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Abstract 
Group-randomized trials (GRT) often have a small number of clusters, creating 
challenges for identifying a valid analysis method with sufficient power. Previous studies 
found problems with two popular methods- GEE and permutation tests. GEE suffers from 
anti-conservative tests even with small-sample corrections, while permutations suffer 
from conservativeness due to discreteness of test distributions. We compared the 
performance of small sample adjusted GEE methods with three weighted permutation 
procedures for GRT with count data. Type I error rates and power were estimated by 
simulation in 81 scenarios with number of clusters from 10 to 40, and ranges of values 
for overall mean count, covariate effect, overdispersion parameter, and intracluster 
correlation coefficient. Permutation tests had valid type I errors in all scenarios and had 
power at least as high as other tests. Average power to detect moderate treatment effects 
was 0.794 for weighted permutation test versus 0.787 for the best-performing GEE 
method. For large treatment effects, power was 0.905 versus 0.901. In conclusion, 
permutation tests showed a wider range of validity with no loss of power, compared to 
GEE methods. 
 
Key Words: Cluster- randomized trial, Generalized estimating equations, Weighted 
permutation test, Correlated count data, Bias-corrected variance estimator 
 

 
Section 1: Introduction 

 
A group randomization trial is one in which intact social units, or groups of individuals, 
rather than individuals themselves, are randomized to different intervention groups. 
Group randomization trials, sometimes called cluster-randomized trials, have become 
particularly widespread in the evaluation of non-therapeutic interventions, including life-
style modification, educational programs and innovations in the provision of health care 
(Donner & Klar, 2000). The units of randomization in such studies are diverse, ranging 
from relatively small clusters, such as households or families, to entire neighborhoods or 
communities, but also including worksites, hospital wards, classrooms and medical or 
dental practices. Examples of GRTs include the National Cancer Institute’s Working 
Well Trial (group: work site), their 5-A-Day Program (group: work site), the Hutchinson 
Smoking Prevention Project (group: school district), the National Cancer Institute’s 
COMMIT project (group: community), and Kaiser Family Foundation’s Community 
Health Promotion Grants Program (group: community). 
 
The statistical features of group randomization were first brought wide attention in the 
health research community by Cornfield (1978). Although Cornfield stated that such 
allocation schemes are less efficient than designs which randomize individuals to 
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intervention groups, reasons for adopting a group randomized trial rest on other 
considerations, such as ethical issues, the desire to control costs or attempts to minimize 
experimental contamination. Differing from individual randomized trials, group 
randomization trials have two fundamental features: First, the individual outcomes within 
the same group are often correlated and this correlation is called intra-class correlation 
(ICC). The second characteristic of GRTs is that given that interventions are delivered at 
the group level, the most cost-efficient design is to randomize a relatively small number 
of groups (e.g. COMMIT had 11 communities per treatment condition, Gail et al, 1996) 
to each treatment condition, and to have a moderate or large number of participants per 
group. These two features create several problems in the design and analysis of GRTs 
and invalidate standard approaches to both the estimation of sample size and the analysis 
of the trial data. 
 
With more and more attention paid to the specific features of GRTs, several analytic 
approaches have been identified to provide valid analysis for GRTs. The three primary 
approaches for evaluating correlated data arising in GRTs include:  (1) generalized linear 
mixed models (GLMM); (2) generalized estimating equations (GEE); and (3) 
randomization-based inference (i.e. permutation test, jackknife estimation, bootstrap 
approach).  
 
Generalized linear mixed models are extensions of the generalized linear models (GLM) 
involving models with random terms in the linear predictor. Differing from GLMs, 
GLMMs parameterize the correlation within clusters using a random cluster effect, which 
has its own distribution (usually assumed to be independently normally distributed).  The 
GLMM models are also called conditional models, since they are based on modeling the 
response conditional on the random effects (Schall, 1991). In order to compute an 
estimate for the intervention-effect parameter, one must integrate the joint likelihood over 
all possible values of the random effects. There are a multitude of numerical methods 
available to approximate the integral, of which the penalized quasi-likelihood (PQL) 
(Breslow & Clayton, 1993) is a commonly used method.          
 
