HL H H HH

N V V A V V A V V A
g u u

V V A V V A V V A u

     

     


 
 

  
.  

 

Which is in standard notation a Pareto distribution with N   and  

 1 2 1 2 1 22 2 2 2 2 2

1 2 1 2 1 2L H LH H L HL H H HHV V A V V A V V A         .  

 

At this stage, we need to estimate parameters 1  and 2  but we use only the past data to 

obtain the maximum likelihood estimates of 1  and 2 . Let the maximum Likelihood 

estimates of the parameters 1  and 2  be 1  and 2  respectively. The likelihood 

function of 
*

0 , 1 and 2  given  
1 2
, ,...,

rLH
LH LH LH LHx x x x


  is  
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     

1 21 2 2 2

1 2

1 2 2

2 2
* 1 2
0 2

* *
1

0 0

exp

2

( )
!

, , |
!

LH LH LH

i LH

L H LH

r r r

LH L H
LH LH r

iLH LH

V V AV V
L x

n r

n
x

  

  

 



   
 

     
     
   



. 

Taking natural log of the likelihood function above, we get 

 

1 2
2 2

* * 1 2

0 1 2 1 2 0 21 2
*

0

ln 2 2 2

2

( ) ln ln ln, , | L H LH

LH LH LHLH L H

V V A
r V r V rL Cx

 

     


    

, 

where C  is independent of 
*

0 , 1  and 2 . Similar expressions can be derived using the 

data  1 2, ,...,
rHL

HL HL HL HLx x x x


 and  1 2, ,...,
rHH

HH HH HH HHx x x x


 .  

Taking Partial derivative with respect to 
*

0 , 1 , or 2 and solving for zero 

simultaneously , we obtain the three equations   

  1 2
2

2 2

1 2

*

02 ,
LH L H LH

r V V A
               

 (3)                                             

  1 2
2

2 2

1 2

*

02 ,
HL H L HL

r V V A
                                                  

 (4) 

and    1 2
2

2 2

1 2

*

02 .
HH H H HH

r V V A
                                               

 (5) 

 

Dividing equation (3) by equation (5) we get 

12

1

1

LH L LH

HH H HH

r V A

r V A




 
 
 

.  Taking natural log 

on both sides and solving for 1 , we get  

   
 1

1 1

ln ln

2 ln ln

LH HH HH LH

L H

r A r A

V V






.      

 (6) 

Similarly, dividing equation (4) by equation (5) and solving for 2 , yields 

   
 2

2 2

ln ln

2
.

ln ln

HL HH HH HL

L H

r A r A

V V






      

 (7)     

Then the predictive density of U  given in equation (2) can be modified to 

 

 
 

 

1 2 1 2 1 2

1 2 1 2 1 2
1

2 2 2 2 2 2

1 2 1 2 1 2

2 2 2 2 2 2

1 2 1 2 1 2

, 0

N

N

L H LH H L HL H H HH

L H LH H L HL H H HH

N V V A V V A V V A
g u u

V V A V V A V V A u

     

     


 
 

  
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An approximate 100 
thp percentile point for 

2
u z  is given by  

   1 2 1 2 1 2

1
2 2 2 2 2 2

1 2 1 2 1 2
ˆ 1 1N

p L H LH H L HL H H HHu V V A V V A V V A p      


 
    

 
. 

Therefore, 100 
thp  percentile point for z  can be obtained by 

   1 2 1 2 1 2

1

1 2
2 2 2 2 2 2

1 2 1 2 1 2
ˆ 1 1 .     N

p L H LH H L HL H H HHz V V A V V A V V A p      

  

     
  

  

 (8)         

In previous studies, it has been observed that ˆ
pz  is slightly overestimated and therefore 

we propose an adjustment to the equation (8) by replacing N  by 6N  .   

 

   1 2 1 2 1 2

1

1 2
2 2 2 2 2 2

6
1 2 1 2 1 2 1 1 .N

p L H LH H L HL H H HHz V V A V V A V V A p      


  
      

       

 

 (9) 

 

 

4. Monte Carlo Simulation for the Prediction Interval  

 

We limited our simulation study to investigate the coverage probabilities of 99
th
, 95

th
, 

and 90
th
 lower percentile points. Using Monte Carlo simulation, we calculated 

ˆ[ ( | )]
p

E P Z z x , where ˆ
p

z  is the 100 thp  percentile point of the predictive density. 

