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Abstract
A maximum likelihood estimator (mle) for the foliage density function (fdf) is developed that

allows for a custom fdf to model the forest canopy profile. The estimator derived here depends on
the user providing a functional form for the fdf. The unknown fdf parameters are estimated from a
sample of heights-to-first-leaf taken at random locations from ground level under the canopy. The
method presented here could be viewed as a discrete version of the well known MacArthur and Horn
(1969) estimator (MHE). The mle has several advantages over the MHE. The mle allows the user
to incorporate some prior knowledge of the canopy profile via the fdf and it provides a covariance
matrix for the parameter estimates. The most important advantage is that sample data never result
in division by zero for upper canopy heights as can happen with the MHE. Finally, a simulated
comparison indicated that the mle was less variable than the MHE.
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1. Introduction

Understanding the structure of the forest canopy is important due to its role in tree growth
rates (Waring et al. , 1981), nutrient and carbon cycling (Radke and Bolstad , 2001; Bal-
docchi and Harley , 2006), and its contribution to biomass (Lefsky et al. , 2005; Seidel et
al. , 2011).

Foliage density estimation methods are often derived from work in MacArthur and
Horn (1969) and the following estimator of the integrated value of the fdf, D(h), which is
the total foliage between two heights, h1 and h2,∫ h2

h1

D(h)dh = ln{φ(h1)/φ(h2)} (1)

where φ(h) is the probability of no leaves over the first h meters. This method relies on
sample frequencies to estimate φ(h) and therefore D(h) is never specified. This is a non-
parametric method.

An alternative maximum likelihood estimator is developed (mle) that requires the user
to provide an assumed fdf, which gives the expected number of leaves per unit of height,
M . For example, suppose D(h) = d, a constant, then there will be d leaves per M where
M could be 1 meter or 1 foot (1 foot=0.3 meters), and would typically be in the same units
as height. If d=0.1 leaf per M then we expect to have 1 leaf every 10M . In any event, a
specific functional form with unknown parameters, β, must be specified for this method.
Call this function Dβ(h) to differentiate it from the non-parametric D(h).

The problem should also be constrained by specifying the maximum canopy height,
say H . Then the expected number of leaves, D, along a random vertical line from height 0
to H would be

D =
∫ H

0
Dβ(h)dh (2)

It makes sense to choose a constrained function such that 0 ≤ Dβ(h) ≤ 1 regardless of the
specific parameter values.
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1.1 Materials and methods

For the purpose of this study, think of the forest canopy as consisting of a ceiling at height
H with leaves suspended at random locations between heights 0 and H. A random vertical
line can be sampled to obtain the heights where it passes through a leaf. Some of these
lines will intersect no leaves and still be consistent with Dβ(h), which causes the canopy
to be discontinuous.

A sample of n lines can be taken from under the forest canopy to provide observations
that can be used to estimate the parameters of the fdf. The only reliable measurement
available from the forest floor is often the height to the first leaf, so the minimum sample
dataset consists of f1, ..., fn from a sample of n vertical lines.

In order to develop a sample likelihood function, one needs a statistical mechanism for
simulating/modeling leaves along a line. Leaves along a vertical string or line through the
canopy are well represented by a discrete process, since there can only be a finite number of
distinct leaves on a line. Therefore, each line is partitioned into bins of width δh such that
H/δh is an integer. For example, H = 100 and there can be 100 bins such that δh = M .
There is no reason that δh must equal M , or that δh be constant along the line, but it
simplifies the notation to assume constant width bins.

The probability of bin i having a leaf is

pi =
δh

M

∫ mi+δh/2

mi−δh/2
Dβ(h)dh (3)

where mi is the height to the midpoint of bin i. The δh/M term adjusts the fdf in eq (3) for
the situation where the bin width, δh is not equal to M . Adjustment is necessary because
an fdf is specific to a unit of length.

Record height to first leaf, fs, for each sample in the field and determine the bin, bs,
that this falls into back in the office. The likelihood for a sample-line is the probability of
no leaf until bs,

p̃s =
j<bs∏
j=1

(1− pj) pbs (4)

The likelihood for a line with no leaves is
∏J
j=1 (1− pj), where J is the total number of

bins along the line.
The log-likelihood for the sample of size n is the log of the product of the individual

sample-line probabilities shown in eq (4)

L(β) =
n∑
s=1

log (p̃s) (5)

where L(β) is a function of the parameters to be estimated, i.e. the parameters in the
assumed fdf.

1.2 Maximizing the likelihood

The maximum likelihood estimate (Lehmann and Casella , 1998) is the value, L(β̂), where
the gradient (first derivative) of the log likelihood equals 0. The gradient of (eq 5) is

∂L

∂β
=

n∑
s=1

p̃′s
p̃s

(6)

where p̃′s denotes the derivative with respect to β.
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The Hessian (second derivative) of the log likelihood with respect to β is useful for the
maximization process and to provide an asymptotic variance estimate. The Hessian of eq
(5) is

∂2L

∂β
=

p̃sp̃
′′
s − p̃′2s
p̃2
s

(7)

Minus the expected value of the inverse of the Hessian is referred to as the information
matrix, I(β), which provides an asymptotic covariance matrix for the maximum likelihood
parameter estimates, β̂.

