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Abstract
In this paper, we consider a multivariate smoothing problem with correlated errors and
correlated derivatives of the curves. Full Bayesian inference is introduced for the smoothing
spline, the unknown covariance matrix of the errors and a symmetric smoothing parameter
matrix. A prior is proposed on the symmetric smoothing parameter matrix, and Markov
Chain Monte Carlo (MCMC) algorithms are developed for Bayesian computation. The
proposed method is then applied to estimate the trends of abnormal surface temperature
in ten geographical zones.
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1. Introduction

Climate change is one of the most important subjects of scientific research of our
time. Unbiased research on the causes and policy responses to global warming de-
pend on accurate estimates of the trend of earth surface temperature. Estimates
of the trend are based on temperature data measured in meteorological stations.
The data contain measurement errors. Measurement errors stem from many sources
such as inference of surface temperature change by human activities near meteoro-
logical stations and limitations in the measurement near polar regions. The data
at different locations are also correlated (see Hansen and Lebedeff (1987)), which
suggests correlated errors and trends. The trends are likely to be complex. Be-
cause of fluctuations in regional trends, annual surface temperatures generally do
not move in lock step globally. For example, from 1940 to 1970 the temperature in
the Northern Hemisphere decreased by about 0.5C (see Hansen et al., 1981). The
complex trends of temperature in different locations may be modeled by a vector
of smooth and correlated curves.

These features of the data suggest the need to develop a method of estimating
multivariate trends that are correlated in the presence of potentially correlated
errors. We develop a Bayesian approach to multivariate smoothing by smoothing
splines. Suppose multivariate observations yyyi = (yi1, . . . , yip) are taken at points
t1 < · · · < tn, where −∞ < a ≤ t1 and tn ≤ b < ∞. Without loss of generality,
we can assume a = 0 and b = 1. In the corresponding spline smoothing problem, a
vector-valued unknown function ggg(s) = (g1(s), . . . , gp(s)) is chosen to minimize the
loss function with a penalty on roughness,

n∑
i=1

(yyyi − ggg(ti))ΣΣΣ
−1
0 (yyyi − ggg(ti))

′ +

∫ 1

0
ggg(k)(s)ΣΣΣ−1

1 (ggg(k)(s))′ds, (1)

where ggg(k)(s) = (g(1)(s), . . . , g(p)(s)). We can show that the minimizer of (1) is a
vector-valued natural spline of degree 2k − 1.
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In (1), ΣΣΣ0 and ΣΣΣ1 are p × p positive definite penalty matrices on the approxi-
mation error and the “roughness” of ggg(t). Throughout the paper we also refer to
them as covariance matrices. Using the notation “tr” for trace, the loss function
(1) can be rewritten as

tr

{
ΣΣΣ−1

0

[ n∑
i=1

(yyyi − ggg(ti))
′(yyyi − ggg(ti)) + ΣΣΣ0ΣΣΣ

−1
1

∫ 1

0
(ggg(k)(s))′ggg(k)(s)ds

]}
. (2)

When p = 1, the multivariate spline becomes a univariate smoothing spline, where
the smooth component can be modeled as the univariate spline g(t) that minimizes
the loss function

1

σ20

{ n∑
i=1

(yi − g(si))
2 +

σ20
σ21

∫ 1

0
[g(k)(s)]2ds

}
. (3)

In the smoothing spline literature, the noise-to-signal ratio η = σ20/σ
2
1 is called

the smoothing parameter. The smoothing parameter controls the balance between
fidelity to the data and smoothness of the fitted function.