Without loss of generality we assumed 
*

0
1  .  We simulated data using 

*

0
1  , 

1
1.25   and 

2
1.25  ; 

*

0
1  , 

1
1.5   and 

2
1.5  ; and 

*

0
1  , 

1
2.0   and 

2
2.0  . Since the different values of 

1
  and 

2
  produced similar coverages, we only 

report the results for 
*

0
1  , 

1
1.5   and 

2
1.5  .  Combinations of higher and lower 

levels of acceleration 1 2 1.125(0.125)2.000L LV V   and 1 1 22 L H HV V V   

2.0(0.5)5.0 were used in the simulations.  For each set of stress levels, the censoring 

schemes LH HL HHn n n  10(10)50  with 50%, 20% and no censoring were used.     

 

For each combination of stress levels 1LV , 1HV , 2LV  and 2HV , sample sizes 
LH

n , 
HL

n , 

HH
n , and preplanned censoring values 

LH
r , 

HL
r , 

HH
r  Rayleigh random numbers were 
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generated.  Using equations (6) and (7) 1 and 2 were calculated.  Then for each 

combination of 1LV , 1HV , 2LV
’ 2HV ,

LH
n , 

HL
n , 

HH
n , 

LH
r , 

HL
r , 

HH
r  the percentile 

estimate ˆ
pz  of the predictive distribution was estimated using the equation (8).  Using 

the theoretical Rayleigh distribution we calculated the probability a Rayleigh random 

variable is greater than ˆ
pz .  This process was repeated 5000 times and the average 

coverage was calculated to estimate  ˆ |pE P Z z x 
 

. Simulation studies reveal that 

ˆ
pz  is slightly over estimated and the coverages are slightly lower than expected.  When 

the lower level of the stress is as close as possible to the design level of stress and the 

higher level of stress is as high as possible the results are reasonable.  There are practical 

limitations to have the lower level of stress as close as to the design level of stress 

because the items may not fail during a reasonable period of time.  On the other hand 

raising the higher level of stress may not physically possible in an experimental situation.  

This observation can be summarized as the coverage is reasonable when 
2

iH iLV V  is large.  

We used Equation (9) to estimate the percentile pz and the respective coverages are 

reported as modified coverages within square brackets in Table 1 in Appendix A.     

 

5. Lower Tolerance Intervals 

Lower tolerance intervals can be represented as a lower confidence interval for a 

percentile point.  Let the  1 p -content  -level lower tolerance bound for the future 

observation Z is given by ˆ
pz where   

ˆ

1

pZ

P f z dz p 



  
 
 
 
 .   One can derive the 

lower tolerance limit as a lower confidence limit for a percentile point.  Using the 

definition of the    content   confidence tolerance interval 

 
 1 2, ,..,

; 1

nL x x x

P f x dx p 
 

   
  

  a simple derivation will produce the result 

 1 2, ,.., n pP L x x x Z     .  If one can find out the 1  th percentile of the 

distribution of the p th percentile of Z , it will be equal to the required tolerance limit.  

An estimate of the  p th percentile of Z  is given by
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      
1

ˆ1ˆ ˆˆ ˆ
4ˆ ˆˆ 1 1L Hr r

p L L H HZ V A V A p
  

     
  

.   

Calculation of the lower confidence limit for this percentile point is difficult due to the 

complexity of the estimates.  In this study we use the content corrected tolerance interval 

proposed by Fernholz & Gillespie (2001).  For parameter values p  and   on (0, 1), a  -

confidence,  1 p -content corrected lower tolerance interval is an interval of the form 

[ , ]L   if   *1 1P F L p      holds for some data dependent 
*p  in which the 

sample comes from the distribution function F .  Our approach will be to find 
*p through 

simulation.   

 

6. Monte Carlo Simulation for the Tolerance Interval  

Using the same parameter combinations used in Section 4, we generated ˆ
pZ  for 

 0.0025 0.0025 0.1p   and calculated  
ˆ

0.90

pZ

P f z dz




 
 
 
  and 

 
ˆ

0.95

pZ

P f z dz




 
 
 
 .   

