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Abstract 
Three methods for computing confidence intervals (CI) around differences in correlated 
proportions (Wald CI, adjusted Wald CI, and a likelihood-based CI method proposed by 
Tango (1998)) were investigated to determine which of these methods produces the most 
accurate and precise CI estimates. Two dichotomous outcomes measured from dependent 
samples were simulated. The factors manipulated in the simulation study included overall 
sample size (10, 50, 100, 500, 1000), direction and strength of the relationship between 
the two proportions (±.40, ±.30, ±.20, ±10, 0), and the population difference in marginal 
proportions (±.3, ±.25, ±.10, ±.05, 0). For each sample generated (i.e., 100,000 
replications), each of the three proposed CI methods was calculated. The adjusted Wald 
CI provided the best coverage across the conditions investigated and is easier to calculate 
than the Tango intervals. In addition, both the original Wald CI and the Tango CI 
produced substantial undercoverage in some small sample conditions.  
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1.Background 

The analysis of correlated or paired data (e.g., repeated measures, pretest-posttest, rater-
agreement) is frequently encountered in applied research; that is, research designs in 
which a sample of n units provide two dichotomous responses that can be summarized in 
a 2 x 2 contingency table. One example is the results of two diagnostic tests of dyslexia 
(test A and test B), administered to a sample of pre-school children and summarized in 
Table 1 as cell frequencies of the cases in which diagnosis is correct in both tests 
(correct-correct), correct in test A but incorrect in test B (correct-incorrect), incorrect in 
test A but correct in test B (incorrect-correct), and incorrect in both tests (incorrect-
incorrect). 
 

Table 1: Contingency Table of Dyslexia Diagnosis from Test A and B 

  Test B 

  Correct Incorrect Total 

Test A 
Correct  a (π11) b (π12) a + b (π1+) 

Incorrect  c (π21) d (π22) c + d (π2+) 
Total a + c (π+1) b + d (π+2) n (1) 
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The difference in correlated or dependent proportions is often of interest in studies such 
as pretest-posttest designs, matched-pair designs, and rater-agreement designs (Bonett & 
Price, 2011). Currently, McNemar’s test (1947) is commonly conducted to test the 
equivalence of two correlated proportions. In this example, the null hypothesis is that the 
population proportion of correct diagnosis on dyslexia using Test A (π1+ = [a + b]/n) 
equals the population proportion of correct diagnosis using Test B (π+1 = [a + c]/n).  
Testing the null hypothesis π1+ - π+1 = 0 is equivalent to testing π12 - π21 = 0 because π11 is 
common to both π1+ and π+1. Given the null hypothesis McNemar’s test statistic (Q) is 
computed as  

Q
b c
b c

. 

Under the null hypothesis, the Q statistic follows an asymptotic chi-square distribution 
with one degree of freedom when b + c is greater than 10 (McNemar, 1947). A 100(1 – 
α)% Wald confidence interval for the difference in the population proportions (π12 - π21) 
can be estimated as 
 

π π z π π π π /n	    

 
where z /  is a critical value at α/2 from the standard normal distribution. However, 
when Newcombe (1998) examined the performance of existing methods to compute the 
confidence intervals for the difference in correlated proportions, the Wald confidence 
interval showed inadequate performance. 
 
Recently, Bonett and Price (2011) proposed an alternative CI by making an adjustment to 
the Wald interval. 
 

π π z π π π π / n 2   

 
where each cell proportion is computed by adding one to the cell frequency and two to 
the total n. For example, π b 1 / n 2  and π c 1 / n 2 . Bonett and 
Price (2011) reported that the adjusted Wald interval performs as well as an approximate 
CI proposed by Tango (1998) but the computation is simpler than Tango’s.   
 
The confidence interval for the difference in two correlated proportions (λ = π1+ - π+1 = 
π12 - π21) developed by Tango is estimated by solving the following two equations 
iteratively until the change in estimation is infinitesimal below the predetermined cutoff.  

b c nλ

n 2π λ 1 λ
z / , 

 
and π  is estimated as 

	π
B 4AC B

2A
 

 
where A = 2n, B = -b – c + (2n – b + c)λ, and C = -cλ(1 – λ). Although the computational 
procedures are more complex than Wald and adjusted Wald intervals, the upper and 
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lower limits are easily found through the secant method with empirically good coverage 
probabilities (Tango, 1999) and can be applied to small samples with off-diagonal zero 
cells (Tango, 1998). A SAS macro for the computation of the Tango interval, as well as 
the two Wald intervals, was provided by Wu et al. (2013). 
 

