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Abstract
Current status data arise in such areas as demography, economics, epidemiology and survival mod-
els. We propose a partially linear single-index additive hazards regression model for current status
data. The proposed model can model both linear and nonlinear covariate effects on the hazard and
it is a parsimonious model, since it does not use too many parameters. This is particularly impor-
tant for high dimensional data, which might suffer from “the curse of dimensionality”. Our model
reduces the dimension of the data through a single-index term. For the estimation, we use B-splines
to model the unknown cumulative baseline hazard function and the nonparametric covariate func-
tions. Asymptotic properties of the estimators are derived using the theory of counting processes.
Simulation studies are presented to evaluate our method. A renal recovery data set is analyzed to
illustrate the usefulness of our proposed model.

Key Words: Current status data, Single index model, Spline, Additive risk model, Counting
process

1. Introduction

In biostatistical applications usually the variable of interest is failure time ,that is, the time
of occurrence of some event for a sample of individuals. However, in many situations there
is limited information for a single observation about the event of interest. With current
status data, each subject is observed only once and the only information that we have is
that the failure of interest has occurred before or after the examination time. The failure
time is either left- or right-censored instead of being observed exactly. For example, events
such as the time to onset of nonlethal tumours, time to develop HIV, age at weaning or
age at incidence of non-fatal human diseases cannot be known exactly; the only informa-
tion that is available is a time interval that the event has happened in that period. Among
others, Turnbull [1976], Groeneboom and Wellner [1992], Jewell and van der Laan [1996]
and Sun [2006], have studied different methods to analyze current status data.

In analysis of survival data a popular choice is the Cox proportional hazards (PH)
model. For instance, in a study of current status data, Huang [1996] estimated the param-
eters of the PH model using profile likelihood approach. However, when we are interested
in the absolute hazards change instead of hazards ratio, or when the proportional hazards
assumption is violated, an additive hazards (AH) regression model may be more practical.
Similar to other models, the AH regression model enables to characterize different types
of relations between covariates and event time, which sometimes are quite demanding for
practitioners. It has been shown in some situations the AH model can be more plausi-
ble and interpretable than the Cox PH model (Lin and Ying [1994]; McKeague and Sasieni
[1994]).

Suppose T is time to occurrence of a certain event like tumor onset, C is the random
examination time, and Z(t) = (V (t)T , XT )T is the (p + q) dimensional covariate vector
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where V = (V1, · · · , Vp)T is the possibly time dependent p-dimensional linear component
up to time t, and X = (X1, · · · , Xq)

T is the q-dimensional non-linear component. To an-
alyze current status data, Lin et al. [1998] proposed the linear AH model where the hazard
function at time t, given the covariate value V (t) up to t, is assumed to take the following
form:

λ(t|V (t)) = λ0(t) + αTV (t), (1)

where λ0(·) is the unknown baseline hazard function and α is the q-dimensional regression
coefficient vector. They assumed a semiparametric PH model for the monitoring time and
made inference about the regression parameters of model (1) with current status data by
using the familiar asymptotic theory for the PH model with right censored data. However,
this condition on monitoring time may not be accurate in some applications and the analy-
sis does not make efficient use of data. Martinussen and Scheike [2002] studied model (1)
with current status data utilizing the semiparametric efficient score function in estimation.
Their approach has two advantages. First, the estimators are efficient and reach the semi-
parametric information bound; second, it does not involve any structured model assumption
for the monitoring time. Although their method provides efficient estimators, it is difficult
to use in practice due to numerical instability and the required considerable effort in imple-
mentation. Later, Lu and Song [2012b] suggested a simple method to estimate parameters
of model (1) with current status data in the context of Lin et al. [1998] by assuming that
the intensity of monitoring times could follow a PH model. They showed that by using
two counting processes instead of one as suggested by Martinussen and Scheike [2002],
not only the proposed estimator achieves the semiparametric information bound, but also
its implementation can be done easily using existing statistical software.

When a large number of covariates are considered, covariates often display more com-
plex effects than the linear format and there may exist interactions between them. In this
case, flexible models which could handle potential nonlinear effects of covariates with high
dimensionality are greatly desired. To incorporate possible nonlinear covariate effects,
Lu and Song [2012a] used polynomial splines and sieve maximum likelihood estimation
methods to estimate parameters of the partly linear additive hazards (PLAH) model:

λ(t|V (s), 0 ≤ s ≤ t,X) = λ0(t) + αTV (t) + φ1(X1) + · · ·+ φq(Xq), (2)

where φj(·)’s are unknown smooth functions, for each j = 1, · · · , q. They focused on effi-
cient estimation in model (2) and used polynomial splines to estimate both the cumulative
baseline hazard function with monotonicity constraint and the nonparametric regression
functions with no such constraint. They proposed a simultaneous sieve maximum likeli-
hood estimation for regression parameters and nuisance parameters, and showed that the
resultant estimator of regression parameters vector is asymptotically normal and achieves
the semiparametric information bound. Ma [2011] considered current status data with a
cured subgroup where subjects in this subgroup are not susceptible to the event of interest,
and assumed that the cure probability satisfies a generalized linear model with a known
link function. For subjects sensitive to the event, he used a PLAH model and investigated
penalized maximum likelihood estimation.