 

 

Figure 1 
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Figure 1, is an example of the coverage level for different values of corrected content and 

the corresponding
 
level of tolerance for sample size of 20 and acceleration factor of 

0.0833.   If one wants a   of 80%, a 94% corrected content value (or a 
*p value of 0.06) 

is required when censoring factor is 0.6.  But if the censoring factor is 0, then a 93% 

corrected content ( or a  
*p  value of 0.07) is required to achieve a   of 80%.  Simulation 

results are summarized as 
*p  is the positive solution to the quadratic equation

 
2

* *Constant  Cen Acca b cp d p      , where Cen Censoring Factor and 

Acc   Acceleration Factor.  Simulation study was limited to same acceleration in both 

factors and same censoring in each combination of levels.  Tables 2 and 3 in Appendix A 

provide the coefficients for the quadratic equation.    

 
7. Conclusion 

A simple method of calculating a lower prediction interval for a single future observation 

using an accelerated experiment of two factors is proposed.  For larger samples, the 

modified method gives very reasonable results.  Simulation results show that the results 

are not good for smaller sample sizes especially when Type II censoring is done.  

Simulation results also demonstrate that the coverage probabilities are liberal when 

1.5 iH DDV V  and    6 iL iD iH iLV V V V   .  One has to make sure that the inverse 

power rule works for the range of acceleration of both factors.  Proper care should be 

taken to select the lower and higher levels of stress to have enough failures and not to 

exceed the physical limits of the units under the stress.    

 

When the Acceleration Factor is greater than 0.17, this method for tolerance interval does 

not work well.  This is mostly due to the estimation errors of the parameters of the 

predictive distribution.  When the Censoring Factor is greater than 50%, this method does 

not work well either.    Tolerance intervals with 0.850 0.975  , the proposed method 

works well.   
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Appendix A 

Table 1: Average of the Coverage Probabilities ˆ( )pP Z z  and ( )pP Z z   
_______________________________________________________________________________________     
                  

LHn    HLn    HHn   LHr     HLr      HHr    0.10
ˆP Z z   0.05

ˆP Z z
 

 0.05
ˆP Z z

 
       Unmodified [Modified]

  

__________________________________________________________________________________________________ 

1
1.125

L
V    

1
2.00

H
V    

2
1.125

L
V    

2
2.00

H
V   

10 10 10 5 5 5 0.866 [0.901] 0.929 [0.948] 0.985 [0.989] 

10 10 10 8 8 8 0.878 [0.899] 0.937 [0.948] 0.987 [0.989] 

10 10 10 10 10 10 0.883 [0.900] 0.940 [0.949] 0.988 [0.990] 

 
20 20 20 10 10 10 0.882 [0.900] 0.940 [0.949] 0.988 [0.990] 

20 20 20 16 16 16 0.890 [0.902] 0.944 [0.951] 0.989 [0.990] 

20 20 20 20 20 20 0.891 [0.901] 0.945 [0.950] 0.989 [0.990] 

 
50 50 50 25 25 25 0.894 [0.901] 0.947 [0.950] 0.989 [0.990] 

50 50 50 40 40 40 0.896 [0.900] 0.948 [0.950] 0.990 [0.990] 

50 50 50 50 50 50 0.897 [0.899] 0.948 [0.950] 0.990 [0.990] 

1
1.125

L
V     

1
3.00

H
V     

2
1.125

L
V     

2
3.00

H
V   

10 10 10 5 5 5 0.869 [0.905] 0.931 [0.951] 0.986 [0.990] 

10 10 10 8 8 8 0.883 [0.905] 0.940 [0.952] 0.988 [0.990] 

10 10 10 10 10 10 0.888 [0.905] 0.943 [0.952] 0.988 [0.990] 

 
20 20 20 10 10 10 0.885 [0.904] 0.941 [0.952] 0.988 [0.990] 

20 20 20 16 16 16 0.891 [0.902] 0.945 [0.951] 0.989 [0.990] 

20 20 20 20 20 20 0.893 [0.903] 0.946 [0.951] 0.989 [0.990] 

 
50 50 50 25 25 25 0.895 [0.903] 0.947 [0.951] 0.989 [0.990] 

50 50 50 40 40 40 0.897 [0.901] 0.948 [0.950] 0.990 [0.990] 