The problem of spline smoothing has been thoroughly studied for univariate
models. See, for example, Wahba (1990) or Eubank (1999). Wahba (1985) and
Wecker and Ansley (1983) showed that a univariate smoothing spline corresponds
to a Bayesian linear mixed model and a state space model, respectively. Wang (1998)
allowed for serial correlation in the errors in a univariate smoothing spline problem.
A number of authors have considered restricted versions of multivariate smoothing
splines with multivariate dependent variables, e.g, Yee and Wild (1996), Fessller
(1991), and Wang et al. (2000). In these frequentist treatments of multivariate
splines, the error covariance matrix ΣΣΣ0 is unrestricted while ΣΣΣ1 is restricted to be
diagonal. These authors allow the penalty matrix ΣΣΣ0 to be treated as either known
(including the case where ΣΣΣ0 is a function of i) or estimated as the covariance of
residuals of univariate splines iteratively. In applications of multivariate models, the
components of the multivariate function ggg(t) may be influenced by common factors.
For instance, temperature of different zones have correlated trends. Restricting ΣΣΣ1

to be diagonal is inadvisable under such a scenario. In this study we treat both ΣΣΣ0

and ΣΣΣ1 as unknown and perform joint Bayesian inference on the covariance matrices
and ggg(t).

To our knowledge, the multivariate smoothing spline has not been treated in
this generality. Our contributions are as follows. First, we derive the minimizer
of (1). Second, we note that the multivariate analog of the univariate smoothing
parameter η is ΣΣΣ0ΣΣΣ

−1
1 , which is not symmetric and is overparameterized. We de-

fine a suitable multivariate smoothing parameter. Third, it is well known that the
univariate smoothing spline is equivalent to the Bayes estimate with a generalized
Gaussian prior (Kimeldorf and Wahba (1970).) There is also a Bayesian interpre-
tation to the multivariate case, which we exploit with a fully Bayesian analysis.
Informative priors are justifiable in some cases, but they may not be appropriate
in all applications. When the researcher has limited knowledge on the smoothness
of the spline, objective (non-informative) priors become useful. However, objective
priors may render the posterior improper in univariate linear mixed models (see e.g.,
Hill, 1965, and Hobert and Casella, 1996). For the univariate case, Sun et al. (1999)
and Speckman and Sun (2003) derived conditions on the priors of (σ20, σ

2
0/σ

2
1) that

give rise to a proper posterior for smoothing splines. For the general case with p
greater than one, analysis of objective priors is scant. The present study seeks to
fill this void.
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2. Multivariate Spline Smoothing

Problem (2) can be shown to be equivalent to finding a matrix ZZZ that solves

min
ZZZ

tr
{
ΣΣΣ−1

0 (YYY− ZZZ)′(YYY− ZZZ) + ΣΣΣ−1
1 ZZZ′QQQZZZ

}
. (4)

Here QQQ is the positive definite matrix of rank n− k from the univariate problem.
Now let yyy = vec(YYY) and zzz = vec(ZZZ). Using the fact that tr(AAABBBCCCDDD) =

vec′(DDD)(AAA ⊗ CCC′)vec(BBB′) for any conforming matrices AAA,BBB,CCC,DDD, (4) is equivalent
to

min
zzz

{
(yyy− zzz)′(ΣΣΣ−1

0 ⊗ IIIn)(yyy− zzz) + zzz′(ΣΣΣ−1
1 ⊗QQQ)zzz

}
. (5)

The solution to (5) is

ẑzz = (IIInp +ΣΣΣ0ΣΣΣ
−1
1 ⊗QQQ)−1yyy. (6)

2.1 The multivariate smoothing parameter

One central issue in defining the multivariate smoothing spline is to generalize the
smoothing parameter η when p = 1 in (3) to the general case, where the analog is
the matrix ΣΣΣ0ΣΣΣ

−1
1 in (2). However, ΣΣΣ0ΣΣΣ

−1
1 is not an ideal smoothing parameter

matrix because it is not symmetric and it is overparameterized with p2 parameters.
A matrix version of the smoothing parameter should be symmetric with p(p+1)/2
free parameters. We reparameterize (ΣΣΣ0,ΣΣΣ1) as

ΣΣΣ−1
0 = ΨΨΨ′ΨΨΨ, (7)