An alternate large-sample method for analyzing correlated data is generalized estimating 
equations (Liang & Zeger, 1986).  The equations are extensions of those used in quasi-
likelihood methods by simply replacing the identity matrix with a more general 
correlation matrix. In contrast to GLMM, GEE adopts a marginal model and the 
regression is based upon the marginal means of the observations and it estimates the 
intervention-effect parameter by solving a score-like “estimating equation”. In addition, a 
"working" correlation matrix for the observations for each cluster is specified. This set-up 
leads to the above-mentioned estimating equations which give consistent estimators of 
the regression coefficients and of the covariance matrix of the estimates. However, the 
asymptotic distribution of the estimate is usually not appropriate in GRTs which usually 
have small numbers of clusters. It has been noted in the literature that for small samples, 
the unadjusted robust Wald tests tend to be too liberal in terms of maintaining the 
nominal test sizes (Lin & Wei, 1989; Emrich & Piedmonte, 1992; Gunsolley et al, 1995; 
Fay et al, 1998; Mancl & DeRouen, 2001). Thus several adjustment approaches for 
small-sample clustered data have been proposed and three main approaches include:  (1) 
direct modification of the sandwich estimator by correcting its downward or upward bias 
(Mancl et al, 2001; Fay et al, 2001); (2) using a different approximate test (i.e. a Student 
t- or F-test) instead of the regular chi-squared test as the reference distribution for 
coefficient estimators (Paik, 1988; Lipsitz et al., 1990; Lipsitz et al., 1994; Qu et al., 
1994) and (3) a combined approach of (1) & (2) to account for both the bias and 
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variability of the sandwich estimator at the same time (Mancl et al, 2001; Fay et al, 
2001). These previous studies have confirmed that using the bias-corrected estimators 
or/and using an F-distribution to compute the critical values would help with the inflation 
issue and produce tests with sizes substantially closer to the nominal level, thereby 
acknowledging the small-sample feature of GRTs.    
 
In addition to the small-sample adjustment GEE methods, there are other studies 
proposing re-sampling methods for small-sample correlated response data, among which 
the permutation tests have wider range of applications: permutation tests have been 
applied in cluster analysis (Hubert & Levin, 1976), Fourier analysis (Freedman & Lane, 
1980), multivariate analysis (Arnold, 1964; Mielke, 1986) and single-subject analysis 
(Kazdin, 1980). A permutation test, also called an exact test, originated from the works of 
Fisher and Pitman in the 1930s (Fisher, 1935; Pitman, 1938). It is a type of statistical 
significance test in which the distribution of the test statistic under the null hypothesis is 
obtained by calculating all possible values of the test statistic under rearrangements of the 
treatment assignments on observed data points. Although the permutation test was 
originally developed for individual-randomized studies, it can be readily applied to 
GRTs. For GRTs, the treatments assigned to groups are permuted. The first extensive 
examination of using permutation tests to analyze GRTs was made by Gail et al (1992). 
This well-known publication described significance tests based on the permutation 
distribution and the approaches for covariate adjustment. They demonstrated that in 
GRTs, the permutation test remains valid under almost all practical situations in GRTs, 
including unbalanced group sizes. Although members of the permutation test family have 
the appropriate type I error rate, the power of each test depends upon which statistic is 
used.  Gail et al (1996) and Brookmeyer & Chen (1998) empirically examined the power 
of permutation tests, but there is no comprehensive theoretic development of efficient 
permutation tests for correlated data regression settings like GRTs. It was Braun & Feng 
(2001) that systematically developed permutation inference that will have maximal power 
against a specific alternative, proposed the optimal tests using three different weighted 
test statistics and also compared the power of these permutation tests to that of  GEE and 
PQL through simulation studies.  
 
 

Section 2: Methods 

 
In this paper, we examined six tests through simulation studies, including three 
permutation tests, two small-sample adjustment GEE tests and the unadjusted GEE test. 
Within the family of permutation tests, we compared one un-weighted permutation test 
with two weighted permutation tests, in order to examine the effect of weighting on test 
size and power. We also compared the performance of the three permutation tests with 
the bias-corrected GEE test and the combined GEE test. 
 

2.1 Un-weighted Permutation Test 
The commonly used test statistic for permutation test is the un-weighted one, which uses 
the un-weighted mean of the residuals of each cluster as the test statistic. This traditional 
permutation test has been applied in many previous studies including the COMMIT study 
(Gail et al, 1992). The test statistic is computed by: 

Su=  ∑
 

   
∑        (       )

 
                            (2.1) 
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  , where ni is the cluster size for the ith cluster, 
   Tij is the treatment assignment for the ith cluster and jth subject (Tij=+1/-1), 
   Jnij is a (1 X ni) vector of ones, 
   Yij and µij are the corresponding (ni X 1) vectors of outcomes and their expected values. 
 