Another approach in handling high dimensional nonlinear covariate effects and avoid-
ing the “curse of dimensionality” is to use partially linear single-index models. In single-
index models time to the event of interest only depends on the nonparametric covariate
vector through an unknown smooth function ψ(·) which is called link function. For exam-
ple, Sun et al. [2008] suggested a partially linear single-index proportional hazards (PLSI-
PH) model with right-censored data and Shang et al. [2013] proposed PLSI-PH model to
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analyze nested case-control (NCC) data. They used a B-spline method to estimate the
unknown link function of the single-index term. Here, we propose a partially linear single-
index additive hazards (PLSI-AH) regression model to analyze current status data which
is a modification of Lu and Song [2012a] by assuming a semiparametric baseline hazard
function that depends on X through a single-index βTX . The linear covariates are time-
dependent and the nonlinear covariates are time-independent. The proposed model can
model both linear and nonlinear covariate effects on the hazard and it is a parsimonious
model, since it does not use too many parameters. This is particularly important for high
dimensional data modelled by a nonparametric function, which might suffer from the curse
of dimensionality. Our model reduces the dimension of data through a single-index term.
Unlike the PH model for right-censored data, the AH model involves the baseline hazard
function in estimation. In our PLSI-AH model, we use B-splines to model the cumulative
hazard function and the nonparametric covariate function. Asymptotic properties of the
estimators are derived using the theory of counting processes. Another nice feature of our
proposed model is that the relative importance of the components ofX can be fully charac-
terized by the orientation vector β since the derivative of λ(t|Z) with respect to Xi, the ith
component of the nonlinear covariate vector X , is proportional to βi, thus βi characterizes
how fast λ(t|Z) changes with Xi, for each i = 1, · · · , n ( Ding et al. [2013]).

The paper is organized as follows. In Section 2, we introduce polynomial splines and
indicate required conditions and model assumptions. In Section 3, we present the com-
puting algorithms to implement the proposed estimation procedure. Section 4 concerns
the use of counting processes and martingales in order to obtain efficient estimators and
achieve their asymptotic properties. Section 5 presents simulation studies. In Section 6, we
discuss the application of our proposed model regarding the analysis of the renal function
recovery data.

2. Model Description and Estimation

Given the covariate vector Z(t) = (V (t)T , XT )T , the PLSI-AHM, in terms of the hazard
function of T conditional on the covariate history up to time t is defined as follows

λ(t|Z(s), 0 ≤ s ≤ t) = λ0(t) + αTV (t) + ψ(βTX), (3)

where α = (α1, · · · , αq)T and β = (β1, · · · , βp)T are q- and p-dimensional regression
coefficient vectors, respectively. The parameter β is also called “orientation vector”. Based
on Huang and Liu [2006] for the purpose of identifiability we have to put some constraints
on the orientation vector. First, since the sign of the regression coefficients should be
identified, we assume the first component of β to be positive, (i.e. β1 > 0) otherwise,
ψ(βTX) = ψ(−(−βTX)) and we cannot distinguish the two functions ψ(·) and ψ(−·)
. Second, because any constant scale can be absorbed in ψ(·) we can only estimate the
direction of β and the scale of it is not identifiable, so it is required that ‖β‖ = 1, where
‖a‖ = (aTa)1/2 is the Euclidean norm. The function λ0(t) is the baseline hazard function
corresponding to V (t) = 0 and X = 0 which is an unknown and unspecified nonnegative
function and ψ(·) is an unknown and smooth link function for the single-index term. On the
other hand, since any constant in ψ(·) can be assimilated in the baseline hazard function,
ψ(·) is not identifiable. Thus we impose ψ(0) = 0. In terms of cumulative hazard function
we can write model (3) as follows

Λ(t|Z(s), 0 ≤ s ≤ t) = Λ0(t) + αTV ∗(t) + tψ(βTX), (4)

where Λ0(t) =
∫ t

0 λ(s)ds is the cumulative baseline hazard function, and V ∗(t) =
∫ t

0 V (s)ds.
In the setting of current status data, we do not observe the values of T directly. Our ob-
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served data consist of independent samples of {Ci, δi, Vi(t), Xi, 0 ≤ t ≤ Ci}ni=1, drawn
from the population {C, δ, V (t), X, 0 ≤ t ≤ C}, where C is the monitoring time that is
continuous with the hazard function λc(t), and δ = I(C ≤ T ) is the censoring indicator.
We have δ = 1 if the event of interest has not occurred by time C otherwise δ = 0. T and
C are independent given the covariate vectors Z(t).