ΣΣΣ−1
1 = ΨΨΨ′ΞΞΞΨΨΨ, (8)

where ΨΨΨ is a p × p invertible matrix with p(p + 1)/2 free parameters and ΞΞΞ is
symmetric. The p × p positive definite matrix ΞΞΞ is a matrix version of the noise-
to-signal ratio or smoothing parameter. When p = 1, ΞΞΞ is exactly the smoothing
parameter σ20/σ

2
1. For p > 1, decompositions (7) and (8) imply ΞΞΞ = ΨΨΨ−TΣΣΣ−1

1 ΨΨΨ−1

and ΣΣΣ0ΣΣΣ
−1
1 = ΨΨΨ−1ΞΞΞΨΨΨ. With this definition, solution (6) becomes

ẑzz = (IIInp +ΨΨΨ−1ΞΞΞΨΨΨ⊗QQQ)−1yyy

= (ΨΨΨ−1 ⊗ IIIn)(IIInp + ΞΞΞ⊗QQQ)−1(ΨΨΨ⊗ IIIn)yyy. (9)

2.2 Bayes Estimates of zzz for Fixed (ΣΣΣ0,ΣΣΣ1)

Consider the model

yyyi = zzzi + ϵϵϵi, (10)

where ϵϵϵ′i ∼ N(0,ΣΣΣ0). The density (likelihood) of yyy given zzz and ΣΣΣ0 based on model
(10) is

f(yyy | zzz,ΣΣΣ0) =
1

(2π)
np
2 |ΣΣΣ0|

n
2

exp
{
−1

2
(yyy− zzz)′(ΣΣΣ−1

0 ⊗ IIIn)(yyy− zzz)
}
. (11)

Motivated by (5), we assume the partially informative normal distribution (Sun et
al., 1999) for zzz since QQQ typically does not have full rank,

f(zzz | ΣΣΣ1) ∝
∣∣∣ 1
2π

(
ΣΣΣ−1

1 ⊗QQQ
)∣∣∣1/2

+
exp

{
−1

2
zzz′(ΣΣΣ−1

1 ⊗QQQ)zzz
}
, (12)

where |AAA|+ is the product of positive eigenvalues of a nonnegative definite matrix
AAA. The following fact is immediate and its proof is omitted.
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Fact 1 For fixed (ΣΣΣ0,ΣΣΣ1), the conditional posterior of zzz given yyy is

(zzz | yyy,ΣΣΣ0,ΣΣΣ1) ∼ Npn(ẑzz,MMM), (13)

where ẑzz is given by (6) and

MMM = (ΣΣΣ−1
0 ⊗ IIIn +ΣΣΣ−1

1 ⊗QQQ)−1. (14)

Remark 1 For fixed (ΣΣΣ0,ΣΣΣ1), the solution of smoothing spline (6) coincides with
the posterior mean of zzz under the prior (12).

3. Priors for ΣΣΣ0 and ΣΣΣ1

A key aspect of Bayesian analysis is the choice of prior. For a full Bayesian analysis,
researchers must choose priors for the variances. Using the special case with p = 1
that independent priors on σ20 and σ21 are undesirable in the context of smoothing
splines.

As an alternative to independent priors on the variances, one can specify a prior
on η = σ20/σ

2
1. For example, if a researcher is ignorant on the relative size of the

variances, then it is reasonable to assume ξ = η
1+η is uniform on (0,1). One may

assign a corresponding prior on η and an independent prior on σ20. This will avoid
choosing priors that have unintendedly strong influence on the variance ratio.

When p = 1, Koop and Van Dijk (2000) suggest the prior

π(η) =
1

(η + 1)2
, η > 0. (15)

This is equivalent to assuming a Uniform (0, 1) prior for σ21/(σ
2
0 + σ21). It is easy

to see that the noise-to-signal ratio η = σ20/σ
2
1, and assume π(σ21/(σ

2
0 + σ21)) =

Uniform(0, 1). Then the prior for σ21/(σ
2
0 + σ21) and σ20/(σ

2
0 + σ21) are then π( 1

1+η )

and π( 1
1+ 1

η

) are Uniform(0, 1). Then the prior distribution of η is π(η) ∝ 1
(η+1)2

.