50 50 50 50 50 50 0.897 [0.901] 0.948 [0.950] 0.990 [0.990] 

1
1.375

L
V     

1
3.00

H
V     

2
1.375

L
V     

2
3.00

H
V   

10 10 10 5 5 5 0.846 [0.878] 0.914 [0.933] 0.980 [0.985] 

10 10 10 8 8 8 0.863 [0.887] 0.927 [0.941] 0.985 [0.988] 

10 10 10 10 10 10 0.872 [0.892] 0.933 [0.944] 0.986 [0.988] 

 
20 20 20 10 10 10 0.872 [0.891] 0.933 [0.944] 0.986 [0.988] 

20 20 20 16 16 16 0.882 [0.895] 0.939 [0.947] 0.988 [0.989] 

20 20 20 20 20 20 0.886 [0.896] 0.942 [0.948] 0.988 [0.989] 

 
50 50 50 25 25 25 0.890 [0.897] 0.945 [0.948] 0.989 [0.990] 

50 50 50 40 40 40 0.893 [0.898] 0.946 [0.949] 0.989 [0.990] 

50 50 50 50 50 50 0.895 [0.899] 0.947 [0.949] 0.989 [0.990] 

___________________________________________________________________________ 
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_______________________________________________________________________________________     

                  

LHn    HLn    HHn   LHr     HLr      HHr    0.10
ˆP Z z   0.05

ˆP Z z
 

 0.05
ˆP Z z

 

Unmodified [Modified]
 

__________________________________________________________________________________________________

1
1.375

L
V     

1
4.00

H
V     

2
1.375

L
V     

2
4.00

H
V   

10 10 10 5 5 5 0.857 [0.893] 0.922 [0.943] 0.983 [0.988] 

10 10 10 8 8 8 0.872 [0.896] 0.933 [0.946] 0.986 [0.989] 

10 10 10 10 10 10 0.879 [0.897] 0.938 [0.947] 0.987 [0.989] 

 
20 20 20 10 10 10 0.875 [0.896] 0.936 [0.947] 0.987 [0.989] 

20 20 20 16 16 16 0.887 [0.898] 0.943 [0.949] 0.988 [0.990] 

20 20 20 20 20 20 0.890 [0.898] 0.944 [0.949] 0.989 [0.990] 

 
50 50 50 25 25 25 0.891 [0.900] 0.945 [0.950] 0.989 [0.990] 

50 50 50 40 40 40 0.895 [0.899] 0.947 [0.949] 0.989 [0.990] 

50 50 50 50 50 50 0.896 [0.899] 0.948 [0.949] 0.990 [0.990] 

 

1
1.50

L
V 

   1
3.00

H
V 

   2
1.50

L
V 

   2
3.00

H
V 

 
10 10 10 5 5 5 0.829 [0.864] 0.899 [0.923] 0.975 [0.982] 

10 10 10 8 8 8 0.854 [0.876] 0.921 [0.933] 0.983 [0.986] 

10 10 10 10 10 10 0.859 [0.880] 0.925 [0.937] 0.984 [0.987] 

 
20 20 20 10 10 10 0.863 [0.880] 0.927 [0.937] 0.984 [0.987] 

20 20 20 16 16 16 0.878 [0.888] 0.937 [0.942] 0.987 [0.988] 

20 20 20 20 20 20 0.879 [0.892] 0.938 [0.945] 0.987 [0.989] 

 
50 50 50 25 25 25 0.884 [0.893] 0.941 [0.946] 0.988 [0.989] 

50 50 50 40 40 40 0.891 [0.894] 0.945 [0.947] 0.989 [0.989] 

50 50 50 50 50 50 0.893 [0.896] 0.946 [0.948] 0.989 [0.989] 

1
1.50

L
V 

   1
4.00

H
V 

   2
1.50

L
V 

   2
4.00

H
V 

 
10 10 10 5 5 5 0.844 [0.878] 0.913 [0.934] 0.980 [0.985] 

10 10 10 8 8 8 0.869 [0.891] 0.931 [0.943] 0.986 [0.988] 

10 10 10 10 10 10 0.873 [0.890] 0.934 [0.944] 0.986 [0.988] 