2.2 Cluster-size-weighted Permutation Test 
Not as commonly used as the un-weighted permutation test, the cluster-size-weighted test 
has been applied to two group randomized clinical trials, the Hutchinson Smoking 
Prevention Project (HSPP, Peterson et al 2000) and the Smokeless Tobacco Cessation 
Intervention Study (Walsh et al, 1999). The test statistic used here is the difference in 
overall averages between the control and experimental groups and thus is weighted by the 
cluster size. The formula is given below: 
 

Sc=   
∑ ∑     (       )

 

       
 

∑          
 

 
∑ ∑     (       )

 

    
 

∑       
 

                   (2.2) 

 
, where ni, Jnij, Yij, and µij have the same definitions as 2.1. 
 
2.3 Correctly-weighted Permutation Test 
Braun and Feng (2001) developed a permutation test which uses a statistic that is a 
weighted sum of residuals.  In their study, a marginal model was used to motivate this so-
called correctly-weighted test statistic. Such a model generates a quasi-score statistic, 
with the weights based on the cluster sizes and the intra-cluster correlation. This test’s 
optimality was proved by Li (Li, 1993). Besides, Braun demonstrated in his PhD 
dissertation (Braun, 1999) that this correctly-weighted test statistic is closest to the true 
score and the corresponding test is locally most powerful (LMP).  
 
The correctly-weighted test statistic is given by: 
 

   ∑ ∑          
  (       ) 

 
 

                         (2.3) 

, where Dij is the corresponding (1 X ni) vector of gradients, 
             Vi is an (ni X ni) covariance matrix of the ith cluster, with non-zero elements off 
its diagonal. 
 
Specifically for the count responses, Dij is the derivative of the mean with respect to the 
linear predictor, ie, as Braun states that Dij= (d ƞij/d µij)-1 which is for a log-linear model 
where ƞ= log (µ), (d ƞij/d µij)-1 = (1/µij)-1 =µij. 
 

2.4 Un-adjusted GEE Method 
The generalized estimating equation methodology (GEE) has become a popular 
regression method which is applied to analyze correlated responses. The term generalized 
estimating equations indicates that an estimating equation is not the result of a likelihood-
based derivation, but that it is obtained by generalizing another estimating equation. 
Suppose we have data that consists of correlated observations {yij, xij}, j =1, 2,..., ni, for 
each of the i = 1, 2, ... ., K subjects, where yij is the response measure and xij is a p x 1 
vector of covariates. The mean µij = E (yij| xij) is related to xij by ƞ (µij (β)) = xij

Tβ, where 
ƞ is a known link function and β is a p x 1 vector of unknown regression coefficients. 
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Liang and Zeger (1986) proposed a sandwich estimator to estimate the covariance matrix 
of the regression coefficient estimators  ̂: 
 

(∑   
   

   

   
  )

  
(∑   

   
   

   
   (  )  

    ) (∑   
   

   

   
  )

  
 ,  (2.4) 

 
, where (yi -µi) (yi-µi) T is typically used to estimate cov(yi) and the reader can find 
detailed definitions of the above parameters in Liang and Zeger (1986). 
 
2.5 Bias-corrected GEE Method 
It is well known that the residual estimator of cov (yi) tend to be too small for the small-
sample correlated responses. Thus to reduce the bias of the residual estimator riri

T and 
improve the performance of GEE test on small-sample correlated responses, Mancl et al 
(2001) proposed an alternative robust covariance estimator for   ̂, which is so-called 
bias-corrected robust covariance estimator. Specifically, the expected value of the 
residual estimator riri

T was approximated by multiplying the same matrix (      )
   on 

both sides, where Hii is an expression for the leverage of the ith subject (Preisser & 
Qaqish, 1996) and Ii is an identity matrix of the same dimension as Hii. 
 
The following equation gives the bias-corrected covariance estimator: 
 
                 

( )
    {∑   
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 (      )

    
    }       (2.5) 
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  , 

            Hii    (∑   
   

   

   
  )

  
  

   
  . 