Here we assume that the baseline hazard function is unspecified, so in model (4) we
have two unknown functions which are ,in fact, our infinite-dimensional nuisance parame-
ters to be estimated. One of them is the cumulative baseline hazard function, Λ0(·), and the
other is the link function related to the single-index term, ψ(·). When we are dealing with
infinite-dimensional nuisance parameters, one solution is to use the sieve method. Based
on Sun [2006], the key idea behind this method is to approximate the infinite-dimensional
nuisance parameter by a sequence of finite-dimensional parameters, that is, the original
parameter space is approximated by a sequence of increasing finite-dimensional subspaces
(sieves). In our case, the original parameter spaces related to Λ0(·) can be the collection
of all nondecreasing functions, and the sieves can be, for instance, collections of non-
decreasing and continuous piecewise linear functions. A similar sieve space without the
monotonicity constraint can be assumed for ψ(·). For any given finite sample, estimation
of the finite-dimensional parameters α and β, along with infinite-dimensional parameters
Λ0(·) and ψ(·) can be carried out by maximizing the likelihood function over the product
of the parameter spaces for α, β and the sieves. In other words, one only needs to work
with a finite-dimensional parameter space by utilizing the sieve method. Considering the
idea of Lu and Song [2012a], we use the sieve method along with the B-spline smoothing
procedure to estimate Λ0(·) and ψ(·). In the following, for each function we define a sieve
space.

Before starting the estimation procedure, we assume the following conditions which
are needed in order to establish large sample properties of the estimators.

(A1) The finite-dimentional parameter spaces Θ1 for α and Θ2 for β are bounded sub-
sets of Rq and Rp, respectively. For any α0 6= α and β0 6= β we have P (αT0 V

∗ 6=
αTV ∗|C) > 0 and P (βT0 X 6= βTX) > 0.

(A2) For b ≥ 1, Λ0 and ψ have positive and continuous bth order derivatives on their
supports, and (i) If C has the support [ac, bc] such that 0 < ac < bc < ∞, then for any
c ∈ [ac, bc], E(V ∗|C = c) = 0. (ii) for the true parameter β0 and the true function
ψ0(βT0 X), E(ψ0(βT0 X)) = 0.

(A3) (i) Covariates V ∗(t) and X have bounded supports which are subsets of Rq (for
t ∈ [ac, bc]) and Rp, respectively. (ii) If we denote the distribution of T by F0 such that
F0(0) = 0, then the support of C is strictly contained in F0, that is for tF0 = inf{t :
F0(t) = 1}, 0 < ac < bc < tF0 .

(A4) Λ0(C) + α0V
∗(C) + Cψ0(βT0 X) > 0 for underlying parameter values α0, β0,

Λ0, ψ0.
(A5) For a small ε > 0 we have P (T < ac|C, V ∗, X) > ε and P (T > bc|C, V ∗, X) >

ε with probability one.
(A6) For r ≥ 1, there exists the rth partial derivative of the joint density f(c, v∗, x) of

(C, V ∗, X) with respect to c or x and it is bounded.
Condition (A1) is to ensure identifiability of the parameters, (A2) implies certain char-

acteristics in order to apply spline smoothing techniques, and (A3) bounds likelihood and
score functions away from infinity at the boundaries of the support of the observed event
time. Condition (A4) is required for the cumulative hazard function to be positive, and (A5)
ensures that the probability of being either left censored or right censored is positive and
bounded away from zero regardless of the covariate values. Condition (A6) requires for the
partial score functions (or partial derivatives) of the nonparametric components in the least
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favorable direction to be close to zero, so that the root-n convergence rate and asymptotic
normality of the finite-dimensional estimator can be obtained.

To estimate Λ0(·) at censoring time points C, we assume that the observed values of
C are defined in the finite interval [ac, bc], then we define the set of B-spline knots as
u0 < u1 < · · · < uKL+1 where u0 = ac, uKL+1 = bc and KL is a positive integer
denotes the number of B-spline basis functions such that KL = O(nκ) with 0 < κ < 0.5.
The reason of considering 0.5 as the upper limit for κ is that according to Stone [1980],
the optimal rate of convergence of a nonparametric estimator in an L2-norm typically has
the form n−p/(2p+1), p ≤ 1, thus to achieve that we have κ = 1/(2p + 1) which implies
that 0 < κ ≤ 1/(2p + 1) < 0.5. Then we make a partition of [ac, bc] using the B-
spline knots as follows: [u0, u1), [u1, u2), · · · , [uKL−1, uKL), [uKL , uKL+1]. We restrict
the choice of partitions by letting max1≤i≤KL+1(ui − ui−1) = O(n−κ). Let Ln be the
space of polynomial splines of order ρL ≥ 1, where each functional element of this space
is a polynomial of order ρL on each sub interval of our partition, and for ρL ≥ 2 and
0 ≤ r ≤ ρL−2, each functional element of this space is r times continuously differentiable
on [ac, bc]. Suppose Ln is the collection of nonnegative and nondecreasing functions Λ0(·)
on [ac, bc], then for any ,Λ0 ∈ Ln, we can write

Λ0(C) =

dfL∑
k=1

τkLk(C) = τTL(C), (5)

where L(C) = (L1(C), · · · , LdfL(C))T is the vector of B-spline basis functions with
Lk(C) ∈ Ln for each k = 1, · · · , dfL, τ = (τ1, · · · , τdfL)T is the vector of B-spline
coefficients and dfL = KL + ρL is the degree of freedom for B-spline. In order to Λ0(C)
be nonnegative and nondecreasing we have to put a constraint on the coefficients of the
basis functions, that is 0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τdfL . Based on Schumaker [1981] , both
non-negativity and monotonicity of Λ0(C) are guaranteed by this constraint.