 
20 20 20 10 10 10 0.873 [0.890] 0.934 [0.943] 0.986 [0.988] 

20 20 20 16 16 16 0.884 [0.894] 0.941 [0.946] 0.988 [0.989] 

20 20 20 20 20 20 0.886 [0.897] 0.942 [0.948] 0.988 [0.989] 

 
50 50 50 25 25 25 0.888 [0.897] 0.943 [0.948] 0.989 [0.989] 

50 50 50 40 40 40 0.893 [0.898] 0.946 [0.949] 0.989 [0.990] 

50 50 50 50 50 50 0.894 [0.898] 0.947 [0.949] 0.989 [0.990] 

___________________________________________________________________________ 
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_______________________________________________________________________________________     

                  

LHn    HLn    HHn   LHr     HLr      HHr    0.10
ˆP Z z   0.05

ˆP Z z
 

 0.05
ˆP Z z

 

Unmodified [Modified]
 

__________________________________________________________________________________________________ 

1
2.00

L
V     

1
4.00

H
V     

2
2.00

L
V     

2
4.00

H
V   

10 10 10 5 5 5 0.787 [0.825] 0.863 [0.889] 0.959 [0.966] 

10 10 10 8 8 8 0.824 [0.848] 0.897 [0.911] 0.975 [0.978] 

10 10 10 10 10 10 0.831 [0.850] 0.904 [0.916] 0.978 [0.981] 

 
20 20 20 10 10 10 0.833 [0.856] 0.906 [0.919] 0.978 [0.981] 

20 20 20 16 16 16 0.857 [0.872] 0.923 [0.932] 0.983 [0.986] 

20 20 20 20 20 20 0.866 [0.873] 0.929 [0.933] 0.985 [0.986] 

 
50 50 50 25 25 25 0.872 [0.880] 0.934 [0.938] 0.986 [0.987] 

50 50 50 40 40 40 0.883 [0.888] 0.941 [0.943] 0.988 [0.988] 

50 50 50 50 50 50 0.885 [0.891] 0.942 [0.945] 0.988 [0.989] 

 

1
2.00

L
V 

   1
5.00

H
V 

   2
2.00

L
V 

   2
5.00

H
V 

 
10 10 10 5 5 5 0.805 [0.846] 0.879 [0.909] 0.966 [0.976] 

10 10 10 8 8 8 0.836 [0.868] 0.908 [0.927] 0.979 [0.984] 

10 10 10 10 10 10 0.851 [0.870] 0.919 [0.930] 0.982 [0.985] 

 
20 20 20 10 10 10 0.853 [0.870] 0.919 [0.930] 0.982 [0.985] 

20 20 20 16 16 16 0.868 [0.882] 0.931 [0.938] 0.986 [0.987] 

20 20 20 20 20 20 0.876 [0.884] 0.936 [0.940] 0.987 [0.988] 

 
50 50 50 25 25 25 0.878 [0.886] 0.937 [0.942] 0.987 [0.988] 

50 50 50 40 40 40 0.887 [0.893] 0.943 [0.946] 0.988 [0.989] 

50 50 50 50 50 50 0.891 [0.894] 0.945 [0.946] 0.989 [0.989] 

___________________________________________________________________________ 

 

Table 2 

Coefficients of the Quadratic Equation for 90% Content 

LH HL HHn n n 

 
 

2
*p  

*p  Censoring 

Factor 

Acceleration 

Factor 

Constant 

10 -12.659 -3.947 -0.084 -0.359 1.105 

20 -46.541 -0.551 -0.082 -0.337 1.083 

30 -65.732 1.568 -0.076 -0.298 1.056 

40 -77.253 2.944 -0.072 -0.244 1.032 

50 -85.214 3.914 -0.068 -0.266 1.021 
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Table 3 

Coefficients of the Quadratic Equation for 95% Content 

LH HL HHn n n 

 
 

2
*p  

*p  Censoring 

Factor 

Acceleration 

Factor 

Constant 

10 -19.468 -9.385 -0.081 -0.284 1.108 

20 -147.848 -2.847 -0.073 -0.289 1.088 

30 -225.129 1.412 -0.067 -0.259 1.060 

40 -279.080 4.586 -0.071 -0.230 1.038 

50 -320.590 6.963 -0.061 -0.237 1.020 
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