The first and second analytical derivatives are complicated enough to justify using a
function maximization procedure based on numerical derivatives. The nlm procedure from
R (R Development Core Team , 2010) is used for the example application. The nlm proce-
dure minimizes a function and must be supplied with minus the log-likelihood to maximize
the function. Therefore, the inverse of the Hessian matrix from the nlm procedure is an
approximate covariance matrix for the parameter estimates.

1.3 Example applications

For the example applications a logistic function represents the fdf,

Da,b(x) =
1

1 + exp(−(a+ bx))
(8)

where x=h/H. This results in a scale free fdf that predicts the instantaneous probability of
a leaf at relative height, h/H , and is constrained to be between 0 and 1. The result is
multiplied by H to scale it to the actual measurement units.

The probability computation for eq (3) involves the integral of eq (8),∫
Da,b(x)dx = Fa,b(x) =

log (exp(a+ bx) + 1)
b

(9)

Equation (3) is then evaluated as,

pi =
δh

M
{Fa,b([mi + δh/2]/H)− Fa,b([mi − δh/2]/H)} ∗H (10)

Vertical line samples from the canopy are simulated by setting H = 100 and setting
the parameters of eq (9) to a = −4.6, b = 2.1. The parameter settings came from fitting
eq (8) to the following data:
x = {0.1, 0.2, 0.3, .04, 0.5, 0.6, 0.7, 0.8, 0.9} and
y = {0.01, 0.01, 0.02, 0.02, 0.03, 0.04, 0.04, 0.05, 0.06},
where x is relative height and y is the instantaneous probability of a leaf. This simulates a
canopy where the probability of finding a leaf increases with height. The expected number
of leaves in a line is, for this simulated canopy, H ∗

∫H
0 Da,b(h)dh = 3.28.

Samples of size n = 100 are simulated by generating vertical lines of length H = 100
and breaking each line into 100 bins. A leaf was assigned to the bin if a uniform random
number was less than the probability of a leaf being in that bin as computed with eq (10).
The simulation was repeated 1000 times. The results (Table 1) indicate that the mle closely
recovers the original a = −4.6 and b = 2.1 parameter values.

The simulation variance column (Table 1) is the variance computed from the 1000
simulated sample estimates. The simulation variances agree well with the mean of the
inverse Hessian results computed for each simulated sample, which is what would be used
for an actual application of this method.
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Table 1: Simulation results for 1000 replications of a sample of size 100 of random vertical
lines in a canopy where canopy height is 100. The objective of the simulation was to
estimate the parameters in eq (8). The simulation mean is the mean of the replications. The
simulation variance is computed directly from the 1000 replicated parameter estimates.
The Hessian variance is the mean of the variance estimates provided by the inverse Hessian
matrix for each replication. The min and max values from the 1000 replications are given.

Simulation Hessian Simulation
Parameter Mean Variance Variance Min Max
a -4.614 0.0415 0.0410 -5.332 -4.052
b 2.145 0.1722 0.1668 0.980 3.537

1.4 Comparison with MacArthur and Horn estimator

The (MacArthur and Horn , 1969) estimator for the number of leaves between 2 heights, h1

and h2, is ln(φ(h1)/φ(h2)), which is the log of the ratio of the probabilities of no leaves
up to h1 and h2. The discrete version of φ(h) for vertical lines divided into bins is,

p̃h =
j<bh∏
j=1

(1− pj) (11)

where bh is the bin that contains the height of interest.
The required probabilities for the (MacArthur and Horn , 1969) estimator are simulated

using eq (11) and logistic equation (8) with parameters a = −4.6, b = 2.1. The actual num-
ber of leaves between h1 and h2 is given by eq (10) as, {Fa,b(h2/H)− Fa,b(h1/H)} ∗H .
The comparison for selected h1, h2 pairs is given in Table (2). The comparisons are made
from the lower end of the first bin until the mid-point of the second bin in an effort to com-
pensate for the effect of the so-called actual number being based on discretizing and then
comparing to the MacArthur and Horn (1969) continuous calculation. The results (Table
2) indicate that the MH method performs well when it is supplied with exact probabilities.

Table 2: Comparing the MacArthur and Horn (1969) estimate of number of leaves between
heights h1 and h2 with the actual value as computed with equation (8) with parameters
a = −4.6, b = 2.1.

h1, h2 Actual MH MH/Actual
0,24.5 0.318 0.312 0.981
25,49.5 0.532 0.524 0.985
50,74.5 0.886 0.880 0.993
75,99.5 1.461 1.468 1.005
0,100 3.280 3.354 1.022

1.4.1 Simulated comparison of MacArthur-Horn with Maximum Likelihood

Considered here is a simulated application of the MHE versus the mle with the same sim-
ulation method that was used above to demonstrate the properties of the mle. The example
application from MacArthur and Horn (1969) is followed and estimates are obtained of the
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expected number of leaves between several height pairs (h1, h2) using the MHE which can
be compared to the mle using sample sizes n = 16 and n = 100.