Then, to estimate the other unknown function, ψ(·), first we consider an initial value
for the orientation vector β, say β(0), then assume that the interval [axb, bxb] is the support
for βT0 X values. In the same procedure as for Λ0, we define the set of knots as axb = w0 <
w1 < · · · < wKB+1 = bxb where KB shows the number of B-spline basis functions which
is a positive integer andKB = O(nκ) and max1≤i≤KB+1(wi−wi−1) = O(n−κ). Suppose
[w0, w1), [w1, w2), · · · , [wKB−1, wKB ), [wKB , wKB+1] is the partition of [axb, bxb] and Bn
be the space of polynomial splines of order ρB ≥ 1, with the same properties as Ln.

Let Ψn be the collection of ψ(·) functions on [axb, bxb], so we can write

ψ(βTX) =

dfB∑
l=1

γlBl(β
TX) = γTB(βTX), (6)

where B(βTX) = (B1(βTX), · · · , BdfB (βTX))T is the vector of local normalized B-
spline basis functions, Bl(βTX) ∈ Bn, γ = (γ1, · · · , γdfB )T is the vector of B-spline
coefficients and dfB = KB + ρB is the degree of freedom for this B-spline. Here we
also have to fulfill the constraints on β that we mentioned for identifiability purposes ( i.e.
β1 > 0 and ‖β‖ = 1).

Since our main purpose is to estimate α and β, then any reasonable choice of parti-
tions should work well. Under suitable smoothness assumptions Λ0(·) and ψ(·) can be
well approximated by functions in Ln and Bn, respectively. Therefore, we have to find a
member of Ln and Bn along with values for α and β that maximize the semiparametric
log-likelihood function.
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3. Implementation

Regarding the relation between the cumulative hazard and the survival functions, i.e. Λ(t|Z) =
− log{S(t|Z)} , we can rewrite model (4) at observation time C as follows

− log(p) = Λ0(C) + αTV ∗(C) + Cψ(βTX),

and through B-spline estimators for Λ0(C) and ψ(βTX) it is equivalent to

log(p) = −τTL(C)− αTV ∗(C)− CγTB(βTX), (7)

where p = p(C) = S(C|Z) = S(C|Z(s), 0 ≤ s ≤ t). Since for subject i, i = 1, · · · , n,
we have S(Ci|Zi) = P (Ci ≤ Ti) = E[I(Ci ≤ Ti)|Zi] = E(δi|Zi). By assuming δi as
a binary response, we can consider model (7) as a generalized linear model (GLM) with
linear predictor −ξ = −{τTL(C) + αTV ∗(C) + CγTB(βTX)} and log-link. Then we
use GLM methods, available in various computer software packages, to estimat parameters
α, β, τ and γ. We used “glm” function in the R package to do that. The estimated values
obtained in this step are considered as the initial values of the parameters of our model for
the next step which is maximizing the semiparametric log-likelihood function subject to
the constraints.

For given Zi(t)’s, i = 1, · · · , n, the likelihood function is proportional to

L(α, β,Λ0, ψ) =
n∏
i=1

[S{Ci|Zi(Ci)}]δi [1− S{Ci|Zi(Ci)}]1−δi ,

where S(t|Zi(t)) = exp{−Λ(t|Zi(t))} is the survival function of failure time T condi-
tional on covariatesZi(t) = (V T

i (t), XT
i )T . Based on (4) we have S(t|Zi(t)) = exp{−Λ0(t)−

αTV ∗i (t) − tψ(βTXi)}. Thus we can write the semiparametric log-likelihood function as
follows

`(α, β,Λ0, ψ) =

n∑
i=1

[δi log{exp(−Λ0(Ci)− αTV ∗i (Ci)− tψ(βTXi))}

+ (1− δi) log{1− exp(−Λ0(Ci)− αTV ∗i (Ci)− Ciψ(βTXi))}].

Since we can not observe the exact failure times and only the values of S(t) at the
observation times Ci affect the likelihood function, without loss of generality, we can fo-
cus only on the maximization of l(α, β,Λ0, ψ) over all non-increasing step functions with
jumps only at theCi. By the sieve method, we plug in the B-spline approximations of Λ0(·)
and ψ(·) obtained from (5) and (6) into the semiparametric log-likelihood function. So we
have the log likelihood function as follows

`(α, β, τ, γ) =
n∑
i=1

[δi log{ exp(−τTL(Ci)− αTV ∗i (Ci)− CiγTB(βTXi))}

+ (1− δi) log{ 1− exp(−τTL(Ci)− αTV ∗i (Ci)− CiγTB(βTXi))]. (8)

Now we can estimate the parameters of our regression model, (α, β, τ, γ), by maxi-
mizing the log-likelihood function given in (8) which has a parametric form after using
B-spline approximated values of the infinite-dimensional nuisance parameters. To maxi-
mize (8) we used sieve method through an iterative algorithm subject to some constraints
on coefficients τ and β which we mentioned in Section 2, i.e. 0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τdfL
for non-negativity and monotonicity of Λ0(C) and β1 > 0 and ‖β‖ = 1 for the purpose of
identifiability in ψ(XTβ).
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Suppose we want to maximize the log-likelihood function `(θ) as our objective function
subject to some constraints gu(θ) and obtain an estimator for θ. For this respect, we have
to use one of the methods for solving a constrained optimization problem. The method we
used here is known as the adaptive barrier algorithm which is defined as follows.