2. Purpose 

The purpose of this study was to examine three different methods for computing 
confidence intervals around differences in correlated proportions: Wald’s method, the 
adjusted Wald method proposed by Bonett and Price (2011) and the likelihood-based 
method proposed by Tango (1998). The accuracy and precision of the confidence interval 
estimation methods were investigated using Monte Carlo methods by simulating two 
dichotomous outcomes measured from dependent samples. 
 

3. Method 

In this simulation study the following design factors and conditions were examined: (a) 
sample size (N = 10, 50, 100, 500, and 1000), (b) magnitude and direction of population 
correlation between the two proportions (φ = -.40 to +.40, in increments of .10), and (c) 
difference between population proportions (Δ = -.30, -.25, -.10, -.05, .00, .05, .10, .25, 
and .30). These factors in the Monte Carlo study were completely crossed, yielding 405 
conditions. For each condition, 100,000 replications were conducted and in each 
simulated sample the three confidence interval methods were applied to provide estimates 
of 90%, 95% and 99% intervals. The use of 100,000 estimates provides adequate 
precision for the investigation of confidence interval coverage and width. For example, 
100,000 replications provide a maximum 95% confidence interval width around an 
observed proportion that is  .0031 (Robey & Barcikowski, 1992). 

The data for the simulation were generated using uniform random numbers on the zero to 
one interval (the SAS RANUNI function). The values of the random numbers were used 
to assign observations to cells in the contingency table. For example, to simulate data 
with Δ = .25 and φ = .00, observations with random numbers between 0 and .21 were 
assigned to the cell in the first row and first column, those with random numbers between 
.21 and .60 were assigned to the cell in the first row and second column, and so on. This 
procedure yields 2 X 2 tables in which the expected cell proportions are illustrated in 
Table 2.  

For the population presented in Table 2, the difference in proportions (Δ) is .39 - .14 = 
.25, and the correlation is given by 

. 26 . 39 .26 . 14 .26

. 21 .39 . 14 .26 . 21 .14 . 39 .26
0 

The simulation was conducted using SAS/IML (SAS, 2008). The data simulation 
program was checked by examining the matrices produced at each stage of data 
generation. Primary outcomes examined in this Monte Carlo study were the confidence 
interval coverage probabilities and confidence interval widths over the 100,000 
replications.  
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Table 2: Expected Cell Proportions with Δ = .25 and φ = .00

  X2 

  1 2 

X1 
1 .21 .39 

2 .14 .26 

 

4. Results 

The outcomes from the simulation were analyzed by first examining box plots to describe 
the distributions of each outcome across all simulation conditions. In addition, the results 
of the study were evaluated by using analysis of variance to compute the effect size  
associated with each of the research design factors and their first-order interactions. To 
save space, the results from the 95% confidence intervals are presented. Results for 90% 
and 99% intervals are available from the authors.   
 

4.1 Interval Coverage 
 
The overall distributions of interval coverage results at 95% are represented in Figure 1. 
The results suggest that adjusted Wald method provides the best interval coverage overall 
among the three methods. The original Wald method presents lower coverage than the 
expected confidence level in the majority of conditions. The adjusted Wald and Tango 
methods provide higher coverage for most of the sample conditions. However, the 
interval coverage of the adjusted Wald method is closer to the expected confidence level 
than that of the Tango method. Similar results were seen at the 90% and 99% confidence 
levels. 

In the analysis of the simulation design factors associated with variability in the interval 
coverage, estimation method,  the population delta, the interaction between method and 
sample size, as well as the interaction between method and population delta resulted in 
large effects (  = .30,  =.07,    = .25 and  = .11, respectively). Similar results 
were seen for the 90% and 99% confidence interval estimates.  

The mean coverage estimates associated with the interaction between method and sample 
size are presented in Figure 2 and Table 3.  Clearly the Tango method provides the best 
coverage at the small sample size but provides slight over coverage with large sample 
sizes. The original Wald method evidences a large degree of under coverage at the 
smallest sample size and gets closer to the nominal confidence interval coverage when 
sample size increases. The adjusted Wald method presents slight over coverage at the 
smallest sample size but the difference is smaller when sample size increases.  The means 
of interval coverage by sample size for each estimation method are summarized in Table 
3.  