Moreover, the prior distribution of 1
η is π( 1η ) ∝

1
(1+ 1

η
)2
, which takes the same form

as that of η.
A common prior for a p × p covariance matrix ΣΣΣ is an Inverse Wishart type

prior, IWp(m,AAA), with density

[IW(ΣΣΣ | m,AAA)] ∝ |ΣΣΣ|−
m+p+1

2 etr(−1

2
ΣΣΣ−1AAA), (16)

where etr(·) stands for exp[tr(·)], m is often interpreted as degrees of freedom and
AAA is a known nonnegative definite matrix. The discussion based on the univariate
model suggests that assigning independent priors on ΣΣΣ0 and ΣΣΣ1 of the type (16)
renders unintended consequences on the matrix version of the noise-signal ratio.

Instead, we propose the following prior density for the multivariate noise-to-
signal ratio ΞΞΞ,

π(ΞΞΞ | b) =
b
(p+1)p

2 Γp(
2(p+1)

2 )(
Γp(

p+1
2 )

)2 |ΞΞΞ + bIIIp|−(p+1), (17)

where b > 0 is a scale parameter and Γp(
n
2 ) = π

p(p−1)
4

∏p
j=1 Γ(

n
2 −

j−1
2 ) for any n > p.

The prior (17) has two interesting features. First, the prior can be simulated through
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a hierarchical structure. Throughout the paper, we use “( )” for distribution and
“[ ]” for density.

When b = 1 in prior (17), despite the implied symmetry in the form of priors of
‘noise-signal ratio’ and ‘signal-noise ratio’, the prior is actually quite informative.
The penalty in (1) depends crucially on the scaling of t, which we assumed to be in
[0, 1]. It follows that the prior on η in the univariate case or Ξ in the multivariate
case must also have a scale factor. Unfortunately, it seems difficult to elicit a prior
on the variance of g(k), even in the univariate case.

The solution adopted by White (2006) is to elicit a prior in terms of the effec-
tive degrees of freedom of the smoother. From (9), the smoother matrix for the
multivariate problem is

S(ΞΞΞ) = (ΨΨΨ−1 ⊗ IIIn)(IIInp + ΞΞΞ⊗QQQ)−1(ΨΨΨ⊗ IIIn).

We define the effective degrees of freedom for a nonparametric linear smoother of
the form SSSyyy as

tr(S(ΞΞΞ)) = tr((IIInp + ΞΞΞ⊗QQQ)−1).

Following White (2006), we choose b so that the median of the distribution of
tr(S(ΞΞΞ)) under prior (17) is consistent with prior belief on the complexity of the
curves to be fitted. Complexity can be envisioned as the number of parametric terms
needed to fit the curve in a regression model. Of course, the complexity depends on
the amount of noise in the data as well as the number of observations. Less noise
or more observations will admit a more complex fit. In practice, we estimate the
median of the prior effective degrees of freedom by Monte Carlo simulation using a
hierarchical scheme.

When p = 1 the univariate version of prior (17) becomes

π(η) =
b

(b+ η)2
. (18)

The hyperparameter b can be selected in the univariate case based on the same
principle as in the multivariate case.

Our numerical simulations show that if b is the hyperparameter for univariate
spline, a reasonable hyperparameter for the corresponding p-dimensional multivari-
ate spline is pb.

Table 1: Median of Trace of the Smoother tr(S(ΞΞΞ)) with Hyper-Parameter pb in
Prior (17)

b 1 100 1000 2000

p = 1 53.7 17.8 10.4 8.9

p = 2 96.9 32.2 18.8 16.3

p = 3 136.3 45.5 26.7 23.1

p = 4 173.7 57.8 34.5 29.5

n=150. ΞΞΞ is generated from distribution (17).