Definition: (Barrier algorithm) In the case of barrier methods, a term is added that
favors points in the interior of the feasible region over those near the boundary. Consider
the problem of minimizing {f(θ) : θ ∈ Sθ}, where f is a continuous function on Rn and
Sθ is a constraint set in Rn. Here, and in most applications, Sθ is defined explicitly by a
number of functional constraints such that Sθ = {θ : gu(θ) ∈ Gθ, u = 1, · · · , U}. In this
case, we define an augmented objective function as follows

fa(m, θ) = f(θ) +m

M∑
u=1

1

gu(θ)
,

wherem is the barrier parameter. fa is only valid for those interior points that all constraints
are strictly satisfied gu(θ) ≥ 0 for all u = 1, · · · ,M . fa(m, θ) is called barrier function.

The algorithm we used to maximize ` iterates the following steps.

• Step 0: Start with initial values β(0), α(0), τ (0), γ(0), where α0, τ0, γ0 are obtained
from the GLM method.

• Step 1. Given current values α(k), τ (k), γ(k) update the value of β(k) by maximizing
the log-likelihood function given in (8) subject to 1 −

∑p
l=2 β

2
l > 0 which satisfies

the constraints β1 > 0 and ‖β‖ =
√∑p

l=1 β
2
l = 1. We use a non-linear constrained

optimization algorithm named Barrier method which is implemented by “constrOp-
tim.nl” function in R package “alabama”, to maximize ` with respect to β. So, we
obtain β(k+1) in this step.

• Step 2. Having β(k+1), update the values of α(k), τ (k), γ(k) simultaneously through
GLM with the binary response δ, log link and linear predictor ξ = −τ (k)TL(C) −
α(k)TV ∗(C) − Cγ(k)TB(β(k+1)TX). Then by letting ω = (τT , αT , γT )T , we use
Newton-Raphson method to obtain ω(k+1) = (τ (k+1)T , α(k+1)T , γ(k+1)T )T which
is implemented by “nlminb” function in R. “nlminb” uses a quasi-Newton algorithm
that fills the same niche as the “L-BFGS-B” method in “optim”. It seems a bit more
robust than “optim” in that it is more likely to return a solution in marginal cases
where “optim” will fail to converge.

• Step 3. In the same procedure as Step 1, considering 0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τdfL as
the constraint on τ , we update the value of τ (k+1) using “constrOptim.nl” and obtain
τ (k+2).

• Step 4. Update α(k+1) based on the estimated increasing Λ(C) = τ (k+2)TL(C)

and ψ(β(k+1)T )X) = γ(k+1)TB(β(k+1)T )X). Again we use the Newton-Raphson
method implemented by “nlminb” in R to obtain α(k+2).

• Step 5. Repeat Step 1 to 4 until a certain convergence criterion is met.

Finally, we consider β(k+1), τ (k+2), α(k+2) and γ(k+1) as the estimated values for β,
τ , α and γ, respectively.
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4. Inference

4.1 Efficient Estimation

Efficient score and information bounds for the additive hazards model with current status
data have been studied by Martinussen and Scheike [2002]. In their model there is a linear
component plus the unknown cumulative baseline hazard function as the nuisance param-
eter. In our paper, we are faced with two infinite-dimensional components along with the
linear part.

In our semiparametric model, the observed data C1, · · · , Cn are iid random vectors
which have density belonging to the class P = {P (c, α, β,Λ, ψ), α ∈ Θ1, β ∈ Θ2,Λ ∈
L, ψ ∈ Ψ} where Θ1 ⊆ Rq and Θ2 ⊆ Rp, Ψ is some set of smooth real-valued functions ψ
of βTX , satisfying E[δψ(βTX)] = 0 and E[δψ2(βTX)] < ∞ and L is the collection of
absolutely continuous increasing functions on R+. One way to handle two nuisance param-
eters is projecting the score of the finite-dimensional component onto the space orthogonal
to the sumspace of the tangent spaces of the two nuisance parameters. But since we have
a nonparametric component with a coefficient vector inside, the projection is not guaran-
teed and thus this method is not practical in our case. Although it is possible to obtain the
efficient score for our model more directly, we consider ψ(·) as a B-spline function for a
reasonable approximation, and take Λ(·) as the only infinite-dimensional parameter of the
model. So by replacing ψ(βTX) with the B-spline function obtained in (6), our model
belongs to the class P = {P (c, α, β, γ,Λ), α ∈ Θ1, β ∈ Θ2, γ ∈ Θ3,Λ ∈ L} where
Θ3 ⊆ RdfB , Λ is the only infinite-dimensional parameter. Using the projection theory, it is
not hard to derive the efficient score and the information bound for (α, β, γ).

Based on observations {Ci, δi, Vi(t), Xi, 0 ≤ t ≤ Ci}ni=1 we define two counting pro-
cessesN1i(t) = δiI(Ci ≤ t) andN2i(t) = (1−δi)I(Ci ≤ t) which are step functions, zero
at time zero, with jumps of size one only and no two component processes jumping at the
same time. The process N1i(t) jumps when subject i is monitored at time t and and found
to be failure-free, and N2i(t) jumps when subject i is monitored at time t and found that it
has experienced failure. Then let Ni(t) = N1i +N2i = δiI(Ci ≤ t) + (1− δi)I(Ci ≤ t),
and also let Yi(t) = I(t ≤ Ci) be the at risk process for time point t. Here we assume the
distribution of C is continuous with hazard function
nui = nui(t) = λc(t|Zi) at time t conditional on covariate vector Zi = Zi(t) for each
i = 1, · · · , n.