               
 

2.6 Combined GEE Method 
Some investigators (Pan et al, 2002; Fay et al 2001; Mancl et al 2001) proposed using an 
approximate t- or F- test that takes account of the variability of the sandwich estimator. 
Specifically, a Student’s t- or F-distribution is used instead of the asymptotic normal (or 
chi-square) distribution to compute the statistical significance. Since our main interests of 
this study lie only on the treatment effect, we chose to compute the bias-corrected GEE 
test statistic and then use the F- distribution with 1 (df1) and d (df2) degrees of freedom. 
 
 The determination of the degree of freedom (df2) had been rather arbitrary, but if it is 
desired to have the test size equal to or less than the specified nominal level, it is 
reasonable to use the number of clusters minus the number of coefficients (m) in the 
regression model as the denominator degree of freedom, which is m-3 in all the following 
simulation scenarios.  
 

 
Section 3: Simulation Studies 

 
3.1 Model and Simulation Scenarios   
A standard “log” link was used in the regression model: log (µij) =α+ Xij β + Wij γ, where 
µij is the specified mean of count data (Yij), α is the intercept, Xij is the binary indicator 
for treatment groups (0 or 1) for the jth subject in the ith community (but note that for a 
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GRT the treatment is the same for each subject in the same community), β is the 
treatment effect, Wij is an individual level covariate adjusted in the model and γ is the 
covariate effect. In addition, the total number of clusters, m, the correlation within each 
cluster ρ (we assume equal intra-class correlation for all the clusters) and an 
overdispersion parameter φ were also specified (φ=var (Yi)/    ). Various values (ranging 
from 2 to 15) were examined for the over-dispersion parameter φ and they all gave 
similar results for the test size and the power. Thus a value of 4.0 was chosen for all the 
simulation scenarios, which was closest to the Pearson dispersion estimate of data in a 
group randomized dental trial that motivated this work (Harrison et al., 2010). 
In total, 81 different scenarios were simulated based on combinations of the above 
parameters:  (α, γ, ρ, m), with 3 values for each parameter. The values of the regression 
parameters specified in the simulations were chosen to correspond with the dental trial, 
but alternatives were allowed with α=0.2/1.3/3.0 and γ=0/0.05/0.10. The values of 
correlations were chosen so that the correlation ρ between subjects within each cluster 
was 0/0.05/0.3. All simulation sets were run with the exchangeable correlation.  We 
selected values for the parameters that were reasonable based on scientific rationale of 
dental clinical studies. Lastly, 3 different numbers of clusters were considered with 
m=10/20/40. For each data configuration, 2000 simulations were generated and 
simulations were performed in the statistical package R 2.11.1. 
 
3.2 Data Generation  
The correlated count data were simulated by using a lognormal-Poisson hierarchy (L-P 
method) by Madsen (Madsen & Dalthorp, 2007). The L-P method is a simple and fast 
way to simulate count-valued random n-vectors Y with specified mean and correlation 
structure. A vector of correlated normal Z is generated and transformed to a vector of 
lognormals X. Then, Y is generated as conditionally independent Poissons with means Xi.  

We simulated GRTs of 10, 20, 40 clusters. Each GRT consisted of equal number of 
control clusters and intervention (treated) clusters with equal numbers of subjects, whose 
outcomes were correlated count data. For all the simulation scenarios, the total number of 
all subjects was forced to be 400 (i.e., the number of subjects per cluster was 40, 20, or 
10 corresponding to number of clusters 10, 20, or 40, repectively). 
 
3.3 Results from the Simulation Study 
3.3.1 Simulated Test Sizes 
We first examined the test sizes and power of the permutation tests based upon 200, 500, 
1000, 2000 and 10,000 random permutations. All these significance tests examined were 
applied to identical simulated data sets, thus any difference in size or power estimates 
seen from test to test is free of variations due to simulation. Simulation results showed 
that test sizes and power for all 81 simulation scenarios are similar for the five settings 
and the largest differences between 2000 and 10,000 random permutations were 0.002 
and 0.005 for the test sizes and power, respectively (data not shown). The results thus 
suggest that 2000 random permutations are feasible and accurate enough. Such an 
approximation is also discussed in Dwass (1957) and Braun & Feng (2001).  
 