For univariate cubic smoothing splines with ti = i, Shiller(1984) showed that
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the matrix QQQ in (4) is QQQ = FFF′
0FFF

−1
1 FFF0, where

FFF0 =

 1 −2 1 0 · · · 0 0 0
0 1 −2 1 · · · 0 0 0
...

...
...

... · · ·
...

...
...

0 0 0 0 · · · 1 −2 1


(T−2)×T

and FFF1 =
1

6

 4 1 0 · · · 0 0
1 4 1 · · · 0 0
...

...
... · · ·

... 1
0 0 0 · · · 1 4


(T−2)×(T−2)

.

The proposed prior for ΣΣΣ0 is type (16)

π(ΣΣΣ0) ∼ IWp(m0,QQQ0) ∝ |ΣΣΣ0|−
m0+p+1

2 etr(−1

2
ΣΣΣ−1

0 QQQ0).

If m0 = p + 1 and QQQ−1
0 → 0, the prior for ΨΨΨ approaches the right Haar (RH)

prior

πRH(ΨΨΨ) ∝
p∏

i=1

1

ψi
ii

, (19)

where ψii is the ith diagonal element of ΨΨΨ. For an iid normal (µµµ,ΣΣΣ0) population,
Berger and Sun (2008) showed that this right Haar prior is a matching prior (mean-
ing the posterior credible intervals is the same as frequentist confidence interval of
the same level). We propose an independent RH prior (19) for ΣΣΣ0 and prior (17)
for ΞΞΞ.

In the case of the univariate model p = 1, (19) is equivalent to

π(σ20) ∝
1

σ20
, (20)

which is also the Jeffreys type prior for the univariate case.

4. Application: Estimate the Trends in Earth Surface Temperature
Using Multivariate Splines

To remove seasonal variations within a year, annual averages of abnormal temper-
atures from 1880 to 2012 are used for estimation. The data are 1880-2012 annual
mean temperature anomalies in degrees Celsius in 10 zones: Zone 1: 24N-90N, Zone
2: 24S-24N, Zone 3: 90S-24S, Zone 4: 64N-90N, Zone 5: 44N-64N, Zone 6: 24N-44N,
Zone 7: Equator-24N, Zone 8: 24S-Equator, Zone 9: 44S-24S, Zone 10: 64S-44S.
The data are obtained from the website of NASA’s Goddard Institute for Space S-
tudies (http : //data.giss.nasa.gov/gistemp/tabledatav3/ZonAnn.Ts+dSST.txt).

Figure 1 plots the data of the ten time series and the smoothed trends. For each
zone, the same color is used for the upper and lower panel in the figure.

The estimated trends of temperature anomalies in different zones are quite s-
mooth and show strong co-movements. There is a considerable difference in the
magnitude of the trends. The estimated trend in Zone 4 (blue dot-dashed line)
increases sharply from 1880 to 1940s, then starts to decline from 1940s to 1970s,
and rises again from 1970s to 2012. The last stage of the increasing trend is approx-
imately convex in time, which indicates positive acceleration. To a lesser extent,
the estimated trends of Zone 5 (light blue dashed line) and Zone 1 (black solid line)
also exhibit the three-stage “increase-decrease-increase” pattern, and the timing of
the turning points coincide with those of Zone 4 trends. The estimated trends of
the remaining seven zones are very similar. All are flat from 1880 to 1970s and then
start a moderate rise.
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We now turn to the standard deviation-correlation matrix (i. e., a matrix with
standard deviations on the diagonal and correlations on the off-diagonals) of the
residuals of the ten zones.