JSM 2013 - Social Statistics Section

2712



 
 

 
  Figure 1: The distributions of interval coverage at 95% confidence level. 
 
 
 
 
 

 
Figure 2: The interaction between methods and sample size on coverage level at 95% 
confidence 
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Table 3: Mean Interval Coverage by Sample Size for Three Methods 

Sample size 

Method 

Original Wald Adjusted Wald Tango 
10 0.89 0.97 0.95 
50 0.94 0.95 0.96 

100 0.95 0.95 0.96 
500 0.95 0.95 0.96 
100

0 
0.95 0.95 0.96 

Note. Estimates are based on 100,000 samples of each condition. 

Table 4 displays the mean interval coverage estimates by population delta for each 
estimation method. The interaction between method and population delta on coverage is 
also shown in Figure 4. Based on this figure, the adjusted Wald provides mean coverage 
close to the nominal 95% percent confidence at all level of population delta while the 
original Wald method results in under coverage at all population delta levels. The Tango 
method provides near nominal coverage only at population delta values close to zero. 
Notably, the Tango method provides greater over coverage when delta gets farther from 
zero. 

 

Figure 4: The interaction between method and population delta for coverage level at 
95% confidence 
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Table 4: Mean Interval Coverage by Population Delta for Three Methods 

Method 

Population delta Original Wald Adjusted Wald Tango 
-0.30 0.94 0.95 0.98 
-0.25 0.94 0.95 0.97 
-0.10 0.94 0.96 0.95 
-0.05 0.93 0.95 0.95 
0.00 0.94 0.96 0.95 
0.05 0.93 0.95 0.94 
0.10 0.93 0.96 0.96 
0.25 0.94 0.95 0.97 
0.30 0.94 0.95 0.97 

Note. Estimates are based on 100,000 samples of each condition. 
 

4.1.1 Evaluation of the adequacy of the estimated intervals  

Bradley’s (1978) liberal criterion provides a guideline for evaluating the robustness of a 
hypothesis testing method. For a given nominal alpha level, Type I error rates between α 
– 0.5α and α + 0.5α are conceived as robust at the most liberal end. We adopted 
Bradley’s liberal criterion to evaluate the adequacy of the estimated intervals. When the 
proportion of intervals that contain the population parameter falls between 1 – 1.5α and 1 
– 0.5α (for example, between .925 and .975 for a 95% confidence interval), a method is 
considered adequate with respect to the interval coverage.  

First, the overall proportions of simulation conditions that meet Bradley’s criterion were 
examined. Adjusted Wald intervals met the Bradley’s criterion most frequently (.96) 
followed by original Wald (.80) and Tango (.76) intervals. To examine the adequacy of 
the estimated intervals with small samples, the proportions meeting the Bradley’s 
criterion were investigated by sample size (see Table 5). When sample size is small (N = 
10), the performances of all three intervals deteriorated considerably with respect to 
Bradley’s criterion. However, the proportions meeting Bradley’s criterion for the adjusted 
Wald intervals were relatively high compared to the other methods. On the other hand, 
the impact of small sample size was the most salient with the original Wald intervals. For 
example, when N = 10, the proportion meeting the Bradley’ criterion is .01 at α = .05. 
Based on this observation, the original Wald method is not recommended with very small 
samples.  

Table 5: Proportion of Conditions Meeting the Bradley’s Liberal 
 Criterion by Sample Size 

N Wald Adjusted  Wald Tango 
10 .01 .80 .74 
50 1.00 1.00 .78 
100 1.00 1.00 .77 
500 1.00 1.00 .75 
1000 1.00 1.00 .77 

Note. Estimates are based on 100,000 samples of each condition. 
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Compared to the two Wald methods, the Tango intervals were frequently inadequate in 
terms of Bradley’s criterion. That is, the empirical estimates of the coverage provided by 
the Tango intervals often missed the Bradley’s liberal criterion showing typically over 
coverage. In addition, the Tango method showed a large variability in the Bradley 
proportions across the levels of simulation conditions. Eta-squared was analyzed to 
identify primary simulation factors explaining the variability of the Bradley proportions 
in the Tango intervals. The direction and strength of relationship between the two 
proportions (φ), the population difference in marginal proportions (Δ), and the interaction 
between them are highly associated with the Bradley proportions (η2 = .19, .23, and .25, 
respectively). When the difference in marginal proportions (Δ) is close to zero, the 
proportions meeting the Bradley’s criterion are 1.0 or close to 1.0 (see Table 7). When Δ 
= 0, the Tango intervals met Bradley’s criterion all the time across the levels of φ. In 
contrast, as Δ departs from 0, the adequacy of Tango intervals depends on both direction 
and strength of relationship of two proportions (φ). When φ < 0, the Tango intervals 
showed high levels of adequacy in the interval coverage. However, when φ ≥ 0, that is, 
when the difference in proportions was reversed, the Bradley’s criterion was less 
frequently met as Δ departs from zero.  