We then investigated the performances of the six tests under 81 different simulation 
scenarios. Figure 1 summarizes the test sizes of the six tests. As expected, the Wald test 
in GEE (G1) based on a sandwich standard error estimate is too liberal, a result also 
supported by the simulation study of Emrich & Piedmonte (1992). Since the actual test 
size has a 95% confidence interval of (0.040, 0.060) based upon an estimate of 0.05, 
estimates of test size that are outside of (0.040, 0.060) indicate that the test size is not 
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equal to 0.05. As a result, the bias-corrected GEE method (G2) did reasonably well in 
maintaining the nominal test size in most of the scenarios except that it gave conservative 
results when the correlation ρ is big and the total cluster number m is small. However, the 
bias-corrected GEE covariance estimator combined with F-distribution (G3) appears to 
overcorrect the sandwich covariance estimator in most cases, and this overcorrection may 
be the source of the conservativeness of the test sizes. Satisfyingly, none of the three 
permutation tests have sizes significantly larger than 0.05 for all scenarios. And it is 
worthy to note that the cluster-size-weighted and un-weighted permutation tests gave the 
same results (denoted by P1) in these balanced cases (of equal cluster sizes) and the 
correctly-weighted permutation test (denoted P2) did equally well. Additionally, the test 
sizes remain similar for all the six tests when the covariate effect (γ), correlation (ρ) and 
intercepts (α) change their values. This suggests that the performance of the permutation 
test and other tests remains stable and are not influenced by the covariate effect, intra-
cluster correlation or the intercept. But, the bias-corrected method and the combined 
method appear to give more conservative test sizes when there are larger covariate effects 
and the total cluster numbers are small.  
 
 
3.3.2 Simulated Power 
Figure 2 summarizes the power of the six tests with moderate treatment effect of β = 0.2. 
Figure 3 summarizes the power of the six tests with larger treatment effect of 0.3.  
As shown in both Figure 2 and Figure 3, the power goes up with the increase of the 
cluster number m, which suggests that higher power would be achieved by having more 
clusters and the cluster number is more influential than the cluster size. The results also 
show that the power is higher for larger covariate effect (γ). However, it is important to 
keep in mind that a larger covariate effect comes with a larger mean and thus the power 
of testing a specific value of treatment effect for larger means is going to be higher. 
When we compare the six tests in the same simulation scenario, we found that the powers 
of the five adjusted methods are close to each other and are slightly lower than the un-
adjusted GEE method. Although GEE test appears to be more powerful, this is due to its 
liberal size. Compared with the permutation tests, the bias-corrected GEE combined with 
the F-distribution test (G3) has lower power and is actually the least powerful test among 
the six tests. Considering its conservative property and the lower power, we would not 
suggest using the bias-corrected GEE combined with F-test for GRTs with small cluster 
numbers (m<20).  
 
Comparing Figure 2 with Figure 3, it is noted that the power goes up when the treatment 
effect is larger (bigger β) for all the six tests. We also compared the 5 adjusted methods 
only considering the tests with valid type I errors. The average power comparing cluster-
size-weighted permutation test with un-weighted permutation, correctly-weighted 
permutation, bias-corrected GEE and bias-corrected GEE with F test are: 0.776 vs. 0.776 
vs. 0.794 vs. 0.787 vs. 0.765 for treatment effect of 0.2. As for a larger treatment effect of 
0.3, the average power comparing cluster-size-weighted permutation test with un-
weighted permutation, correctly-weighted permutation, bias-corrected GEE and bias-
corrected GEE with F test are: 0.895 vs. 0.895 vs. 0.905 vs. 0.901 vs. 0.887. Therefore, 
the correctly weighted permutation test yields slightly higher power than the other tests in 
the situations examined in this study. 
 
In summary, the randomized cluster number has more influence on the test power than 
the cluster size. Within a certain amount of resource and study costs, we suggest the 
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researchers to try to increase the total cluster number as much as possible, rather than 
spend more effort on increasing the cluster sizes. 
 
 

Section 4: Discussion 
 
In our simulation studies, we found that all three permutation tests have very close to 
nominal test sizes and are generally performing better than the bias-corrected GEE 
method (G2). They gave very similar power for almost all the simulation scenarios. Thus 
in general, we will recommend either using one of the three permutation tests or using the 
bias-corrected GEE method when the cluster size is equal and the number of cluster is the 
same in each arm. However, the bias-corrected GEE method should not be used in 
situations where the covariate effect or/and the intra-class correlation is large, since 
conservative test sizes would be produced. We also examined a different setting of small 
GRTs (m<10) with unequal numbers of clusters in control and treatment groups (data not 
shown). Based on the comparison results with regard to test sizes and power, we highly 
recommend having at least 8 total clusters in designing a group randomized trial and 
maintain the same number of clusters in each arm of the trial.  
 