The bias is small for both methods (Table (3), but the ratio of mean squared error (mse)
indicates that the mse is 2-3 times larger for the MHE method. Another disadvantage of the
MHE approach is that the estimator can result in division by 0 for some height pairs. This
occurs when all samples had their first leaf before h2 causing the sample based estimate of
φ(h2) = 0. This was avoided by not going above h2 = 50 in the simulation. Therefore,
the simulation actually understates the mse of the MacArthur and Horn (1969) method.

Table 3: Comparing the MacArthur and Horn (1969) and maximum likelihood estimators
for number of leaves between heights h1 and h2 with sample sizes n = 16 and n = 100.
A simulation was performed with 1000 replications to compute the mean, bias and mse
for each method. The samples were simulated with equation (8) with parameters a =
−4.6, b = 2.1.

—n=16— —n=100—
h1, h2 10,25 25,50 10,50 10,25 25,50 10,50

mle
mean 0.220 0.584 0.804 0.216 0.550 0.766

bias 0.003 0.032 0.035 -0.001 -0.003 -0.003
mse 0.007 0.034 0.061 0.001 0.004 0.007

MHE
mean 0.227 0.595 0.822 0.218 0.560 0.778

bias 0.010 0.042 0.052 0.001 0.007 0.008
mse 0.020 0.085 0.107 0.003 0.011 0.015

MHE/mle mse 3.07 2.52 1.75 2.85 3.27 1.96

2. Discussion

A maximum likelihood method was developed for estimating the parameters of a foliage
density function (fdf), which gives a profile of the leaf density in a forest canopy. The
first example application showed that the method can recover the unknown parameters
in a user supplied fdf. It was then demonstrated that the (MacArthur and Horn , 1969)
estimator (MHE) for the number of leaves between two heights works well when the exact
probabilities that it requires are supplied. However, the MHE probabilities must come from
sample data, which can produce highly variable estimates as pointed out by MacArthur and
Horn (1969). The mle method presented here uses the sample data to estimate a small
number of fdf parameters, and then any aspect of the canopy profile can be estimated from
the fdf.

The second simulated application demonstrated that the mse of the MHE is 2-3 times
greater than the mle for the lower half of the canopy. Our simulation understated the vari-
ance of the MHE, because it avoided problematic upper canopy heights where the MHE
can fail due to division by 0. The simulated comparison was based on estimating the ex-
pected number of leaves between two heights. The expected number of leaves above a point
in the forest could be used for the same purpose as leaf area index (Radke and Bolstad ,
2001). For example, it can serve as a relative index of photosynthetic capacity. Therefore,
the most valuable estimate from the fdf is likely to be the number of leaves from ground
level up to total canopy height, H. In order to get this estimate with the MHE, one would
have to ensure that the sample has at least one observation with no leaves, as pointed out
by MacArthur and Horn (1969). The mle does not impose this requirement.
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A downside of the mle method, as presented here, is that it reduces the continuous
height measurement to the first leaf into discrete bins. Therefore, any height measurement
that falls within a bin is treated the same. In practice, this may not be important given the
fact that leaves are not actually at fixed locations, since branches bend and leaves flutter in
the wind. A small bin width of 1 foot or 100 cm should not downgrade the precision of the
final estimates by a practically meaningful amount.

In fact, the discrete version of φ(h) in eq (11) will converge to the continuous result
in MacArthur and Horn (1969) as bin width is reduced. The MHE is derived from the
following recursive equation for the probability of no leaves up to h+ dh,

φ(h+ dh) = φ(h)(1 − D(h)dh) (12)

where the “bin width” would be dh and the probability of a leaf being in the bin isD(h)dh.
It is clear that eq (11) could also be written in recursive form, and the bin width could be
decreased until eq (11) converges to eq (12).

Methods for estimating an fdf could be relevant for LiDAR (Popescu and Wynne ,
2004; Naesset et al. , 2013) applications that seek to profile forest canopies. The fdf
methods profile from below, whereas LiDAR profiles from above. As such, the methods
developed here and by MacArthur and Horn (1969) could have wider application after
some additional development.

3. Conclusions

The (MacArthur and Horn , 1969) method for estimating the number of leaves between
two heights has the advantage of being non-parametric. It is not necessary to specify the
fdf, D(h). However, the MHE requires sample estimates of the probability of no leaves to
heights, h1 and h2 for at least one height pair. The results depend on the accuracy of these
estimates and some samples lead to division by zero. Another issue is that it is not clear
how to place a confidence interval on the MHE.

An alternative maximum likelihood estimator was presented that requires the user to
specify a functional form for the fdf, Dβ(h). The sample data are then used to estimate the
unknown parameters, β. An asymptotic covariance matrix is available for the parameter
estimates using standard maximum likelihood theory. The, fdf can then be used to estimate
various aspects of the canopy profile, including the number of leaves between any pair of
heights, h1 and h2. A simulation indicated that the mle is considerably less variable than
the MHE.
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