 

Table 7: Proportion of Conditions Meeting Bradley’s Criterion for  
the Tango Intervals by φ and Δ 

 
φ

Δ  -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 
-0.30 1.0 1.0 .40 .00 .20 .20 .20 .00 .00 
-0.25 1.0 1.0 1.0 .20 1.0 1.0 .80 .20 .00 
-0.10 1.0 1.0 1.0 .80 1.0 1.0 1.0 .80 .80 
-0.05 1.0 1.0 1.0 1.0 1.0 .80 .80 .80 .80 
 0.00 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
 0.05 1.0 1.0 1.0 1.0 .80 .80 .80 .80 .80 
 0.10 1.0 1.0 1.0 .80 1.0 1.0 .20 .80 .80 
 0.25 1.0 1.0 1.0 1.0 1.0 1.0 .20 .20 .20 
 0.30 1.0 1.0 1.0 1.0 .20 .20 .20 .00 .00 

Note. φ = the direction and strength of relationship of two proportions, Δ = the population 
difference in marginal proportions. 

4.2 Interval Width 

Figure 5 displays the distributions of interval widths at 95% confidence. The results 
indicate that these distributions are almost the same across all three estimation methods. 
The distributions of interval widths are also very similar across three estimation methods 
at 90% and 99% confidence. 
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     Figure 5. The distribution of interval widths at 95% confidence level. 

Regarding the effect of simulation design factors on the interval width, the eta-squared 
associated with the main effects and the first order interaction effects were calculated at 
each confidence level. The results indicated that the largest effect comes from sample 
size with  =.95. The other factors as well as interactions have relatively small  values 
ranging from approximately 0 to .02, indicating that the variance of interval width is 
explained very little by the other factors in the study.  

Table 8 presents the marginal means of interval width by samples size for the three 
methods. As indicated in the table, the interval width is very similar across the three 
methods at each sample size. As expected, the greatest differences in mean width are 
evident with the smallest sample size (and these widths with N = 10 are so large that the 
confidence intervals are relatively non-informative) and the interval widths decrease 
significantly when the sample size increases. 

Table 8: Mean interval width by sample size for three methods 

Sample size 

   Method 

Original Wald Adjusted Wald Tango 

10 0.74 0.79 0.77 
50 0.35 0.36 0.38 

100 0.25 0.25 0.27 
500 0.11 0.11 0.12 

1000 0.08 0.08 0.09 

Note. Estimates are based on 100,000 samples of each condition. 
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4. Discussion 

The adjusted Wald CI provided the best coverage across the conditions investigated and 
is easier to calculate than the Tango intervals. However, slight over coverage was 
observed when N = 10. The adjustment using n + 2 in the adjusted Wald CI possibly 
leads to over coverage when sample size is small with a greater impact of the addition of 
2 to relatively small n. On the other hand, both the original Wald CI and the Tango CI 
produced substantial under coverage in some small sample conditions.  As sample size 
increased, the interval coverage provided by all three methods was close to the nominal 
coverage level. From the perspective of Bradley’s robustness criterion, however, the 
Tango method evidenced notably fewer conditions with adequate coverage than the 
adjusted Wald method. The Tango method became less adequate (likely over coverage) 
when the difference in two population proportions became larger and the correlation 
between two proportions was positive. All methods provided intervals of approximately 
the same average width, indicating that only minimal differences in precision are 
associated with the choice of method. 

The results of this study clearly indicated that the original Wald method does not provide 
adequate coverage for smaller sample sizes. Specifically, difference between N = 50 and 
N = 10 were striking. Additional research should be conducted using samples sizes of 20, 
30 and 40 to investigate the nuanced issues related to sample size and these methods.  
Even with this limitation, the results of this study suggest that the adjusted Wald CI 
method provides the best coverage for differences between correlated proportions.  
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