Noted in Martinussen and Scheike [2002], the intensities of N1i and N2i are as follows

λN1i(t) = Yi(t)νi(t)pi(t) = Yiνipi

λN2i(t) = Yi(t)νi(t)(1− pi(t)) = Yiνi(1− pi),

where, as we mentioned before, pi = pi(t; Λ, θ) = S(t|Zi) = e−Λ(t|Zi) for 0 < t ≤ Ci,
θ = (βT , αT , γT )T and i = 1, · · · , n. If we replace ψ(βTX) by the B-spline obtained
from (6), we have pi = exp{−Λ0(t)− αTV ∗i (t)− tγTB(βTXi)}.

Using λN1i and λN2i , we define M1i and M2i as their corresponding compensated
counting processes, respectively as:

M1i(t) = N1i(t)−
∫ t

0
Yi(s)νi(s)pi(s)ds

M2i(t) = N2i(t)−
∫ t

0
Yi(s)νi(s)(1− pi(s))ds.

Based on Martinussen and Scheike [2002], M1 and M2 are martingales.
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The log-likelihood functions can be written as follows

` = `(α, β,Λ, ψ) =

n∑
i=1

{
∫

(log pi) dN1i +

∫
(log (1− pi)) dN2i}. (9)

Parametric submodel for the nuisance parameter Λ is a mapping of the form η → Λ(η)

where {Λ(η) : η ∈ R} characterizes Λ by a finite-dimensional parameter η in which Λ =
Λ(0) and

∂Λ(η)

∂η
(t) = a(t) = a. (10)

Having censoring time C observed, the marginal score vector for θ is obtained by partially
differentiating `(θ,Λ(η)) given in (9) with respect to θ such that

Sθ =
∂`

∂θ
= (STα , S

T
β , S

T
γ )T ,

where Sα = ∂`
∂α , Sβ = ∂`

∂β and Sγ = ∂`
∂γ . So by knowing that dN1i(t) = dM1i(t)+Yiνipidt

and dN2i(t) = dM2i(t) + Yiνi(1− pi)dt we have

Sθ =

∫
U∗
(

p

1− p
dM2 − dM1

)
,

where p = p(t; Λ, θ) = S(t|Z) = e−Λ(t|Z) for 0 < t ≤ C and

U∗ = U∗(t) = ((V ∗(t))T , (tXγTB′(βTX))T , (tB(βTX))T )T

is a (q + p+ dfB)× 1 vector.
Then for Λ we have SΛ(a) = ∂l

∂Λ×
∂Λη
∂η , so considering (10) we have the score operator

associated with the cumulative hazard function Λ as follows

SΛ(a) =

∫
a(t)

(
p

1− p
dM2 − dM1

)
.

Under conditions (A1) to (A6), the efficient score for the finite-dimensional parameter
θ is the difference between its score vector, Sθ, and the score for a particular submodel of
the nuisance parameter, SΛ(a). The particular submodel is the one with the property that
the difference is uncorrelated with the scores for all submodels of the nuisance parameters.
Therefore the efficient scores for θ is as follows

S∗θ = Sθ − SΛ(a).

Define L2(PC) = {a : E[‖a(C)‖2p(C)(1− p(C))−1] <∞}, and let AΛ = {SΛ(a) : a ∈
L2(PC)}. Then to obtain the efficient score and information bound, we project Sθ onto the
space AΛ and try to find from all functions a(t) ∈ L2(PC) the one for which SΛ(a) is the
“closest” to Sθ. Call this a-function a∗(t) = a∗ with score SΛ(a∗). By the L2 theory, this
closest score is the one for which Sθ − SΛ(a∗) is orthogonal to any other SΛ(a). Thus,

E(S∗θSΛ) = E{[Sθ − SΛ(a∗)]SΛ(a)} (11)

should equal 0, for every a. (11) is the orthogonality equation for θ and it is equivalent to

E{
∫

(U∗ − a∗)( p

1− p
dM2 − dM1)

∫
a(

p

1− p
dM2 − dM1)} = 0, (12)

JSM 2013 - IMS

2783



then equation (12) is equivalent to

E

[∫
(U∗ − a∗)a p2

(1− p)2
Y ν(1− p)dt+

∫
(U∗ − a∗)aY νpdt

]
=

∫ (
a

{
E

[
U∗Y ν(

p

1− p
)

]
− a∗E

[
Y ν(

p

1− p
)

]})
dt

= 0,

so we obtain

a∗ = E

[
U∗Y ν

p

1− p

]
E−1

[
Y ν

p

1− p

]
.