.170 .351 .242 .641 .911 .648 .336 .308 .347 .057

.351 .148 .231 .118 .205 .495 .946 .923 .511 -.193

.242 .231 .117 .222 .158 .193 .186 .259 .598 .599

.641 .118 .222 .374 .484 .004 .053 .169 .166 .147

.911 .205 .158 .484 .251 .453 .178 .190 .261 .004

.648 .495 .193 .004 .453 .150 .549 .372 .367 .013

.336 .946 .186 .053 .178 .549 .145 .758 .418 -.149

.308 .923 .259 .169 .190 .372 .758 .183 .550 -.204

.347 .511 .598 .166 .261 .367 .418 .550 .123 -.056

.057 -.193 .599 .147 .004 .013 -.149 -.204 -.056 .218


.

The residuals of the fitted curves are correlated. The correlations are mostly
positive but vary in magnitude. The strongest correlations are between Zone 1 and
Zone 4, Zone 1 and Zone 5, and Zone 1 and Zone 6. Some correlations are negative.
The largest negative correlation is between Zone 8 and Zone 10.

The following is the posterior mean of ΣΣΣ1 multiplied by 30000.

1.02 0.27 -0.12 1.38 1.08 0.84 0.51 -0.06 0.00 -0.15
0.27 0.27 0.06 0.45 0.24 0.24 0.24 0.33 0.15 -0.03
-0.12 0.06 0.36 0.09 -0.12 -0.18 -0.18 0.42 0.30 0.42
1.38 0.45 0.09 3.36 1.26 0.75 0.36 0.57 0.27 -0.12
1.08 0.24 -0.12 1.26 1.29 0.84 0.48 -0.12 -0.03 -0.12
0.84 0.24 -0.18 0.75 0.84 0.87 0.57 -0.24 -0.09 -0.21
0.51 0.24 -0.18 0.36 0.48 0.57 0.54 -0.15 -0.09 -0.24
-0.06 0.33 0.42 0.57 -0.12 -0.24 -0.15 1.02 0.48 0.27
0.00 0.15 0.30 0.27 -0.03 -0.09 -0.09 0.48 0.36 0.24
-0.15 -0.03 0.42 -0.12 -0.12 -0.21 -0.24 0.27 0.24 0.72


.

The second order derivatives of the curves are correlated. The strongest positive
correlations are between Zone 1 and Zone 4, Zone 1 and Zone 5, and Zone 1 and
Zone 6. The same zone pairs that also have strong correlations of the residuals.

The correlation in the residuals and the co-movement in the trends suggest the
multivariate approach is appropriate for estimating the trends in surface tempera-
ture.
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Figure 1: Data and Estimated Trends of Temperature Anomalies in Degrees Cel-
sius in 10 Zones

Shiller, R. J. (1984), ‘Smoothness priors and nonlinear regression’, Journal of the American Sta-

tistical Association 79, 609–615.

Speckman, P. L. and Sun, D. (2003), ‘Full (b)ayesian spline smoothing and intrinsic autoregressive

priors’, Biometrika 90, 289–302.

Sun, D., Tsutakawa, R. K. and Speckman, P. L. (1999), ‘Posterior distribution of hierarchical

models using CAR(1) distributions’, Biometrika 86, 341–350.

Wahba, G. (1985), ‘A comparison of Gcv and Gml for choosing the smoothing parameter in the

generalized spline smoothing problem’, The Annals of Statistics 13, 1378–1402.

Wahba, G. (1990), Spline Models for Observational Data, Philadelphia: Society for Industrial and

Applied Mathematics.

Wang, Y. (1998), ‘Smoothing spline models with correlated random errors’, Journal of the American

Statistical Association 93, 341–348.

Wang, Y., Guo, W. and Brown, M. B. (2000), ‘Spline smoothing for bivariate data with applications

to association between hormones’, Statistica Sinica 10(2), 377–397.

Wecker, W. E. and Ansley, C. F. (1983), ‘The signal extraction approach to nonlinear regression

and spline smoothing’, Journal of the American Statistical Association 78, 81–89.

Yee, T. W. and Wild, C. J. (1996), ‘Vector generalized additive models’, Journal of the Royal

Statistical Society, Series B: Methodological 58, 481–493.

JSM 2013 - Section on Nonparametric Statistics

2759