As far as the authors are aware, this paper is the first study that compares the use of un-
weighted and weighted permutation tests with the small-sample adjustment GEE methods 
to analyze group randomized trials with correlated count-valued responses. Previous 
studies only addressed continuous or binary responses by applying either permutation test 
(s) (Gail et al, 1992; Peterson et al, 2000; Braun, 1999) or small-sample adjustment GEE 
method (s) (Mancl et al, 2001; Fay et al, 2001; Pan et al, 2002) in the context of GRTs or 
other settings involving clustered data. It is not uncommon to see count outcomes in 
group randomized trials (i.e. number of cavities, blood cell counts, hospitalization days, 
etc) and sometimes results from Gaussian or binary distribution might not carry over to 
skewed distributions.. Also, we were able to compare the performances of six tests in the 
simulation studies, including the un-weighted, cluster-size-weighted and correctly-
weighted permutation tests,  two small-sample adjustment GEE methods and the 
unadjusted GEE method as the reference. Thus these findings would deliver much more 
comprehensive understanding in terms of which approach works best in certain situation. 
 
There are several limitations in this study. Firstly, we used a lognormal-Poisson hierarchy 
(L-P method) for simulating count-valued random n-vectors Y with specified mean and 
correlation structure. One strength of this technique is its simplicity; once the desired 
moments of the simulated vector Y have been determined, the generation of the normal 
vector (Z) is nearly instantaneous for moderate n. However, the L-P method fails in 
situations where underdispersed random variables or strongly correlated random 
variables with similar means need to be simulated. As mentioned in Madsen’s paper 
(Madsen et al, 2007), for simulating samples from populations with small means and high 
correlations, an alternative method, overlapping sums of independent variables is 
available to address some of the shortcomings of the L-P method. Another limitation of 
this study lies in estimation of covariate effects. We included a covariate effect (γ) in all 
the simulation scenarios and did not examine cases where there is no covariate effect. 
However, whether or not bias in the covariate estimates will cause very large intervention 
effects to be detected with less power is unknown and underestimated covariate effects 
will directly impact power and lead to an inefficient permutation test. In fact, it may be 
more powerful to not adjust for covariates at all. Therefore, it would be good to compare 
the power of these tests which adjust for small or larger covariate effect with the power of 
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tests that do not adjust for any covariate. Lastly, findings and conclusions of our study are 
limited to the simulation scenarios that were used in this study and might not be 
generalizable to other scenarios.
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Figure 1: Simulated test sizes for 5 tests as a function of number of clusters (m) with 

m/2 clusters per treatment group and a total of 400 subjects. Results are based upon 

2000 simulations of log-linear models as described in section 3.1 with overdispersion 

parameter φ=4.0. Results for three different values of the intercept are averaged 

and plotted. The tests considered are: P1= cluster-size-weighted permutation test 

(equivalent to the un-weighted permutation test in this setting); P2 = correctly-

weighted permutation test; G1= unadjusted GEE; G2= bias-corrected adjusted 

GEE; G3= bias-corrected GEE combined with F test. 
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Figure 2: Simulated power for 5 tests as a function of number of clusters (m) with 

m/2 clusters per treatment group and a total of 400 subjects. Results are based upon 

2000 simulations of log-linear models as described in section 3.1 with overdispersion 

parameter φ=4.0 and treatment effect 0.2. Results for three different values of the 

intercept are averaged and plotted. The tests considered are: P1= cluster-size-

weighted permutation test (equivalent to the un-weighted permutation test in this 

setting); P2 = correctly-weighted permutation test; G1= unadjusted GEE; G2= bias-

corrected adjusted GEE; G3= bias-corrected GEE combined with F test. 
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Figure 3: Simulated power for 5 tests as a function of number of clusters (m) with 

m/2 clusters per treatment group and a total of 400 subjects. Results are based upon 

2000 simulations of log-linear models as described in section 3.1 with overdispersion 

parameter φ=4.0 and treatment effect 0.3. Results for three different values of the 

intercept are averaged and plotted. The tests considered are: P1= cluster-size-

weighted permutation test (equivalent to the un-weighted permutation test in this 

setting); P2 = correctly-weighted permutation test; G1= unadjusted GEE; G2= bias-

corrected adjusted GEE; G3= bias-corrected GEE combined with F test. 
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