By plugging in a∗ into (12) we have the desired efficient score as follows

S∗θ =

∫ {
U∗ − E

[
U∗Y ν

p

1− p

]
E−1

[
Y ν

p

1− p
)

]}{
p

1− p
dM2 − dM1

}
. (13)

The empirical version of (13) gives us the score function of interest, namely

S(θ,Λ) =

n∑
i=1

∫ {
U∗i −

S
(θ)
1

S
(θ)
0

}{
pi

1− pi
dM2i − dM1i

}
,

where

S(θ)
u = S(θ)

u (t) = S(θ)
u (t) =

∑
i

pi
1− pi

Yiνi[U
∗
i ]⊗u, for u = 0, 1,

with ⊗ denotes Kronecker operation, defined as b⊗0 = 1, b⊗1 = b and b⊗2 = bbT . Since
νi = νi[t|Zi(t)] is an unknown function of the covariate vector, Zi(t) = (V T

i (t), XT
i )T , so

S
(θ)
u has to be estimated. In the same way as Martinussen and Scheike [2002], we suggest

the simple kernel estimator for νi as follows

Ŝ(θ)
u =

n∑
i=1

∫
p̂i(s)

1− p̂i(s)
Yi(s)[U

∗
i ]⊗uν̂i(s|Zi(s))ds, for u = 0, 1,

where p̂i(s) = exp{−Λ̂(s) − αTV ∗i (s) − sγTB(βTXi)} and ν̂i(s|Zi(s))ds = Kb(s −
t)dNi(s), Kb(·) = (1/b)K(·/b), and b > 0 is the bandwidth of the kernel estimator. We
assume that

∫
Kb(u)dt = 1,

∫
uKb(u)dt = 0 and the kernel has compact support. Our

sieve estimator of θ is equivalent to the solution of the estimated empirical efficient score
equation

S(θ, Λ̂) = 0, (14)

where Λ̂ = Λ̂(t) is assumed to be a predictable estimator of Λ such that Λ− Λ̂ = op(n
− 1

4 ).
The information for θ0 = (βT0 , α

T
0 , γ

T
0 )T is given as follows

I(θ0) = E(S∗θ0)⊗2 = E[〈
∫ {

U∗ − E(U∗Y ν
p

1− p
)E−1

(
Y ν

p

1− p

)}
{ p

1− p
dM2 − dM1}〉]

= E[

∫ {
U∗ − E(U∗Y ν

p

1− p
)E−1

(
Y ν

p

1− p

)}⊗2 p

1− p
Y νdt].
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We can estimate the semiparametric efficient information bound as follows be taking
as θ = θ̂,

Î(θ) =
1

n

n∑
i=1

∫
Dθ

(
U∗i −

Ŝ
(θ)
1

Ŝ
(θ)
0

)
{ p̂i

1− p̂i
dN2i − dN1i}

− 1

n

n∑
i=1

∫ {
U∗i −

Ŝ
(θ)
1

Ŝ
(θ)
0

}
U∗Ti

p̂i
(1− p̂i)2

dN2i,

where

Dθ

(
U∗i −

Ŝ
(θ)
1

Ŝ
(θ)
0

)
= − Ŝ0S̄1 − S̄0Ŝ1

Ŝ0
2 , and

S̄u = −
∑
i

p̂i
(1− p̂i)2

Yi[U
∗
i ]⊗(u+1)ν̂i, u = 0, 1.

4.2 Asymptotic Properties

Since S(θ0, Λ̂) is a martingale so it still has asymptotic mean zero, the score equation
in (14) will produce consistent estimators even when Λ̂ is not a consistent estimator of
Λ. Under regularity conditions (A1) to (A6) and with a consistent estimator Λ̂ of Λ, If κ
satisfies the restrictions of 0.25/s < κ < 0.5 and κ(s+ r) > 0.5, where s and r are orders
of differentiation postulated in (A2) and (A6) respectively, then using the central limit
theorem for martingales we can say that n1/2S(θ0, Λ̂) converges in distribution to a normal
distribution with mean zero and covariance matrix Σ1 which is consistently estimated by

Σ̂1 =
1

n

n∑
i=1

∫ (
U∗i −

Ŝ
(θ)
1

Ŝ
(θ)
0

)(
U∗i −

Ŝ
(θ)
1

Ŝ
(θ)
0

)T {(
p̂i

1− p̂i

)2

dN2i + dN1i

}
,

where Σ̂1 converges in probability to Σ1 and therefore, we have n1/2(θ̂ − θ0) converges in
distribution to a mean zero normal distribution with covariance matrix Σ = I−1(θ0)Σ1I

−1(θ0).
The robust sandwich estimator of the variance is given by Σ̂ = Î−1(θ̂)Σ̂1Î

−1(θ̂).
With the consistent estimator of Λ we can conclude that Σ̂1 = Î(θ̂) + op(1), thus,

n1/2(θ̂−θ0) converges in distribution to a mean zero random vector with covariance matrix
I−1(θ0) estimated by Î−1(θ̂). Therefore, our obtained estimators are efficient.

5. Simulation Studies

To assess the finite-sample performance of the methods we explained in the previous sec-
tions, we present a simulation study for the estimation of parameters of our model. The
failure time, T , is generated from model (3) that is from exponential distribution with rate
λ(t|V,X) = λ0(t)+αT0 V +ψ(βT0 X) where λ0(t) is assumed to be a constant equals λ0 =
7, α0 = (0.5,−1)T , β0 = (2,−1,−1)T /

√
6 and the p = 2 dimensional linear covariate

vector V = (V1, V2)T and the q = 3 nonlinear covariate vector X = (X1, X2, X3)T where
X1, X2, X3 ∼ Uniform(−4, 4), V1 ∼ Uniform(1, 2)− 1.5 and V2 ∼ Bernoulli(0.5)− 0.5.
The single-index function is defined as ψ(βT0 X) = 5 × sin(βT0 X). The covariates satisfy
conditions (A1) and (A2) since E(V1) = E(V2) = E(ψ(βT0 X)) = 0. The censoring
time, C, is generated from exponential distribution with rate λc0 = 4, confined in interval
[0.1, 1.2]. As explained before, we used B-splines to approximate the unknown curves.
Here we considered the number of knots equals 6 for Λ and 8 for ψ(·). The simulation is
replicated 500 and 1000 times for sample sizes equal to n = 400 and 800, respectively.
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Table 1: Simulation Results for PLSI-AHM
Simulation times S=500 S=1000

True values Sample size n=400 n=800 n=400 n=800
β1= 0.816 β̂1 0.804 0.805 0.813 0.813

(sd) ( 0.043) (0.043 ) ( 0.025) ( 0.025 )
β2= -0.408 β̂2 -0.409 -0.409 -0.410 -0.410

(sd) (0.062 ) ( 0.062 ) ( 0.038 ) ( 0.038 )
β3= -0.408 β̂3 -0.419 -0.418 -0.408 -0.408

(sd) ( 0.063 ) ( 0.062 ) ( 0.036 ) ( 0.037 )
α1= 0.5 α̂1 0.396 0.410 0.439 0.456

(sd) ( 1.361 ) ( 1.345 ) ( 0.885 ) ( 0.898 )
α2= -1 α̂2 -0.910 -0.912 -0.897 -0.896

(sd) ( 0.888 ) ( 0.839 ) ( 0.555 ) ( 0.568 )

Table 1 summarizes the resulted estimates for α and β with the standard deviations in
the brackets. As it is shown in the table, the estimated values are very close to the true
parameter values.

6. Real Data Analysis

Acute kidney injury (AKI) is a typical kidney disease syndrome with substantial impact
on both short and long-term clinical outcomes. Identifying risk factors associated with
renal recovery in patients requiring renal replacement therapy (RRT) can help clinicians
to develop strategies to prevent non-recovery and improve patient’s quality of life. At
University of Michigan Hospital, a study was conducted to characterize survival and renal
outcomes of hospitalized patients with AKI requiring RRT, both during hospitalization and
up to 1 year following RRT initiation. The primary outcome of interest was the recovery
of renal function to the point of no longer necessitating maintenance dialysis in patients
who initially required RRT due to AKI during the index hospitalization. In this study they
conducted a single-center, retrospective analysis of 170 hospitalized adult patients with
AKI attributed to acute tubular necrosis who required inpatient initiation of RRT. Data
collection included patient characteristics, laboratory data, details of hospital course and
degree of fluid overload at RRT initiation. The primary outcome was recovery of renal
function to dialysis independence. For each of the patients, his/her time of the inception
of dialysis was recorded along with time of hospital discharge, which may be regarded as
a monitoring time. In this study, the investigators only observed patient’s current status of
renal recovery at discharge time but did not know exactly when renal function recovery
occurred. More details concerning the study background and preliminary findings can be
found in Heung et al. [2012]. Lu and Song [2012a] analyzed this data using PL-AH model.

Here we applied our proposed PLSI-AH model to assess the relationship between the
hazard of occurrence of renal recovery and the clinical factors, including baseline serum
creatinine level, use of vasopressor, age and gender. Let T be time which is the number
of days from the time of starting dialysis to the date of renal function recovery, and let C
be monitoring time given as of the time of hospital discharge. Through the preliminary
analysis of Heung et al. [2012], two baseline covariates, baseline serum creatinine (BScr,
varying between 0.5 and 5.6) and use of vasopressor (VP, binary) are important clinical
predictors, as well as age (Age, varying between 17 and 94 years) and gender (Gender,
binary). VP is coded as 1 for Yes and 0 for No. Gender is coded as 1 for male and 0 for
female.
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Figure 1: Sieve B-spline estimation of two curves Λ and ψ. The solid lines stand for the true
curves, the dashed lines illustrate the estimated curves and the doted lines show the 95% confidence
intervals. The left figure depicts the resulted curves with sample size n = 400 and simulation times
S = 500 and the right one shows the results with n = 800 and S = 1000

Denote the time of starting dialysis to the date of renal recovery by T , Time of hospital
discharge byC, Use of vasopressor by V , Gender by V2, Baseline serum creatinine level by
X1, Age by X2 and the indicator of renal recovery at the time of discharge by δ = I(C ≤
T ). Let λ(t;V,X) be the hazard function of recovery time, T , where covariate vectors
V = (V1, V2)T and X = (X1, X2)T . Model (3) is applied to establish a relationship
between the hazard function of T and the four covariates. The parameter estimates are
α̂1 = −0.085, α̂2 = 0.0104, β̂1 = 0.856 and β̂2 = −0.517 which are close to what we
expected from previous analysis. More analysis of this data set is postponed to our future
work.
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